Computational Physics
Dr. Apratim Chatterji
Dr. Prasenjit Ghosh
Department of Physics
Indian Institute of Science Education and Research, Pune

Lecture — 40
Differential Equation for Quantum Mechanical Problems:
Numerov Algorithm Part 05

(Refer Slide Time: 00:17)

Solution of the quantum harmonic oscillator

Forward integration only, Numerov algorithm

Eigenvalue search using the shooting method.

Adimensional units: x = (mK/hbarA2)A(1/4) X
e = E/(hbar omega)

implicit none
integer, parameter :: dp = selected_real_kind(14,200
!

integer :: mesh, i, icl
integer :: nodes, hnodes, ncross, kkk, n_iter
real(dp) :: xmax, dx, ddx12, norm, arg
real(dp) :: eup, elw, e
real(dp), allocatable :: x(:), y(:), p(:), vpot(:), f(:)
character (1 : fileout
|
! read input data
¥ "harmonic@.f90" 198L, 6284C

4 O

So, the code which I am going to show you now this particular code is using the
numerical algorithm to solve the one dimensional quantum mechanical simple harmonic
oscillator. So, this code we will be using the bisection method to compute the energy, but
we have purposefully not implemented or not made sure that the code gives us the

correct asymptotic limits.

This is done to just show you the effect that if you do not take care of the fact that the
asymptotic limits of your solutions are correctly recognized by the code, then what might
happen. So, this code is written here it is not written by me, but its written by Professor

Paul G Anansi. So, I will just take you through the code.

(Refer Slide Time: 01:11)

5]

030 -/Desktcp/opRel_usga/chedn o) -VIM

|

integer :: mesh. i. icl

integer :: mesh, i, icl

integer :: nodes, hnodes, ncross, kkk, n_iter

real(dp) :: xmax, dx, ddx12, norm, arg

real(dp) :: eup, elw, e

real(dp), allocatable :: x?:i, Wi p(e) Rypot () G
1 gg

character (
|

Y05 oo @me §

! read input data

|

print '

read (*,

print '

read (*,*) mesh

|

! allocate arrays, initialize grid
|

allocate (x(0:mesh), y(0:mesh), p(0:mesh), vpot(0:mesh), f(0:mesh))
dx = xmax/mesh

y a 1 ddx12=dx*dx/12.6_dp
s ¥ £yl

e ——— e T 7L 1T 1 I
d Ow I O o9 L -

So, initially as like all other Fortran codes we have here the declaration of variables. So,
basically this part is the declaration of variables. So, mesh is gives me the mesh size, icl
is the index of my classical inversion points, then nodes gives the number of times the
number of nodes I want the in my solution, n cross is the number of times my solution

crosses or changes sign.

And then this is these are some temporary arrays this is the array where I am controlling
the value of the potential at different values of x that is half k x square then this contains

the name of the output file.

(Refer Slide Time: 02:01)

=

:: nodes, hnodes, ncross, kkk, n_iter
real(dp) :: xmax, dx, ddx12, norm, arg
real(dp) :: eup, elw, e
real(dp), allocatable :: x(:), y(:), p(:), vpot(:), f(:)
character (1 28 irll
|

I read input data
|

oo o o m e

brint !

read (*

print '(a,9%)

read (*,*)

!

| allocate arrays, initialize grid
I

allocate (x(0:mesh), y(0:mesh), p(6:mesh), vpot(0:mesh), f(0:mesh))
dx = xmax/mesh
ddx12=dx*dx/12.0_dp

|

| set up the potential (must be even w.r.t. x=0)
|

{ O

So, what the code first does is it asks the value of x max that is up till what value of x or
the maximum value of x till which we are going to do the integrate integration and the
integration is done from minus x to X max to plus x max. But, in reality we do only from
0 to xmax and then take either depending on the whether it is an even whether you want
an even number of nodes or odd number of nodes we make it symmetric or anti
symmetric; mesh is the number of grid points you want to do the integration on and then

using that we determine the grid size here.

