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Differential Equation for Quantum Mechanical Problems: Numerov Algorithm 

Part 01

So, in this module what we will do is the aim of this module is to tell you about some

simple methods which will allow us to solve another class of second order differential

equations  which  are  known  as  Schrodinger  equations.  So,  this  we  will  do  for  one

dimension.
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So, the aim is solve one dimensional Schrodinger equation using the Numerov algorithm.

So, we are all  aware of the what a Schrodinger equation is,  but just  for the sake of

completeness I am writing it down once again minus h cut square by twice m d 2 psi dx 2

plus V as a function of x psi is also a function of x here equals to E psi x.

So, this is my 1-D Schrodinger equation. So, if you look at it ,this is again nothing, but a

second order differential equation and you have learnt already in the previous modules

how to handle it.  But, there are some other its additional complexities to the system

while that is the reason why it needs some special treatment. So, we will talk about that.



So, the focus here is sort of to get; so, what do you get? If you if you are able to solve the

Schrodinger equation analytically, you get a spectrum of discrete eigen values for which

there exists a unique eigen function.

So, our aim is to obtain these eigenvalues and eigen functions numerically because in

most  of  the  practical  cases,  we will  not  be  able  to  solve  this  Schrodinger  equation

analytically. So, in this part of this course what we will learn is we will learn for the

special case of one 1-D Schrodinger equation and the algorithm which we will discuss is

known as the Numerov algorithm. And then what we will do is we will take an example

and  the  example  will  be  basically  my  1-D  quantum  mechanical  simple  harmonic

oscillator.

So, this is the plan of what we are going to cover in this part of the course. So, but before

we go into this, these two parts , that is before we talk about the Numerov algorithm and

before we take a practical example and apply the Numerov algorithm. So, what I would

like to discuss is now the additional problems which one typically faces when one solves

this type of a  differential equation particularly in the area of quantum mechanics.

So,  one  issue  is  already  there  is  that  you  do  not  know  how  to  do  the  integration

analytically to get the solution that is how; I mean what is the function as a function of x.

So, for that the Numerov algorithm is already there which we will see, but in addition to

that  there  are  two  more  problems  which  are  associated  in  solving  this  type  of

Schrodinger’s equation particularly in the context of quantum mechanics.
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So, basically so, it will be more like a sort of a overview. So, what is what we are going

to talk about is quantum mechanics and the issues with numerical codes. That is what are

the additional challenges and complexities; primarily there are two types of additional

challenges and complexities which one come across here. The first at complexity which

is pertain to the fact that when we solve a quantum mechanical Schrodinger equation

what we end up at the end of the day is discrete set of eigenvalues which I am calling as

En.

Note that in my Schrodinger equation if I just write it down here and so, that we have it

for our reference d 2 psi dx 2 plus V x psi. So, psi’s are function of x is to E psi x. So,

one of our unknowns is this quantity which is my psi x. In addition to that we have

another unknown which is E n. So, we do not know what the energy eigenvalues are. So,

we only know that these are a set of discrete energy eigenvalues. 

So, hence both en and psi x both are unknown here. What we know is that the fact that

for each E n, we have a solution psi n and another important fact is, but the complexity

lies in the fact that there is only certain values eigen functions which are there are that is

there the only certain psi n which are which are allowed based on the type of the problem

and the boundary conditions we are we are facing we are applying.

So,  only  certain  psi  n  sorry  this  will  be  x  are  allowed;  however,  if  you  solve  this

numerically so, numerically any psi n are maybe a solution to my problem. Numerically



any psi n can be a solution, but that solution may not be physically correct. They are not

give  because  we  should  remember  that  psi  the  wave  function  of  a  particle  the  one

physical  interpretation  of  the  wave  function  of  the  particle  is  that  it  gives  me  a

probability of finding a particle at a given position x.

