Computational Physics Dr. Apratim Chatterji Dr. Prasenjit Ghosh Department of Physics Indian Institute of Science Education and Research, Pune

Lecture – 40 Differential Equation for Quantum Mechanical Problems: Numerov Algorithm Part 05

(Refer Slide Time: 00:17)

So, the code which I am going to show you now this particular code is using the numerical algorithm to solve the one dimensional quantum mechanical simple harmonic oscillator. So, this code we will be using the bisection method to compute the energy, but we have purposefully not implemented or not made sure that the code gives us the correct asymptotic limits.

This is done to just show you the effect that if you do not take care of the fact that the asymptotic limits of your solutions are correctly recognized by the code, then what might happen. So, this code is written here it is not written by me, but its written by Professor Paul G Anansi. So, I will just take you through the code.

(Refer Slide Time: 01:11)

So, initially as like all other Fortran codes we have here the declaration of variables. So, basically this part is the declaration of variables. So, mesh is gives me the mesh size, icl is the index of my classical inversion points, then nodes gives the number of times the number of nodes I want the in my solution, n cross is the number of times my solution crosses or changes sign.

And then this is these are some temporary arrays this is the array where I am controlling the value of the potential at different values of x that is half k x square then this contains the name of the output file.

(Refer Slide Time: 02:01)

So, what the code first does is it asks the value of x max that is up till what value of x or the maximum value of x till which we are going to do the integrate integration and the integration is done from minus x to x max to plus x max. But, in reality we do only from 0 to xmax and then take either depending on the whether it is an even whether you want an even number of nodes or odd number of nodes we make it symmetric or anti symmetric; mesh is the number of grid points you want to do the integration on and then using that we determine the grid size here.

So, xmax by mesh gives me the difference of the value of x between two consecutive grid points, we also allocate this local variables based on the mesh size. So, they this quantity is my delta x square by 12 which will be using several times. So, I have just calculated.... I mean this has been calculated in the very beginning of the code here.

(Refer Slide Time: 03:13)

Now, what this part of the code is doing is it is setting up the potential. So, by potential you know is half kx square here since we have used reduced units my k is one. So, it is just half x square.

So, so what I do is I do the iterations from 0 to the mesh that is the maximum points, then I evaluate the value of x which is i and float means I am converting it to floating point here i is the index here into the dx that will give me the value of x at i th index. And once I know the value of x the i th index I get the value of the potential i and that is given by half kx square. Then I ask the user then this part of the code asks the user to support to give the name of the input file where or the output file where the data will be stored.

(Refer Slide Time: 04:11)

Then this part it is a its sort of the entry point for the new eigenvalue search. So, if you give a negative number of nodes, so the code will keep on doing it until and unless took. So, to come out of the code you need to give a negative value of the code and if it is negative value then it de allocates and then comes out of the code ok.

(Refer Slide Time: 04:39)

So, then what we are doing is we are setting up our e max and e min. So, this is a eup is my upper limit or the maximum limit of the nth guess energy and elw is the lower limit and this is given by the maximum value of the potential that is half k m xmax square and the minimum value of the potential which in this case is 0.

So, once it does then again here there is a if sort of a detour here in this part of the code. So, the code automatically if you do not give any initial guess of energy what the code is will do. So, that if your trial energy if you set to 0 the code will start with the initial guess which is the midpoint of eup and elw or else and it will do keep on doing the bisection method till it finds the energy or else if you just want to test for a single value of energy you will you will do you can give the input value of energy and the code will give the wave function.

(Refer Slide Time: 05:55)

So, the this is my f at 0 that is at the beginning this is this dx square delta x square by 12 into this potential which we are using several times, then what we do is we try to find out what is the classical point of inversion. So, in the beginning we set it to minus one and then we start the integration start going over the whole mesh from i equals to 1 to the xmax from and at each point we calculate this quantity f i.

Now, beyond the classical point of inversion what will happen is this term will be. So, the f value will change sign. So, as long as your potential energy is less than potential energy is less than the energy of for which you are finding out the solution this term will be negative, the moment the potential energy is more than the energy for which you are finding the solution this term will be positive. So, the product of these two will give will

this will change sign and the point at where this change sign the value of i at where this change sign, then this will give you the point of classical inversion.

So, here he has also taken another care that is the following that sometimes it might happen that luckily you have this f i becomes exactly 0 ok, then you would not be able to observe the sign. So, instead of because the way the sign is taken care of is it takes the product of these two functions and then it gives the sign. So, if it is 0 then you will sign you will not get this will not return any value and so we will not be able to find out. So, what is done is if it is exactly 0 this f i function.