So, xmax by mesh gives me the difference of the value of x between two consecutive
grid points, we also allocate this local variables based on the mesh size. So, they this
quantity is my delta x square by 12 which will be using several times. So, I have just

calculated.... I mean this has been calculated in the very beginning of the code here.

(Refer Slide Time: 03:13)

=

E allocate arrays, initialize grid

|

allocate (x(0:mesh), y(0:mesh), p(0:mesh), vpot(0:mesh), f(0:mesh))
dx = xmax/mesh

ddx12=dx*dx/12.0_dp

|

§
L
B
]
§
]
i
a
?
n

| set up the potential (must be even w.r.t. x=0)

'output file name = '
)') fileout
open (7,file=fileout,status="unknown',form="'fo

| this is the entry point for a new eigenvalue search
search_loop: do
I

socmaecBi¥oen

Now, what this part of the code is doing is it is setting up the potential. So, by potential
you know is half kx square here since we have used reduced units my k is one. So, it is

just half x square.

So, so what I do is I do the iterations from 0 to the mesh that is the maximum points,
then I evaluate the value of x which is i and float means I am converting it to floating
point here i is the index here into the dx that will give me the value of x at i th index.
And once I know the value of x the i th index I get the value of the potential i and that is
given by half kx square. Then I ask the user then this part of the code asks the user to
support to give the name of the input file where or the output file where the data will be

stored.

(Refer Slide Time: 04:11)

=

Josktop/optel

end do
|

print '(jtput file
read (*,' fileout 1
open (7,f ileout,status="unknown',form='formatted")

! this is the entry point for a new eigenvalue search
search_loop: do
I

OO0 5o o @me §

! read number of nodes (stop if < 0)
|
pirdte (@S0, "
read (*,*) nodes
if (nodes < 0) then
close(7)
deallocate (f, vpot, p, y, x)
stop
end if
|

| set initial lower and upper bounds to the eigenvalue
I

Then this part it is a its sort of the entry point for the new eigenvalue search. So, if you
give a negative number of nodes, so the code will keep on doing it until and unless took.
So, to come out of the code you need to give a negative value of the code and if it is

negative value then it de allocates and then comes out of the code ok.

(Refer Slide Time: 04:39)

if (nodes < @) then
close()
deallocate (f, vpot, p, vy, x)
stop

end if

|

! set initial lower and upper bounds to the eigenvalue

|

eup=maxval (vpot(:))

elw=ninval (vpot(:))

!

| Set trial energy

oD = oo o 3@ me §

print '(a 'Tria
read (*,*)
il o= dp) then
genvalues with bisection
(elw + eup)

So, then what we are doing is we are setting up our € max and e min. So, this is a eup is

my upper limit or the maximum limit of the nth guess energy and elw is the lower limit

and this is given by the maximum value of the potential that is half k m xmax square and

the minimum value of the potential which in this case is 0.

So, once it does then again here there is a if sort of a detour here in this part of the code.
So, the code automatically if you do not give any initial guess of energy what the code is
will do. So, that if your trial energy if you set to 0 the code will start with the initial
guess which is the midpoint of eup and elw or else and it will do keep on doing the
bisection method till it finds the energy or else if you just want to test for a single value
of energy you will you will do you can give the input value of energy and the code will

give the wave function.

