
Computational Physics
Dr. Apratim Chatterji
Dr. Prasenjit Ghosh

Department of Physics
Indian Institute of Science Education and Research, Pune

Lecture - 04
Introduction To Fortran Part-2

Session-B

(Refer Slide Time: 00:16)

Now, in this last part of this lecture what we are going to do is, we are going to talk

about arrays. So, again the idea of an array is if you have a set of numbers which are

similar type or which contains similar type of information, then instead of defining a

variable for each of the numbers I can set them in a form of a array by using just a 1

variable type. So, by definition an array is an ordered sequence of many instances of the

same data type. Say for example, you can think of that you have a you have need to write

a vector . So, a vector has three components x y and z.

So, you can do it in two ways. So, you can declare say for example, v 1 as 1 variable, v 2

as 1 variable, v 3 as another variable. So, each contents each component of a vector. So,

basically what you are doing, you are using a 3 variables here, but the same thing you

can store using just 1 variable say I call it as v and I declare it as an array containing 3

numbers. So, this is what the idea of using an array is. So, it contains it stores the same

information, its stores the all the individual components of a vector, but now I use just 1

variable instead of 3 variables here .

So, similarly same thing also applies when we try to store matrix say for example, are 3

cross 3 matrix. So, the way one uses this is; so basically array food has one needs to

mentioned two things; one is what type of data you are storing in that array that is

determine given by this data type, then you need to also specify the dimension of the

array which is done by using this dimension word keyword in the Fortran and then you

give the variable name. So, one thing you note is that t this contains the dimensions So,

basically what it is a its a comma separated list describing the index range in each

dimension.

 so what I mean to say is suppose I want to store a 3 cross 3 matrix. So, I define the

matrix by m. So, now, I have I have to give 3, so I the way I will declare that array is m

3; 3 . So, what it means is that along one direction I have 3 elements and along the other

direction I have 3 elements now this if I write it this way. So, what the code will assume

is that the counter on 3 goes to 1 2 3 and similarly for this it will also go to 1 2 3.

So, instead what I can also do is if I want to go the this index from 0 to 2 I can write it as

m equals to 0 colon 2 comma 0 colon 2 in this fashion. So, what it means is that

basically. So, this one has three numbers that is m is my upper one n is my lower one, so

m minus n 2 minus 0 is 1 is 2 plus 1. So, that tells me three numbers and similarly in this

way. So, the number of values stored in this part is 3 in this example and 3 in this

example.

(Refer Slide Time: 04:32)

So, here are some examples in which one can declare variables. So, for example, here I

have declared an array which I am calling v 1 which are the dimension 5 and it is a real

type of array. Similarly, now in this case the indices will be going from 1 to 5, but I do

not want to do that, I want to declare an array with a indices minus 1, 0, 1 and 2. So, then

I change this part of my declaration in this fashion.

So, I give a lower limit which starts from minus 1 and a upper limit which starts from 2

and going by the previous formula, so 2 minus minus 1 plus 1 this will give me 4.

Similarly, I can declare I want to declare 2 cross 2 array of integer numbers so, where the

indices grow from 1 to 2 in a along each direction, so, I do it do it in this fashion.

(Refer Slide Time: 05:28)

So, there are some terminologies which is associated with arrays. So, let us look at these

and let us start with this particular example. So, here I have in this line I have two error

declarations; one is given by a which has just one set of indices which goes from 0 to

100 and another given by b which has three sets of indices which each of which goes

from 1 to 5.

Now, one important thing about the array is called the rank of the array which tells us

how many dimensions are present in the array? For example, for case a the rank will be

just 1 because it has just 1 dimension, in contrast for b the rank will be 3 because it has 3

dimensions. Then there is something called the bounce of an array which tells us the

lower and the upper limits of the array along each dimension. So, for example, for a the

bound will be 0 to 100 while for b along each dimension the bound is 1 to 5.

Now, the dimensions extent tells us how many elements are present along that particular

dimension and this is given by the formula which is the upper bound minus the lower

bound plus 1. So, for this particular array, so, the number of dimensions will be 101, 100

plus 0 plus 1 and while for the array b each dimension has an extent of 5. Then another

character terminology to characterize an array is its size.

