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So, welcome back to the class. So, in the last class what we discussed was solving the

Laplacian equation for T x y right and there the temperature was specified along the

boundaries, along the four boundaries and on a plate we had specified the temperature.

And we solved self consistently for the points inside the plate leaving out the boundaries

and we found the final temperature of the system right; there was no time dependence we

had said in the diffusion equation del phi del T was put to 0 we are just looking at this

steady state solution. 

Now, when you specify the boundary conditions and you specify the temperature which

is the quantity we are solving for at the boundaries it is called the Dirichlet boundary

condition right. So, it is a name when you specify T as a or phi whatever quantity you are

solving for at the boundaries. On the other hand you can also specify that d T d x, the d T

dx at the boundaries or d T d y along the boundaries, which is the first derivative of the

field that were solving for, in our case it was temperature. 



And when you specify d T d x or d T d y along the boundaries then you call  it  the

Neumann boundary condition. Now why or what does it mean by specifying d T d x or

the gradient the first derivative of the field we are solving for d T d x or d T d y at the

boundaries, what does Neumann boundary condition imply; in our case it would imply

that we are actually specifying the heat current. 

And why is that? Let me remind you about the Furriers law which we had discussed in

the last class. And q vector was the heat current and that was proportional to kappa the

thermal conductivity, the gradient of temperature and that is the so called furious law

from which we obtained the so called diffusion equation for heat transport in a plate,

right.

 And basically of course, if you specify this and you say that I specify or how much

amount of heat is transported at different points in x and y along the boundaries right;

then  which  means,  that  you are  essentially  specifying,  so there  was an error  here  it

should be like this.  So,  if  you specify the basically  temperature gradient  only at  the

boundaries, when it is reached steady state you are basically specifying the so called

Neumann boundary condition. 

So, q x, right, if you specify q x which is basically kappa d T d x, right. So, how much of

heat is being transported on the left side of the box along the x direction.  So, if you

specify this quantity, the heat current along the x direction you can specify that and then

you  can  also  specify  the  heat  current  along  the  y  direction  and  the  appropriate

boundaries.

And then the question is how would you solve for the Laplacian with the appropriate

boundary conditions and get your heat or temperature profile as a function of x and y and

that is what we are going to discuss today. So, just to summarize if we specify instead of

T x y at the boundaries, we specify the heat flowing in per unit time, per unit area at the

boundaries.

 And you will  specify  suppose  q x equal  to  A 0 some amount  of  heat  trunk being

transported  along  the  boundaries,  and  q  y  equal  to  some  value  C  0  say  along  the

boundaries; how do we solve the Laplacian and get our temperature profile So, that is

what we are going to discuss today. 
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Having  said  that  and  before  we  come  down  to  actually  solving  a  Laplacian  with

Neumann  boundary  conditions;  let  me  also  tell  you that  you can  also  have  Cauchy

boundary conditions. And in the Cauchy boundary conditions, you specify both T the

temperature as a function of x and y only at the boundaries; as well as the gradient d T d

x along the boundaries right, and you can specify it along x equal to 1 or x equal to L x

and so on so forth. 

And you can also specify boundary conditions where the both are specified,  this is a

more restrictive system, its bit more complicated; we are not going to discuss this, but

just for your information you can also specify boundary conditions like this. And you

might have when you solve partial differential equations in a real case have to handle

such systems and then you have to look up the book and learn how to do it, right ok.

Coming back to our Neumann boundary condition where we are specifying del T del x at

the  boundaries;  just  to  remind  you  that  as  per  the  second  order  scheme  of  Taylor

expansion where such a you basically use such expression for d T d x. Just to tell you

that though we have not discussed the second order scheme in great detail, we have not

discussed it at all for that matter it is there in the books. 

You can have also first order schemes in the Taylor expansion and then you can write d

T d x equal to T temperature at x plus delta x minus T at x by delta x and this is the so

called first order scheme right. But the expression we are using for del 2 del 2 T del x 2



this  is  already the  second order  scheme.  So,  for  consistency I  am writing  down the

expressions of d T d x in this form which is the second order scheme. If you want to

know more about it, open a book you will get the derivations and so on so forth and it is

obtained through a Taylor expansion, right. 

So, you can refer to this book if you want to know more about first order expansion,

second order expansions; stability when you mix up terms with first order expansions

like this, with second order expansions for the suppose the second derivative d 2 T del x

2 there are certain stability conditions to be maintained, to be checked for.

So, we are not going there, we are just choosing a 2nd order scheme method, the 2nd

order method, formula and the d T d x can be written like this; which essentially, when

you write it in the discreet manner it is T i plus 1 delta x is i plus 1, j minus T i minus 1

corresponding to x minus delta x j by 2 delta x. 