(Refer Slide Time: 05:55)

iterate: do kkk = 1, n_iter

|

| set up the f-function used by the Numerov algorithm

! and determine the position of its last crossing, i.e. change of sign

! f < 0 means classically allowed region

! f > 0 means classically forbidden region

|

f(0)=ddx12*(2.0_dp*(vpot(0)-e))

icl=-1

do 1=1,mesh
f(1)=ddx12*2.0_dp*(vpot(1i)-e)
! beware: if f(1) is exactly zero the change of sign is not observed
! the following line is a trick to prevent missing a change of sign
! in this unlikely but not impossible case:
if (f(i) == 0.0_dp) f(i 0

EELELELE L IFLEEH™

| store the { re tHe last change of sign has been found
if (f(1) /= sign(f(i),f(i-1))) icl=t
end do

if (icl >= mesh-2) then

T P T

So, the this is my f at 0 that is at the beginning this is this dx square delta x square by 12
into this potential which we are using several times, then what we do is we try to find out
what is the classical point of inversion. So, in the beginning we set it to minus one and
then we start the integration start going over the whole mesh from i equals to 1 to the

xmax from and at each point we calculate this quantity fi.

Now, beyond the classical point of inversion what will happen is this term will be. So,
the f value will change sign. So, as long as your potential energy is less than potential
energy is less than the energy of for which you are finding out the solution this term will
be negative, the moment the potential energy is more than the energy for which you are

finding the solution this term will be positive. So, the product of these two will give will

this will change sign and the point at where this change sign the value of i at where this

change sign, then this will give you the point of classical inversion.

So, here he has also taken another care that is the following that sometimes it might
happen that luckily you have this f'1 becomes exactly 0 ok, then you would not be able to
observe the sign. So, instead of because the way the sign is taken care of is it takes the
product of these two functions and then it gives the sign. So, if it is 0 then you will sign
you will not get this will not return any value and so we will not be able to find out. So,

what is done is if it is exactly O this f 1 function.

So, what you do is you set it to a very small very tiny and nonzero value, so that you can
do it. So, this loop basically what it does is it determines the value of i at which your

inversion.

(Refer Slide Time: 08:13)

Pl

if (icl >= mesh-2) then
deallocate (f, vpot, p, y, X
stop 'last change '

else if (icl < 1) the
deallocate (f, vpot, p, vy, X)

8
[
B
B
]
B
[

B

L

a)

end if

|

! f(x) as required by the Numerov algorithm
|

f=1 - f
y=0

! L

| determination of the wave-function in the first two points
|

hnodes = nodes/2
|

! beware the integer division: 1/2 = 0 !
! if nodes is even, there are 2*hnodes nodes

51%

) [EELT] it Crl

You go from the from the classically allowed region to the classically disallowed region.
So, once you do you also check that the. So, that where at which point the how far the
point at which this classical inversion is happening. So, how far a is that from your

maximum mesh size.

So, if it is too close to the x x max, then the last change of sign is too far and then you do

not do; that means, something is wrong with that. So, you come out of the of it, but if

that condition is not satisfied that if things are fine you move into the numerical part of

the algorithm that is a this part here.

(Refer Slide Time: 09:07)

|

EEI-LE LI T

hnodes”; nodes/2

! beware the integer division: 1/2 = 0 !
! if nodes is even, there are 2*hnodes nodes
! {f nodes is odd, there are 2*hnodes+1 nodes (one is in x=0)
! hnodes is thus the number of nodes in the x>0 semi-axis (x=0 excepted)
|
if (2*hnodes == nodes) then

| even number of nodes: wavefunction is even

y(8) = 10 dp
! assume f(-1) = f(1)
= 0.5_dp*(12.0_dp-10%60dp* (B))*y(8)/f (1)

! outward integration and count number of crossings
|

ncross=0

So, first what you do is you check for even and then odd number of nodes here and based

on that you set the initial conditions if you have even number of nodes then you set this

one as the initial conditions as we discussed. If you have odd number of nodes, then the

solution is y is it at 0 is 0 and y 0 you take as X, then you start the outward integration.