So, what you do is you set it to a very small very tiny and nonzero value, so that you can do it. So, this loop basically what it does is it determines the value of i at which your inversion.

(Refer Slide Time: 08:13)

You go from the from the classically allowed region to the classically disallowed region. So, once you do you also check that the. So, that where at which point the how far the point at which this classical inversion is happening. So, how far a is that from your maximum mesh size.

So, if it is too close to the x x max, then the last change of sign is too far and then you do not do; that means, something is wrong with that. So, you come out of the of it, but if

that condition is not satisfied that if things are fine you move into the numerical part of the algorithm that is a this part here.

(Refer Slide Time: 09:07)

So, first what you do is you check for even and then odd number of nodes here and based on that you set the initial conditions if you have even number of nodes then you set this one as the initial conditions as we discussed. If you have odd number of nodes, then the solution is y is it at 0 is 0 and y 0 you take as x, then you start the outward integration.

(Refer Slide Time: 09:31)

So, this is where the outward integration is done and then you also in this part particularly in this region you check whether your wave function changes sign or not.

So, once that is decided then you check whether the sign cross is the number of times the wave function is changing sign whether it is more or equal to or less than the number of nodes you desire if it is greater, then you replace your eup with the new with your guess value of e the upper boundary of your bracketing region. So, you reduce the bracketing region you go to the lower half or if it is less than if the number of crossings is less than h nodes you go to the upper half, then you set up the new trial value of e.

(Refer Slide Time: 10:25)

So, you continue doing this till your difference between eup and elw is greater than equal to is less than equal to minus 10.

(Refer Slide Time: 10:39)

So, once it done, so, then you try to compute the norm of the function. So, this part of the code computes the norm of your wave function and then also then your wave function is written in this file.

(Refer Slide Time: 10:55)

📝 ut	sunta (Running) - Oracle VM VirtualBox	- a ×				
harm	onic0.f% (-/Desktop/inptel_assgn/scheqn/sho) - VIM	tı 🖪 🔜 📢 23:31 🕸				
٥	norm = norm - dx*p(0)					
	! Normalize p(x) so that Int p(x)dx = 1					
۲	p(:icl-1) = p(:icl-1)/norm					
	l lines starting with # ignored by gnuplot					
	write $(7 \cdot (// \# x) \cdot y(x)) = y(x)^2$ classical $p(x)$	V")')				
	$\int \frac{d}{dt} \int \frac{d}{dt$	* / /				
T	: ASO region.					
a						
Ē	write (/, (f/.3,3e16.8,f12.6)) &					
	-x(i), (-1)**nodes*y(i), y(i)*y(i), p(i), vpot(i)					
	enddo					
	! x>0 region:					
	do i=0,mesh					
	write (7.'(f7.3.3e16.8.f12.6)') &					
	x(i), v(i), v(i)*v(i), p(i), vpot(i)					
	I two black lines separation blocks of data useful for opuplot plott	ing				
	two blank thes separating blocks of data, useful for gruptor plotting					
	wille (7, (7))					
	end do search_loop					
	end program harmonic0					
1	198,1	Bot				
_	9 of	🖉 🖉 🗖 🗮 🔐 🚫 🚺 Right Cl				

So, basically what it right is the x value the minus x value and the negative part of the wave function and then. So, this is for the negative part of the wave function when its less than..... for negative values of x not the negative part of the wave function I am

sorry. So, this part is printing out the wave function for negative values of x and this part for the positive values of x and then it comes out.

(Refer Slide Time: 11:23)

So, this is the program. So, let us run and see what we get. So, what we do is we compile it gfortran minus sorry minus harmonic 0 dot x. So, if we do ls minus ltr get it. So, let us try to run it. So, this is the; so what I do is I type say I want from 0 to x or minus minus 10 to plus 10, I want 100 grid points for my wave function I give the name of the output file. So, I am interested in finding out the ground state. So, I give the name of the output file as ground state out.

So, in the simple harmonic oscillator in the ground state we know that it has 0 nodes. So, I put 0 I want the code to decide the energy and all, so this is what it is done.