So, size is basically contains the total tells us how the main elements are there in the

array. So, for example, here array a has 101 elements, array b along each dimension has

5 elements. So, you can think of 3 dimensional array as a cube in which the numbers are

arranged in a cubic fashion. So, a cube; so, 5 into, so each dimensions has 5, so, 5 into 5

into 5. So, total 125 elements are present in the array.

Then there is something called the shape and a shape of an array is defined by its rank

and extent. So, for example, a has a shape 101 and b has a shape 5, 5, 5 and like

matrices. So, arrays also needs to be conformable; so, arrays are conformable when they

have the similar shape.

(Refer Slide Time: 08:12)

Now, how does one access an element in an array? So, that is done by its subscript

values. So, we access a particular element of an array using the subscript values. So, for

example, to assign a variable x the value in the mth row and the nth column of a matrix

A we could use a statement like this.

So, basically what this statement means is that in the matrix element A in the mth row

and the nth column. So, suppose if I have a 3 cross 3 matrix and I write a I consider A as

2 and 3. So, I have a 3 cross 3 matrix containing say 1 2 3 4 5 6 7 8 9; 9 elements and

now I want to pick up this particular element and assign it to this variable x. So, what it

means is that the program will go to the mth row that is m here is 2. So, I go to the

second row and from here from and the column I go to the third column. So, basically

this is the element that will go to x.

So, these numbers m and n these are called the index specifier of an array and one should

be careful that the arrays the index specifier should learn should lie within the ranges

given in the declaration.

(Refer Slide Time: 09:49)

Finally one can also use sub-array by specifying a certain range along a particular

dimension as given in the declaration. So, this is an example of a code which assigns an

array. For example, I have here declared a variable which is an array which five elements

in a particular dimension and like one way I can do the assignment is in this fashion. So,

I by hand assign each of the elements of the array. So, here say for example, v this will

be v 1 1 this will be v 2 sorry v 1 2 and so on and so forth and this will be v 3 5 element

of the array.

But if you have I mean this is for this type of assignment is feasible only when you have

a few numbers, but if you have say an array which in which use to a million numbers,

then one cannot do the assignment in this way and then one needs to find an automated

way to generate the values or assign the values in to the individual elements of an array

and this can be done in the following way. So, in this case what we have done is we have

used a do statement. So, I have five elements in the array, so my the counter in my do

loop goes from i equals to 1 to 5 and then for each index of the array I assign the value

given by this mathematical operation.

And then once this assignment is done here I am printing the output on the screen. So,

what you can do is you can try out the this program and try to see how the output is done

and I try to understand how the assignment is done.

(Refer Slide Time: 11:17)

So, so far in the last example was assigning an array which contains a vector now in this

example we will assign an array which contains a matrix. So, now, for the matrix we

have 2 dimensions present here. So, basically to do an automated assignment we need to

have to do loops. So, that is why I have uses a nested do loop here. So, do i equals to 1 to

2 do j equals to 1 to 2 and then the matrix element will be assigned in this fashion.

So, this what it will do is it will each time this loop is executed, it will assign all the

values; it will assign this value to all the matrix elements if you want to assign different

values then you can write this in this fashion matrix j comma i equals to i plus 1 plus i

plus i plus j minus 2. So, this the way I mean writing it in this way it will assign a

different values to each of the elements otherwise, if we had written it in this fashion

then every time this statement is executed what would happen is all the elements of the

matrix would have been reassigned with the new value of this expression.

(Refer Slide Time: 12:37)

So, one can do also operations which one can instead of using a do loop one can if one

tries to do the same operation and all the elements of the array one can also do that. For

example, suppose here I have three arrays v 1, v 2 and v 3. So, what I want to do is, so,

my v 2 and v 3 I know what are the array elements and I want to create a new array v 1

in which each element of this new array contains the sign of the corresponding element

in the array v 2 plus the exponential of the corresponding array in v 3.

So, basically what I mean is suppose if I am looking at v say 40 the 40th element in the

array v this would be sin of the 40th element in array v 2 plus the exponent of the 40th

element in the array v 3. So, one way to do that is I have I executed a do loop do i equals

to say 1 to 50 end do then my v i will be sin v 1 i plus exponential v 2 i. So, this is one

way to do it, but you can do it in a much more sophisticated way.

