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Differential Equation for Quantum Mechanical Problems: Variational Principle

Part 02

So, what we will do is we will use a discrete basis and our choice will be momentum

basis defined in a finite box with periodic boundary condition, that is PBC.
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And so, what are the functional forms of this type of basis? So, you can write phi k as a

function of x, these are nothing, but my plane waves. So, its e to the power i k dot x and

where v is the volume of the, so this v is my volume of the box. And this comes from the

normalization constant. So, for example, if I want a normalized value of this phi k here. 

So, what I would do is I would take phi squared k x, phi x is constant 1 into integration

of d, its d and so if I do that then I will find that my this v, the square root if we see v is

the and the square root v that which we get 1 by square root which we get before this e to

the power i k x this is just nothing, but the normalization constant. Now, in this basis let

us see how the, how our coefficients look like the expansion coefficients C k.
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So, what are my C ks? So, if you remember my C ks are given by this function, right. So,

what does that mean? That means, is that I need to compute the projection of my wave

function on this basis vector k. Now, if you remember my ks are now; so, let me just

write down my phi k x is nothing, but 1 by root over v e to the power i k dot x, ok. So,

how I compute this? So, this will be, so the k will come as the complex conjugate here.

So, it will be phi star k x and then we have psi x, ok.

So, now if I plug in the value of this phi star k x here, so what I will get is the integral

over the volume d dimensional volume, 1 by root v e to the power. Now, this is a we

have to take the complex conjugate of this particular function. So, that will be to the

power minus i k dot x psi x, ok. So, this is written as in this form integration dx d e to the

power minus i k dot x psi x. So, this is the value of my coefficient, ok.

Now, since these are discrete basis now the question is what are the allowed values of ks

here? So, if you remember, so this function is nothing, but a plane wave, ok. So, now, if I

have a plane wave and then I impose periodic boundary condition, so what you can see

show is that this case ks you take discrete values and so in 3D the k can take the value of

this form k x, k y and k z which is given by twice pi by L n x, twice pi by L n y, twice pi

by L n z, where my n x, n y and n z can take values of 0 plus minus 1, plus minus 2 and

so on and so forth till plus minus n. So, basically what we have is all possible integers

values it can take, the n x, n y and n z.
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So, what it means is that along each dimension one has twice N plus 1 basis functions.

And this also implies, so now the delta, the delta k that is spacing between 2 k values

along each direction is given by twice pi by a into 1 by N, right. So, now, you see in this

value, so if my N goes to infinity, so that is as N tends to infinity. So, this basis goes

from a continuous for sorry from a discrete to continuous one.

And as you might have recalled, so far what we were using is plane waves. So, e to the

power i k dot r this is just the functional form of a plane wave. So, this basis is also

called a plane wave basis, ok.
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So far what we had seen is we started off with a differential equation which is I mean my

Schrodinger  equation  which  is  a  differential  equation  and  then  what  we  did  is  we

converted it to a N cross N matrix by expanding, by expanding my wave functions psi

into a set of into a linear combination of basis functions. So, let me just; let me just

summarize what we have done so far. 

So, what we had done is we started off with this wave function and then what we did is

we  expanded  my psi  as  a  linear  combination  of  basis  functions  where  my basis  is

denoted by this one. So, this is my basis and then by taking the projection. So, what we

wanted to find was now my unknowns are this C n which are the coefficients. So, if I

know the coefficients Cn I can construct my wave function. And to find the coefficients

what we did is we projected this Schrodinger equation on to each of the wave each of the

basis functions.

As a result what we got is a matrix equation which is of the following form. And now

our  aim  is  to  diagonalize  this  matrix.  Now,  note  that  the  dimension  of  H  this  is

determined by the size of the basis or in other words what it means is how many basis

functions  I  have used.  So,  suppose I  have  used N basis  functions  then  my H has  a

dimension of N cross N. So, I need to diagonalize this N cross N matrix to find out the

(Refer Time: 09:34) eigen values and the coefficients.