(Refer Slide Time: 09:31)

|

De‘m-unmdl}@

amonkD 30 (-/Desktop/npel_ssgnschean/sho - VI

|
ncross=0
do 1 =1,mesh-1

y(Lr1)=((12.6_dp-10.0_dp*F(1))*y(L)-F(i-)Hy(L-1))f(i41)
if (y(d) /— swn((1),y(1+1))) &lﬁﬁ

end do

hrint *, kkk, e, ncross, hnodes

! if iterating on energy: check number of crossings
|

if (n_iter > 1) then
|

if (ncross > hnodes) then
! Too many crossings: current energy is too high
! lower the upper bound
eup = e
else
! Too few (or correct) number of crossings:
! current energy is too low, raise the lower bound
elw=e

So, this is where the outward integration is done and then you also in this part

particularly in this region you check whether your wave function changes sign or not.

So, once that is decided then you check whether the sign cross is the number of times the
wave function is changing sign whether it is more or equal to or less than the number of
nodes you desire if it is greater, then you replace your eup with the new with your guess
value of e the upper boundary of your bracketing region. So, you reduce the bracketing
region you go to the lower half or if it is less than if the number of crossings is less than

h nodes you go to the upper half, then you set up the new trial value of e.

(Refer Slide Time: 10:25)

n/she) - VIM
! current energy is too low, raise the lower bound

elw = e
end if
! New trial value:
e _dp * (eup+elw)
! Convergence criterion:
if (eup-elw < 1.d-10) exit iterate
|

end'if
|

FECEELELLIELE

end do iterate

- convergence has been achieved (or it wasn't required)
| Note that the wavefunction is not normalized:
| the problem is the divergence at large |x|

I Calculation of the classical probability density for energy e:

So, you continue doing this till your difference between eup and elw is greater than equal

to is less than equal to minus 10.

(Refer Slide Time: 10:39)

&

[EE-EE I

- convergence has been achieved (or it wasn't required) -----
I Note that the wavefunction is not normalized:
! the problem is the divergence at large |x|

: Calculation of the classical probability density for energy e:

do 1=0,1cl =
arg = (e - x(1)**2/2.0.dp)
if (arg > §,02dp) then
p(1) = B02dp/sqrt(arg)
else
p(1) = BHGNGR
end if Ha R
norn = norm + ZWORAR*dx*p(i)
enddo
87%

R EEL T

So, once it done, so, then you try to compute the norm of the function. So, this part of the
code computes the norm of your wave function and then also then your wave function is

written in this file.

(Refer Slide Time: 10:55)

norm = norm - dx*p(0)
! Normalize p(x) so that Int p(x)dx =1
p(:icl-1)/norm

(R
! x<0 region:
do 1=mesh,1,-
write (7 8,f12.6)") &
-X(1), (-1) (1), y(O*y(1), p(i), vpot(i)

EE L]

enddo

k lines separating blocks of data, useful for gnuplot plotting

)

end do search_loop

end program harmonic
H

So, basically what it right is the x value the minus x value and the negative part of the
wave function and then. So, this is for the negative part of the wave function when its

less than...... for negative values of x not the negative part of the wave function I am

sorry. So, this part is printing out the wave function for negative values of x and this part

for the positive values of x and then it comes out.

(Refer Slide Time: 11:23)

® pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ 1s
B harmonic0.f90 harmonicO.x harmonic1.f990 harmonici.x
B pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ vi harmonic.f90
B pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ gfortran -o harmonice.x h
armonico.f90
pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ ls -1ltr
" total 64
-rW-rw-r-- 1 pghosh pghosh 6284 Jul 17 21:35 harmonic0.f90
-rw-rw-r-- 1 pghosh pghosh 7726 Jul 17 21:35 harmonic1.f90
-rwxrwxr-x 1 pghosh pghosh 22416 Jul 17 23:07 harmonicl.x
-rwxrwxr-x 1 pghosh pghosh 22344 Jul 17 23:31 harmonicO.x

pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$. /harmonic@.x
Max value for x (typical value: 10) ? 10
Number of grid points (typically a few hundreds) ? 100
output file name = gs_out
nodes (type -1 to stop) >> 0
Trial energy (=search with bisection) ? 0

So, this is the program. So, let us run and see what we get. So, what we do is we compile
it gfortran minus sorry minus harmonic 0 dot x. So, if we do Is minus ltr get it. So, let us
try to run it. So, this is the; so what I do is I type say I want from 0 to X or minus minus
10 to plus 10, I want 100 grid points for my wave function I give the name of the output
file. So, I am interested in finding out the ground state. So, I give the name of the output

file as ground state out.