So, all these three sets of instructions you can directly replace by this one single line. So,

basically what it means is you can I mean just by using this one expression you can do

these same operations on all the elements of the array at one shot. So, similarly thing also

applies for a logical array if you have one.

(Refer Slide Time: 14:43)

Apart from these there are some array intrinsic functions. Suppose if you are interested to

know the sum of all the elements present in an array x. So, what one can do is, one can

use this Sum variable. So, what this Sum variable will do is, it will take each of the

individual elements of the array and then gradually and then add them up and in the

output it will return the sum of them numbers.

Similarly, you can use product to compute the product of the number of the all the

individual elements of that array, you can compute a use the function called transpose

which will compute basically which will redefine your array elements in this form. So, x

ith and x i jth element will be assigned to the xj ith one, so same concept like a transpose

of a matrix.

If you have two vectors we just stored in an array you can use something some function

called the dot underscore product which will give you the number which will return a

number which contains the vector product you can also do multiplications with between

2 matrices or 2 arrays in using this matmul intrinsic function, but one should be careful

that the second dimension of x. So, these two should be matching the second dimension

and the first of x and the first dimension of y.

(Refer Slide Time: 16:12)

So, this is sort of say again similar to my vector algebra. So, here we have some simple

examples of input output arrays. So, one can you can include input output the arrays in

your input output statements also. So, for example, here you have and this example you

have an array 1 whose dimensions are given by this these two numbers and then you read

the element in this fashion. So, the first element is assigned with the indices 1, 1 the

second element is 2, 1; 3, 1 so on and so forth.

(Refer Slide Time: 16:41)

Now, often it is. So, what so, far we have seen is that whenever we have an array. So, we

need to know apriori that what are the dimensions of the array? But many cases it may

not be possible okay. So, what does one do in those cases? So, in those cases what one

uses a different type of arrays which are called allocatable arrays . So, what the

allocatable arrays does or allows you to do is that it allows you to dynamically allocate

or reserve memory to store a set of numbers in an array and then also be allocated.

So, basically it consists of three keywords; first one is allocatable . So, this part comes in

the declaration part, then this part this allocate comes in the program where you basically

in the main part of the body where you allocate the dimensions to the to the particular

array which you have declared as allocatable.

And then once you are done using the data of that which is stored in that array and you

do not want to use it or use the data again, then what you can do is you can de-allocate

the array. So, let us see how one does that. So, for example, here I have a program where

I am trying to allocate some values to a vector, but suppose I do not know what is the

size of a vector. So, what I will do is if I had known the size of the vector I would have

put a number to this dimension indicating the range.

But since I do not know it I put colon here in this line and I declare I use this allocatable

statement to tell the compiler that at present I do not know what is the size of this vector .

So, the thing which I want to do is I want my the user to determine the size of this vector.

So, in order to do so, I need I put in a print statement here which I say “enter the size of

the array”. So, when the user sees this while running the program, then he or she will

write some number which will the value of which will determine what is the dimension

of my array. So, this is stored in the value n.

So, then I use the allocate attribute in my program and I assign the vector to have the

dimension of n. So, once this is done, so, then now what I can do is I can use a for

example, as I have done here I use a do loop and assign to each element of an of this

array the following variable . So, once I am done I want to give to the user the values

which are which has been generated and stored in this way in this variable ‘vec’. So, I

ask the code to print this out.

Now once I have I am done with this vector with the value stored in this vector I do not

want to store them back. So, what I ask the code is again to deallocate the memory. So,

in the deallocation process one should remember that one loses the information which is

already stored in there.

(Refer Slide Time: 20:02)

Now, often it might happen is that one can one is interested in sort of accessing the

dimensions a certain subset of the array instead of the whole array at one shot. So, that is

also possible in Fortran. So, the syntax typically consists of a comma separated list of

index descriptors for each dimension. So, for example, suppose if I have an array which

has say 10, 8, 1000 .

Now, instead of accessing this whole thing what I want is to array access along this

dimension I access one to access the elements which are labeled from 3 to 5, here from 1

to 4 and here from 90 to 100. So, how will I do that? So, I will do it in the following

way. So, for each dimension I specify the array the range, so 3 to 5 then for the second

one 1 to 4 and then the third one 90 to 100.