 So, what we did is we basically converted our problem which was the solution of our

differential equation into a linear algebra problem. The reason why one of the advantages

of doing it is that we have very efficient matrix diagonalization subroutines which can

help you achieve that in a very weaker fashion.

But the drawback of this is that if suppose we are interested in the ground state energy,

we will never reach the correct ground state because we always have to truncate our

bases at a certain point. And so, our solutions will be closer to the ground state, but we

will not we will never reach the exact ground state. Will reach the exact ground state

only in the limit the size of my basis goes to infinity. So, then the next question is how

does one diagonalize this matrix.
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So, we all  know that suppose I  have a, so matrix  diagonalizable,  we will  talk about

matrix diagonalization. So, if I have a N say, I have a N cross N matrix which I am

calling as matrix A, ok. So, to diagonalize this what we can do is we can write down the

secular equation which is of the form and solve the secular equation, so that is A minus

lambda I equals to 0, where my I is the unit matrix and the lambdas are my eigen values.

So, if I denote my eigen vectors as v n, so what I get is. So, basically A v n equals to

lambda n v n. So, this I am calling as equation A. Now, usually the dimensions of this

matrix A where in our problems, so this matrix has the dimensions of a few million by

million of that order, I mean what I mean to say is a very huge matrix and also the matrix



elements are quite complicated. If you remember the matrix elements are integral of the

product of your Hamiltonian with the where with your basis functions.

So, each of this matrix element of this matrix  a here is to evaluate that you need to

calculate the integral. So, hence it is a very complex matrix to diagonalize. So, typically

what is done is people do not diagonalize the complete matrix. So, rather than what one

does is the diagonalization is done in a iterative fashion. So, what I mean by that is the

following.
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So, what we are going to do is in diagonalize the matrix, diagonalize A in a iterative

fashion. So, how this is done is, what you do is instead of diagonalizing the full matrix,

so you try to find out a unitary transformation. So, where D is a unitary transformation,

what I mean by unitary transformation of A. So, what I, so find D which is a unitary

transformation of A in an iterative way. So, what it means is that, so if I write it in this

fashion D A D gives me E which is a diagonal matrix of my eigenvalues.

So, the matrix has the following property that is the inverse of this matrix is also happens

to be the transpose of the complex conjugate of the D matrix, ok. Then what one can do

is one can show that columns of D is basically the eigenvectors of A. So, columns of D

contains the eigen vectors of A. So, now, what we are going to do is we are going to

show that in a minute stream. So, this equation; this equation I am calling as equation B.
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So, I let me start with the equation B. So, what I have is, so my equation B I have. So, let

me start with this equation. So, I have D inverse A D this gives me E. So, E is also on

entering matrix. Now, if I multiply with D from left, so what I will be getting is A D

equals to D E. So, this I am calling as my equation C. 

Now, remember this E is my E E E is a diagonal matrix. So, my E you should remember

is diagonal because this is my eigen value matrix. So, what it implies is that, what it

implies is that the nth column of D on right hand side of this above equation that is on

this side is multiplied by the nth eigen value that is E n n. On the left hand side, what do

we have on the left hand side?

In the left hand side, the multiplication by A with the nth column of D, so that means, so

we have on the left hand side is A D n. So, this is equal to E n n D n. So, or in other

words what does this mean? This means that these are my eigen vectors v n, the nth

eigen vector v n. So, that is what the point I am just is trying to make is that basically the

each column of my matrix D n this corresponds to one eigen vector of the matrix A

because now you see we have the this is multiplied by and this has this will become and

on the right hand side, ok.
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So,  now what  we need  to  do  is  we need  to  use  diagonalization  subroutines  and  to

diagonalize that and typically if you look into the numerical recipes book there are lot of

subroutines there are for example there is, also there is this lapack, then there is scalar

pack which are efficient subroutines which can do the diagonalization problem. So, we

will see how to use that with an example now. 