And similarly d T del d T d y can be written as T i j plus 1. So, basically what is the

value of the temperature in the y direction,  one that is coordinate  up and one would

lattice coordinate down divided by 2 delta y. So, this is what we have to. So, this is what

is  essentially  specified.  So,  when you specify Neumann boundary condition,  you are

specifying del T del x at the boundaries which will have some values and that in turn can

be written by these formulas, right in the finite difference method. 
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But now you have a problem and let me tell you what the problem is as well as the

solution of course. So, you are Laplacian, right as we discussed in the last class can be

written in this expression which stands for basically del 2 T del x 2 and del 2 T del y 2

can be written like this and that is equal to 0; and this is the equation we have to solve for

over  the entire  lattice.  Now if  this  is  your  lattice  right,  previously the values  of the

temperature was specified at the boundaries, at these points say and these points. 

So, we were not, they were fixed at the boundaries, the value of temperature was fixed at

the boundaries as a consequence we were not changing or updating the value of the

temperature at these boundaries because they were considered to remains fixed and we

were only updating and finding out the steady state temperature of the points within the

lattice. 

We were basically solving for those iteratively, but in this case, but in today’s class what

we are discussing is what is specified is not the temperature, but the heat right. I had

suppose this boundary and what is the heat being flowing in or out at this boundary; and

what is the heat flowing in or out at this boundary and this is the last boundary, right. 

So, the temperatures at these points can change and they can be updated, so that the, so

you are specifying the amount of heat input and heat output along the boundaries. And

the  temperature  will  evolve  as  per  the  solution  of  the  Laplacian  equation  given the

certain boundary conditions and you are solving exactly for that. So, what is specified is,

at each point here, here and here and here what are the values of heat current coming in.

The simplest case will be the heat coming in will be uniform along this boundary, and

the heat going out would be uniform along this boundary. 

But in principle you can also have different amounts of heat coming in here and here and

here. So, basically A which is the measure of the heat coming in the boundary condition

right; d T x del T del x it can have different values as a function of y the j coordinate, it

can we have different values along this right. Though in our test case we will consider

that the values of A are independent of j, but you can have different amount of heat as

you go here, you can have different amounts of heat leaking out. 

As you go from here to here you can have different amounts of heat leaking out here to

here; basically that would correspond to different surface properties, you can treat the



surface differently. So, that is what we are specifying and the more important thing is we

have to find out the values of the temperature for these points as well. 

Now when you write down such an expression, when i equal to 1, right, so if this is your

i equal to 1, at this point for a particular value of j suppose for this point, at this point;

then you also have i minus 1. So, if i is 1; i minus 1 is 0; but you do not have those points

on the lattice right. You have to solve, for to solve you need the values of this point

which is outside the lattice, but you do not know what is T i minus 1 j. 

Similarly, if you were writing for j equal to 1 say suppose this point or suppose this point

right when j equal to L y. So, when j equal to L y you would have j plus 1, which is

outside the lattice, right. If j is L y and j plus 1 would be outside the lattice and then how

do, the question is how do we solve for this, right. And the solution is. So, you have to

write down the expressions. So, to solve for T i j you need to express, you need the

values such as you need the values of this and you need the values of this and so on so

forth; specially if they are the boundaries and the way you solve it, is discussed in the

next slide.
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Here we ask you to note that A j; A j is that heat current, right. So, A j is this heat

current, that is what you are specifying the del T del x is what you are specifying along

the boundaries instead of temperature. So, this A j equal to del T del x at x equal to 1 and



y equal to j can be written as T 2 j minus T 0 j by 2 del x. T 0 j is essentially these points

outside the lattice which do not exist. 

And the question is how do you figure out this value? And the way you figure out this

value is by noting that; if A j which is specified then you can write this equality A j equal

to this and then what you have is you solve for T 0 j, you basically you solve. So, you

have this equation, get delta x on the other side of the equation that is what I have done

here and write T 0 j in terms of A j, for each value of j right. 

And similarly suppose you have specified the heat current along, suppose y equal to l y

right. So, suppose you have for different values of i, you have specified the heat current

at  basically  y  equal  to  L  y;  that  in  turn  can  be  written  just  like  this  in  a  similar

expression, where D i is nothing but this, right. So, basically this, L y plus 1 here right, L

y plus 1 and L y plus 1 is essentially these points which again those exist, there is a ghost

points, right. 

So, basically what you do is write this quantity, by a similar algebraic thing in terms of D

i right. So, you basically write the temperature here in terms of D I, by this algebraic

formula. So, you can do similar things for all the ghost points which are here, which will

be B j B 1 B 2 B 3 B j. And you will you can similarly write the temperatures for these

ghost points which do not exist; but we will be there in the expression for the Laplacian

in terms of C 1 and then C 2 and C 3 and in general C i, right. 
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So, finally, let us focus at the Laplacian at this point and on this boundary. The Laplacian

which you have the expression is this, right; you have this expression and you have T 0 j

here, if you wanted to solve for T 1 j. If you wanted to solve for T 1 j you have T 0 j

sitting here, right. And this part is standard, you do not have to worry it is basically the

temperatures  on the neighboring points  along the y direction.  But  this  T 0 j  is  now

substituted by this expression, which we figured out here.