So, when I call this array in this fashion only the elements which are stored in this range

will be accessed. So, this is what is written down here. So, each index descriptor may be

say in addition to a single value. So, one can use a colon which returns, so instead of

doing this you can. So, instead of this for example, what we can I can also ask think of

his I want all the 10 elements of this array.

So, what I can do is, when I call this I use a colon; I can use a colon and then I say I want

only from 1 to 4. So, this will go from 1 to 4 and then say this I say I go for 1000. So,

basically what this colon tells this for this particular dimension I want all the elements

present then. So, one can also say from a certain somewhere in the middle of the array to

the upper bound when can also want to access those elements or from the lower bound of

the array to a to a certain particular value i. So, this is done by in this fashion.

So, basically what you do is you say and in this array. So, suppose I have a 1

dimensional array variable which I called as array ‘i’ and so, I say that ‘i’ within the

bracket instead of writing the total number of elements in that in that along the

dimension I just write i colon. So, what it and then I do not write anything after the

colon.

So, what it will do is, so whatever this value i is set to. So, from this value to the upper

bound of the array all the elements will be accessed. Similarly, if I write it the other way

around here, so I leave the space before the colon empty I do not write anything here and

after the colon I write ‘i’. So, what it will do is it will access the elements from the

lowest bound to the ith element depending on the value of i. So, this is how one can array

access subsets of array.

(Refer Slide Time: 23:29)

Now, an array; so, these arrays which you are dealing in so, far these are typically used

for numbers they are either, they can be explore they can be integers, they can be real

numbers or they can be imaginary numbers, but what happens or how does one acts

create an array containing characters. So, that is done by this type of arrays called

strings.

So, string basically if by definition is an array of characters and like the previous cases

the arrays which we saw has dimensions this length of the array is given by dimensions

in case of strength it is given by the length keyword. Also there is a requirement for

referencing sub string then one uses a colon to access the ith character of the string, one

can also use this concatenation operator to link basically to connect 2 or more screens

strings together.

(Refer Slide Time: 24:26)

So, here is an example of a program where one can use this type of string based arrays.

So, one way is you define a variable name which is given which you declare as a

character type and you give a it assign it a dimension of 5 and then you separately save

these 5 letters. So, these 5 letters will be saved separately, but suppose if one wants to

write this statement or wants to store this statement hello again. So, how does one do that

in that case one uses this length statement in. So, so if you look at it. So, here there are 1,

2, 3, 4, 5, 6, 7, 8, 9, 10; 10 letters, 10 alphabets one space and one exclamatory sign.

So, basically to store this whole thing as a single array as I have done here in this

program in this variable ‘s2’ we need the length of this to be 12. So, that is why I have

defined it sizes a length equals to 12. Similarly, you can also in the similar fashion to

store this you need a character array which is length 12. So, this is another way of

declaring the size of the character or array.

So, the thing is that these three stores arrays which contains characters instead of

numbers and these are the three different ways typically people use to assign the

dimension and this is done. So, what I am doing here in this statement is, so from the s2

array, so I am creating a new array s 4 which is assigned the following values.

So, from the s2 array that is from these letters which are written here I take number 1 to

5, so basically, 1 2 3 4 5. So, my ‘s4’ this stores the following numbers the following

letters h e l l o and then I connect these elements in the s 2 array with the elements of this

‘s3’ array. So, what it will happen is. So, this and this is through this concatenation

operator. So, the remaining, so I have here 5 elements my array s4 can store 30 elements,

so the remaining 25 elements will be used to store this thing.

So, if you print out the s4 statement, so what you will find is something like this hello

what is your name? So, this is how one can connect partake a part of one array another

part of a second array connect together and form a new array .

(Refer Slide Time: 27:26)

So, with this we come to an example here to which I have given the solution in this slide,

but I mean I would encourage you to use it as a practice exercise. So, the idea is given a

set of numbers you need to write a program which will sort them in an ascending order,

so the algorithm is given briefly here. So, first you need to read the numbers from given

by the user. So, you need to store them in an array, then you need to sort them into an

ascending order and then print out the sorted array.

(Refer Slide Time: 28:05)

So, this is the program, but I would encourage you to write the program yourself and see

how one can get a feel of the things. So, with that we are done with the second part of

the introduction to Fortran module.

Thank you.