(Refer Slide Time: 12:29)

🜠 ubuntu (Running) - Oracle VM VirtualBox			- 0 X
pghosh@pghosh-VirtualBox: -/Desktop/nptel_assgn/scheqn/sho		•	ti 🖬 📰 ∢() 23:32 🔅
IP 0.50001144409179688	1	0	
20 0.49996376037597656	Θ	0	
21 0.49998760223388672	0	0	
22 0.49999952316284180	Θ	0	
23 0.50000548362731934	1	0	
24 0.50000250339508057	1	0	
25 0.50000101327896118	1	0	
a 26 0.50000026822090149	1	0	
27 0.49999989569187164	1	0	
28 0 49999970942735672	1	õ	
29 0 49999961629509926	1	õ	
30 0 /0000056072807053	6	0	
31 0 /0000050301203/00	0	0	
	0	0	
52 0.49999900405550708	U	U	
33 0.4999996104/43331/	1	0	
34 0.49999960756395012	0	0	
35 0.49999960901914164	1	0	
36 0.49999960829154588	Θ	0	
37 0.49999960865534376	0	0	
38 0.49999960883724270	1	0	
39 0.49999960874629323	0	0	
<pre>nodes (type -1 to stop) >> -1</pre>			
			D Color and the second se

So, you see it converges after 39 iterations after 39 bisection operations it converges and the ground state energy is half we know and it is very close to that. So, let us now plot the wave function and see what we get.

(Refer Slide Time: 12:43)

🜠 ubuntu [Running] - Oracle VM VirtualBox						- 0 X
pghosh@pghosh-VirtualBox: ~/Desktop/np	tel_assgn/scheqn/sho	And in case of the local division of the		and the second designed in	and the second	t i 🔄 💷 4 () 23:37 🛱
38	0.49999960883	3724270		1	0	
a 39	0.49999960874	629323		Θ	0	
nodes (type)	-1 to stop) >>	-1				
	h-Victual Box	Deckton Innte	1 2000	Ischen Is	hot le altr	
total 00		Desktop/ inpre	c_assy	i/scieqii/s		
		(204 3.1 47	24.25	L	£00	
🚆-rW-rW-r 1	pgnosn pgnosn	6284 JUL 17	21:35	narmonicu	. 190	
🚆-rw-rw-r 1	pghosh pghosh	7726 Jul 17	21:35	harmonic1	.190	
🚆-rwxrwxr-x 1	pghosh pghosh	22416 Jul 17	23:07	harmonic1	•X	
🖳-гwxгwxг-х 1	pghosh pghosh	22344 Jul 17	23:31	harmonic0	•X	
🥙 -гw-гw-г 1	pahosh pahosh	13732 Jul 17	23:32	as out		
nahosh@nahos	h-VirtualBox -~/	Deskton/note	l assor	/schean/s	hos vi as out	
pahoch@pahoc	h-Victual Box:	Deckton / note		/schean/s	has vmarace &	
		Desktop/ intre	L_assyl	i/scieqii/s	inos vingi ace a	
[1] 4880						
pghosh@pghos	h-VirtualBox:~/	Desktop/npte	l_assgr	i/scheqn/s	hoş xmgrace &	
[2] 4902						
[1] Done		xmgrace				
pahosh@pahos	h-VirtualBox:~/	Desktop/npte	l assgr	/schean/s	ho\$./harmonic1.;	x
Max value for	r x (typical va	lue: $10 > 1$	0			
Number of ar	id noints (typi	cally a few	hundred	(s) > 100		
output filo			indiror co	13) > 100		
nodes (type	-1 to stop) > t					
👔 Irial energy	(0=search with	Disection)	>			

So, if I do ls minus ltr, so this is the file where my wave function is plotted, the data for the wave function is written.

(Refer Slide Time: 12:51)

y ubuntu (Running) - Osa	cle VM VirtualBox				- 0 X
 35_000 (-) DESK(0)) p(1 3 4 X 	V(X)	v(x)^2	classical p(x)	V	
- 10.00	0 0.41017354E+11	0.16824234E+22	0.00000000E+00	50.000000	
🧾 -9.90	0 0.15287538E+11	0.23370882E+21	0.0000000E+00	49.005000	
9.80	0 0.57562495E+10	0.33134408E+20	0.0000000E+00	48.020000	
9.70 🧕	0 0.21896420E+10	0.47945319E+19	0.0000000E+00	47.045000	
9.60 🚊	0 0.84146767E+09	0.70806784E+18	0.0000000E+00	46.080000	
-9.50	0 0.32668715E+09	0.10672449E+18	0.0000000E+00	45.125000	
40 -9.40	0 0.12813167E+09	0.16417725E+17	0.0000000E+00	44.180000	
💾 -9.30	0 0.50770377E+08	0.25776312E+16	0.0000000E+00	43.245000	
-9.20	0 0.20323264E+08	0.41303505E+15	0.0000000E+00	42.320000	
-9.10	0 0.82187442E+07	0.67547756E+14	0.0000000E+00	41.405000	
-9.00	0 0.33577341E+07	0.11274378E+14	0.0000000E+00	40.500000	
-8.90	0 0.13858490E+07	0.19205776E+13	0.0000000E+00	39.605000	
-8.80	0 0.57784902E+06	0.33390949E+12	0.0000000E+00	38.720000	
-8.70	0 0.24341189E+06	0.59249350E+11	0.00000000E+00	37.845000	
-8.60	0 0.10358536E+06	0.10729928E+11	0.00000000E+00	36.980000	
-8.50	0 0.44533261E+05	0.19832113E+10	0.0000000E+00	36.125000	
-8.40	0 0.19341961E+05	0.37411145E+09	0.0000000E+00	35.280000	
-8.30	0 0.84868576E+04	0.72026751E+08	0.0000000E+00	34.445000	
-8.20	0 0.37620480E+04	0.14153005E+08	0.0000000E+00	33.620000	
-8.10	0 0.16847422E+04	0.28383561E+07	0.0000000E+00	32.805000	
🗑 "gs_ou	t" 204L, 13732C			1,1	Тор
					🔽 🕖 🖉 🖉 🗖 🗮 📲 💟 🚱 Regist Chri