So, in the simple harmonic oscillator in the ground state we know that it has 0 nodes. So,

I put O I want the code to decide the energy and all, so this is what it is done.

(Refer Slide Time: 12:29)

"
esktop/nptel_ussgnscheg)sho

19 0.50001144409179688
20 0.49996376037597656
21 0.49998760223388672
22 0.49999952316284180
23 0.50000548362731934
24 0.50000250339508057
25 0.50000101327896118
26 0.50000026822090149
27 0.49999989569187164
28 0.49999970942735672
29 0.49999961629509926
30 0.49999956972897053
31 0.49999959301203489
32 0.49999960465356708
33 0.49999961047433317
34 0.49999960756395012
35 0.49999960901914164
36 0.49999960829154588
37 0.49999960865534376
38 0.49999960883724270

39 0.49999960874629323

® nodes (type -1 to stop) > -1

SO o= DEm e

N N R T K= =S S S N R R =
Nloccoooooococooocooooe @@

(=]

So, you see it converges after 39 iterations after 39 bisection operations it converges and
the ground state energy is half we know and it is very close to that. So, let us now plot

the wave function and see what we get.

(Refer Slide Time: 12:43)

sh@pghosh-Vitualgox: -/Desktop

38 0. 49999960883724270

[} 39 0.49999960874629323
”3 nodes (type -1 to stop) >> -1
pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ 1s -ltr
total 80

-rW-rW-r-- 1 pghosh pghosh 6284 Jul 17 21:35 harmonic@.f90

-rW-rw-r-- 1 pghosh pghosh 7726 Jul 17 21:35 harmonic1.f90

-rwxrwxr-x 1 pghosh pghosh 22416 Jul 17 23:07 harmonicl.x

-rwxrwxr-x 1 pghosh pghosh 22344 Jul 17 23:31 harmonicO.x

-rW-rW-r-- 1 pghosh pghosh 13732 Jul 17 23:32 gs_out
pghosh@pghosh -VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ vi gs_out
pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ xmgrace &
[1] 4886
pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ xmgrace &
[2] 4902

[1] Done xmgrace
pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ /harmonlcl X
Max value for x (typical value: 10) > 10
Number of grid points (typically a few hundreds) > 100
output file name > a3
nodes (type -1 to stop) > 0
% Trial energy (O=search with bisection) > ||

s

EETEE

So, if I do Is minus Itr, so this is the file where my wave function is plotted, the data for

the wave function is written.

(Refer Slide Time: 12:51)

t (~/Desktop/nptel : V/sho) - VIM
84 x y(x) y(x)A2 classical p(x) Vv
5 -10.000 0.41017354E+11 0.16824234E+22 0.00000000E+00 50.000000
9 -9.900 0.15287538E+11 0.23370882E+21 0.00000000E+00 49.005000
-9.800 0.57562495E+10 0.33134408E+20 0.00000000E+00 48.020000
0.21896420E+10 0.47945319E+19 0.00000000E+00 47.045000
0.84146767E+09 0.70806784E+18 0.00000000E+00 46.080000
0.32668715E+09 0.10672449E+18 0.00000000E+00 45.125000
0.12813167E+09 0.16417725E+17 0.00000000E+00 44.180000
0.50770377E+08 0.25776312E+16 0.00000000E+00 43.245000
0.20323264E+08 0.41303505E+15 0.00000000E+00 42.320000
0.82187442E+07 0.67547756E+14 0.00000000E+00 41.405000
0.33577341E+07 0.11274378E+14 0.00000000E+00 40.500000
0.13858490E+07 0.19205776E+13 0.00000000E+00 39.605000
0.57784902E+06 0.33390949E+12 0.00000000E+00 38.720000
0,24341189E+06 0.59249350F+11 0.00000000E+00 37.845000
0.10358536E+06 0.10729928E+11 0.00000000E+00 36.980000
0.44533261E+05 0.19832113E+10 0.00000000E+00 36.125000
0.19341961E+05 0.37411145E+09 0.00000000E+00 35.280000
0.84868576E+04 0.72026751E+08 0.00000000E+00 34.445000
-8. 0.37620480E+04 0.14153005E+08 0.00000000E+00 33.620000
-8.100 0.16847422E+04 0.28383561E+07 0.00000000E+00 32.805000
¥ "gs_out" 204L, 13732C il