So, once we know the wave function we can find the probability of the particle at a given

position x. So, what this particular statement means that numerically any psi n can be a

solution is that we might end up with an unphysical solution where the wave function

may diverge. For example, if we are in the position space; if we are in at a point where

the classically the wave function is forbidden or classically the particle is forbidden to

stay there. 

So, in from a classical picture it is impossible, the probability of finding the particle there

at that particular point is 0, but quantum mechanically what you would expect is because

of the tunneling phenomena, there is a finite probability of finding the particle. So, the

wave function at that point, the correct physical behavior of the wave function is that it

should decay exponentially to 0 at that point in space, but there might be possible that

there is another numerical solution which is another numerical wave function. The code

can find where instead of it decaying, it just simply diverged at that point.

So, this is one of the complexities which I m talking about for this type of  codes for

quantum mechanical methods. So, when we write a code what we need to keep in mind

are the following things. So, basically your numerical  code should be able to do the

following things. So, first of all it should recognize the fact that we discussed above.

It should recognize that all psi n’s are not solutions are not allowed solutions which in

other word means that it should ident; it should be able to identify the correct values of

E.  Only  if  it  identifies  the  correct  value  of  E,  then  only  can  it  identify  the  correct

corresponding solution. And in order to do so, what it should be able to do is it should be

able to search for a better (value of) energy until it coincides with the exact solution.

So, remember here I am using exact ……..when I say exact I mean exact within the

numerical accuracy because numerically  in most cases we will never get, we will never

get the exact solution; we can be close to the exact solution because there will be always

some numerical errors present with the same.
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So,  this  is  one problem and second problem.  It  is  a  sort  of  a,  one can say,   it  is  a

pathological problem in quantum mechanics is that as it has a pathological asymptotic

behaviour.  So,  what  does  do  we mean  to  by  that?  So,  by  the  statement  that  in  the

problems in quantum mechanics have a pathological asymptotic behaviour. So, what I

am really trying to point out is to the fact that in quantum mechanics unlike classical

mechanics, it is possible to have negative values of kinetic energy.

So, so, what I mean is it is possible to have negative values of kinetic energy. So, when

this is possible? So, this is possible when my potential say potential at a given point x is

greater than the energy of the particle. So, how this is possible? So, we will let me just

explain to you in by taking a simple example. So, let us assume that my potential V x is a

constant and let us suppose it to be V. So, if I write my Schrodinger equation. So, what I

have is minus h cut square by twice m d 2 psi which is a function of x dx 2 plus now my

V is a constant here psi x this gives me E psi x.

So, this is my Schrodinger equation and if I want to compute the kinetic energy, what we

need to do is we need to compute the expectation value of my kinetic energy operator

which is nothing, but h cut square by twice m d 2 psi x dx 2. So, this is nothing, but so,

what  I  do is  I  will  call  this  as my kinetic  energy operator.  So,  so what  it  means is

basically we need to evaluate this term and integrate it over the x here because it is a one



dimensional case. Now in order to evaluate this term what we can do is we can take the

help of this Schrodinger equation here; this one.

So, from here what we see is that the kinetic energy operator sorry there this psi x going

to be here. So, it is this is my operator. So, what we can see here is d 2 dx 2 psi x; this we

can write as E minus V psi x. So, what we will do is so, basically in this integral this

term, we will replace with this particular term here. So, if we do that so, what we land up

with is we have psi star psi E minus V psi dx and this E is also a constant v is also a

constant for us. So, we can pull that out. So, we will get this quantity and assuming that

my psi’s are normalized with the integral. So, integral over psi star psi dx will be equal to

1. So, this is what we will be getting as the expectation value of my kinetic energy.

Now if we go back to the beginning. So, we were talking about this v x greater than E.

So, my V is greater than E. So, what this implies is that my kinetic energy which is given

by this term E minus V, this will be negative. So, in this case we have a negative value of

the kinetic energy. So, now, if we try to find the solution of this so, what we can do is the

following we can write it in a simplified form.
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So, what we can do is we can write the Schrodinger equation again in this simplified

form where if I go back here. So, what I am doing here is I am taking this term on this

side and then this term also on the right hand side and then rewriting the equation again.