So, it goes from minus 10 to plus 10 and so the first column is my x the second column is my wave function which is y x and then we are not interested as of now for the other three columns. So, we do not worry. So, we use let us see how the wave functions look like we use xm grace.

(Refer Slide Time: 13:13)

So, we go to as the plotting software, so we go. So, basically this is the file which contains the information and xy and this is what we have. So, if you look at it then one second we just need the first graphs not others let me just. So, if you see that at x equals

to minus 10 and plus 10 the wave function completely diverges you would have expected it valued close to 0 while in other case it is gone to a very large value. Now, let us try to zoom in and see how much what it looks like in the classically within the classically allowed region.

So, here we put x and so the change the upper value of y we put it to 1 and we apply just maybe 1.5 yeah. So, you see for the ground state what we expected is a symmetric gaussian type wave function which is centered at x equals to 0 and we get that. So, in the classically allowed regime we see that the wave function we get behaviour of the wave function while in the classically forbidden regime the wave function blows up. So, that highlights the necessity of the asymptotic wave function.

So, if I take into account and do the corrections for the asymptotic term which I am not going to show the code for you I leave it for you to do then what and if I run it for the same wave function if I use the same values say 100 output file name a I give and number of nodes I give 0. Then I do a bisection search see it converges again at 39 after 39 iterations to a value of 0.5 and now let me plot it again so, xmgrace minus nx y a.

7 u	untu [Running] - Oracle !	/M VirtualBox			- a x				
pgha	sh@pghosh-VirtualBox	: ~/Desktop/nptel_assgn/scheqn/sho			t₁ 🖬 🖿 40) 23:37 🔅				
Ø	24	0.500038266181946	0	-0.00000075					
	25	0.500039756298065	0	0.0000289					
۲	26	0.500039011240005	0	0.00000107					
	27	0.500038638710976	0	0.0000016					
	28	0.500038452446461	0	-0.0000029					
	29	0.500038545578718	0	-0.0000007					
Å	30	0.500038592144847	0	0.0000005	orde the local the state of the s				
a	31	0.500038568861783	0	-0.0000001					
	32	0.500038580503315	0	0.0000002					
2	33	0.500038574682549	0	0.0000000					
	34	0.500038571772166	0	-0.0000000					
	35	0.500038573227357	0	0.0000000					
	36	0.500038572499761	0	-0.0000000					
	37	0.500038572863559	0	0.0000000					
	38	0.500038572681660	0	-0.0000000					
	39	0.500038572772610	0	0.0000000					
	nodes (type -1 to stop) > -1							
	[2]+ D	one xmg	јгасе	2					
	pghosh@pghosh-VirtualBox:~/Desktop/nptel_assgn/scheqn/sho\$ ls								
	a gs_out harmonic0.f90 harmonic0.x harmonic1.f90 harmonic1.x								
	pghosh@pghosh-VirtualBox:~/Desktop/nptel assgn/schegn/sho\$								
1	<pre>pghosh@pghosh-VirtualBox:~/Desktop/nptel assgn/schegn/sho\$ xmgrace -nxv a &</pre>								

(Refer Slide Time: 15:25)

(Refer Slide Time: 15:45)

If I plot it, so I have several things here. So, let me just keep the wave function and move the others. So, what you will see that this diverging behaviour which we are getting earlier that has disappeared now. So, that; so through these two pieces of code what we saw is how to numerically find the solutions using numerovs algorithm the solutions of the one dimensional Schrödinger equation. And then we also saw how some of the difficulties extra difficulties I would say associated with when you are trying to solve a quantum mechanical problem numerically.