So, it goes from minus 10 to plus 10 and so the first column is my x the second column is
my wave function which is y x and then we are not interested as of now for the other
three columns. So, we do not worry. So, we use let us see how the wave functions look

like we use xm grace.

(Refer Slide Time: 13:13)

Pl

ty [) o6 8

FEHE
Z|'=
z

£

¥

g

3

L= 1 I
= 1 s

EEEEE

=
=

SEOD S P me

So, we go to as the plotting software, so we go. So, basically this is the file which
contains the information and xy and this is what we have. So, if you look at it then one

second we just need the first graphs not others let me just. So, if you see that at x equals

to minus 10 and plus 10 the wave function completely diverges you would have expected
it valued close to 0 while in other case it is gone to a very large value. Now, let us try to
zoom in and see how much what it looks like in the classically within the classically

allowed region.

So, here we put x and so the change the upper value of y we put it to 1 and we apply just
maybe 1.5 yeah. So, you see for the ground state what we expected is a symmetric
gaussian type wave function which is centered at x equals to 0 and we get that. So, in the
classically allowed regime we see that the wave function we get behaviour of the wave
function while in the classically forbidden regime the wave function blows up. So, that

highlights the necessity of the asymptotic wave function.

So, if I take into account and do the corrections for the asymptotic term which I am not
going to show the code for you I leave it for you to do then what and if I run it for the
same wave function if I use the same values say 100 output file name a I give and
number of nodes I give 0. Then I do a bisection search see it converges again at 39 after

39 iterations to a value of 0.5 and now let me plot it again so, xmgrace minus nx y a.

(Refer Slide Time: 15:25)

assgn/scheqsho

0.500038266181946
0.500039756298065
0.500039011240005
0.500038638710976
0.500038452446461
0.500038545578718
0.500038592144847
0.500038568861783
0.500038580503315
0.500038574682549
0.500038571772166
0.500038573227357
0.500038572499761
0.500038572863559
0.500038572681660

nodes (type -1 to stop) > -1

[2]+ Done Xmgrace

pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ s

a gs_out harmonic.f90 harmonicd.x harmonic1.f90 harmonici.x

pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$

% pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho$ xmgrace -nxy a &I

PR FELT T

-0.00000075
0.00000289
0.00000107
0.00000016

-0.00000029

-0.00000007
0.00000005

-0.00000001
0.00000002
0.00000000

-0.00000000
0.00000000

-0.00000000
0.00000000

-0.00000000
0.00000000

]
[
B
B
]
B
[
0
a)
?

[N RN NN No NN - N NN - o i o -

(Refer Slide Time: 15:45)

[5

0.8

0.6

E S e
12 (2 1= 1= =l nEZL G
3

SEOD S B

04 [|

02

oromat 1
PR EEL T]

If I plot it, so I have several things here. So, let me just keep the wave function and move
the others. So, what you will see that this diverging behaviour which we are getting
earlier that has disappeared now. So, that; so through these two pieces of code what we
saw is how to numerically find the solutions using numerovs algorithm the solutions of
the one dimensional Schrodinger equation. And then we also saw how some of the
difficulties extra difficulties I would say associated with when you are trying to solve

a quantum mechanical problem numerically.