So, what I will get is minus twice m by h cut square E minus V psi x ok. Now if I look at



this carefully so, this term in the bracket E minus V; this is a negative term and we have

a negative sign here. So, this whole term here. So, this whole term the coefficient here

we have this is a positive quantity. So, what I can do is I can rewrite as k square phi x.

So, I my Schrodinger equation what I am doing is I am rewriting it in this form k square

psi x. Now this type of equation we have already seen earlier and the typical solution. So,

there are two possible solutions of psi x. So, one is my psi x is approximately equal to E

to the power minus kx or my psi x can go like E to the power k x. Now, the condition

that my V is greater than E, so this implies in the classical picture.

So, classically what we have is that it is for with the particle is forbidden to be there

which in other word implies that the probability of finding the particle is at that place; at

that value of x at those values of x where V is greater than my E this E is equal to 0. But

quantum mechanically we know that it is possible to have this tunneling effect.

So,  you  what  you  will  expect  the  wave  function  to  behave  like  is  it  will  have  a

exponentially it will decay down to 0 instead of abruptly going to going to 0 value. So,

the physical picture is the correct physical picture which or the correct physical solution

in this case will be this one where my wave function decays exponentially to minus x,

but  this  we can  look  at  the  equations  and tell  that  ok.  This  equation  this  particular

equation is my physical solution while this is unphysical here because here it is diverging

exponentially the wave function.

But when you were trying to numerically  solve it  neither the code nor the computer

understands this fact. So, that is gives rise to lots of problems and so the idea is your

code should be able to identify numerically the physical solution. The reason for this is

that  if  even  if  during  the  when  you  are  at  evaluating  or  evaluating  or  solving  this

differential  equation although; if there is so, what you are doing is basically you are

doing integration.

So, when you are doing integration the problem is if there is a slight amount of numerical

noise so,  usually  what  happens is  that  it  gradually builds  up and then your solution

blows. So, what you might see in these type of problems if you do not take care of. These

facts  that  you  are  say  for  example,  in  this  case  your  wave  function  should  decay

exponentially if you do not take care while writing the program to enforce these facts

what  will  happen  is  that  in  the  classically  allowed  region  you  may  get  the  correct



solution while  you will  yeah while in the classically  forbidden region your solutions

might diverge.

So, we will see when we will do the example of the Schrodinger equation how I mean

how if not, if we do not want to do not take care of this particular aspect of the quantum

mechanical problem; how you can end up wrong is wrong diverging solutions or wrong

diverging wave functions in the classically forbidden region. Although you might would

not find anything any problem in the quantum mechanically allowed region.

So, the idea is you should have a code which will sort of take care of both these two

aspects associated with the quantum mechanical problem. The first aspect is that you

have discrete energy eigenvalues and only certain eigen functions are allowed which are

determined by the boundary conditions which we allow to the problem which we are

solving and the second fact is  that  in classically  forbidden region the wave function

should decay exponentially to 0. 

So,  the  asymptotic  behaviour  so,  this  is  nothing,  but  the  the  second  point  is  the

asymptotic behaviour of the wave function; at large values of x how it should behave for

a given particular function. So, this behaviour also should come out the code should able

to come out with solutions with the correct asymptotic behaviour also. So, both these

facts  needs  to  be  taken  care  of  when  we  are  trying  to  solve  quantum  mechanical

problems numerically. 

So,  with this  brief  introduction  of  the  issues  associated  or  the  additional  difficulties

associated with solve solving quantum mechanical problems, numerically now what we

will do is we will move to the numeral algorithm. So, I will briefly derive the numerical

and numeral algorithm for this and then what we will do is we will apply this numeral

algorithm to solve the or to find out the eigen values and eigen functions of a same

quantum mechanical 1-D simple harmonic oscillator.