 So, I have just substituted that expression here in lieu of this. And now what you have is

all  the quantities  whose values you know; I  mean,  at  least  you know at a particular

iteration and of course, iteratively the values of each of these points shall evolve and

when it is value does not change while maintaining the boundary conditions. Now in

terms of d T d x or rather in terms of A j then they basically become stationary; means,

they do not evolve within your tolerance factor, you say that you have got your answer. 

But at least you at your 0th iteration and your 1th and second and whatever nth iteration

for each case, you have the values of all these quantities, right. So, now, you solve for

basically T 1 j along the boundaries, T 1 j is the temperature at this point and this point

for their different values of j, for different values of j along the y axis, right. So, j is

varying for each value of j you find out the temperature at the boundary and the formula

by just doing some algebraic manipulation of this you basically get this, right. 

So, what I have taken is, done is basically multiplied by del x square whole square and

just separation of variables. And basically now T 1 j depends upon all the neighboring

points;  the neighboring point and the boundary condition is sitting here nicely,  right,

from here it is sitting nicely here. So, you have applied the boundary condition, right.

And if  delta  x  equal  to  delta  y  just  as  previously,  the expression reduces  to  even a

simpler expression like this for all j.

 And of course, A j has to be specified that is what you are specifying d T d x is what you

are specifying for at the boundaries for each value of j and then all that you need is

solved such a simple equation. 
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Now, for the other boundaries, for the boundaries along this and this and this; you can

similarly write down expressions which are written here for x equal to L x for different

values of j, which is essentially this boundary x equal to L x, right. And different values

of j, that can be written in terms of doing us very similar procedure as was discussed in

the last slide; the expression can be this and note that del T del x at x equal to L x which

is  B  j  it  is  sitting  nicely  here,  right.  So,  it  is  basically,  so  you  have  use  similar

expressions, this is sitting there. 

Similarly along the other boundaries, what you have specified is D 1 D 2 D 3 along this

boundary and C 1 C 2 C 3 along this boundary, as you change x right. And at each point

you could have different amounts of heat coming in at different points of i; you have this

expression where you see that C i is sitting here and note delta x equal to delta y, the

value of delta x is also sitting here basically, right. So, you get these expressions. 

And similarly for the other boundary you have this expression, where you have D i and

note delta x equal to del y and that is why we have this 1 by 4 factor and these are all

terms which you have access to. However, there is still a complication and what is that

complication; note at these four corner points, these four corner points heat is coming in,

our boundary conditions as specified del T del x, A 1 is also specified del T del y C 1 is

also specified.

 Similarly for here right C L x is specified as well as B 1 is specified. So, you have

basically  heating  going  out  from this  direction  as  well  as  heat  going  out  from this



direction and so on so forth. For that you have to work a bit more in terms of working

out the algebra, but what I have done here is written down the expressions of how to

calculate for T 1 1, T 1 L y, T L x 1 those are the four corners and T L x L x. So, these

are of course, for all the cases when delta x equal to delta y it is a bit more of algebra; but

these are the expressions which is basically a few steps ahead from doing this right. 
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So,  what  do you have?  So, just  to  figure  out  where we stand,  you had to  solve the

Laplacian at the boundary where boundary conditions were given, where the heat current

del t del x was given; that you have used such an expression to get rid of the expressions

in  the  Laplacian  which  was  depending  upon  these  Ghosh  positions  those  you  have

replaced in terms of A j and D j and C j and B j.

So, basically you have these now in the expression for the update at the boundaries right.

And what we shall consider is look at a simple problem where the A j s across for all

values of y is minus 700, for all values of along this boundary is 100 and along this

boundary is 200. So, basically heat is coming in here and basically the B j is 400. So,

heat is going out from here, heat is going out from here; but the amount of heat going out

from here and from this boundary C j is equal to 200 which is more than 100. 

So, more heat is going out from here compared to this boundary right; heat is entering

from this direction, heat is going off from this maximum 400. Then this boundary has

more heat going out, this boundary has relatively less heat going out. 



Now in steady state right, once the temperature has finalized it does not change as a

function of time, then basically what is happening is there is no heat, net heat inflow into

the system right, that is what you have specified this for. And if you remember your

Gauss’s law, if you take A j dot area; now area here will be in this direction will be in

this direction, the area element is normal to the surface is in this direction, the area are

normal to the surface is in this direction going pointing out and the area here normal to

the surface is in this direction, right. 

And if  you,  so A j  is  of  course,  q  vector,  if  you take  q A,  so basically  what  I  am

calculating is amount of heat passing through this each of these four surfaces. And if you

take the correct dot product, you will see that the net amount of heat A j into I mean you

have to take the sign of delta A as well, if we do it right you will see that there is no net

heat input of the system. The amount of heat coming in is equal to the amount of heat

going out and only under such a condition would you have a steady state. 

If there was a net heat input into the system then the temperature of the system would

rise  right.  But  what  you have  is,  there  is  no  del  T,  del  time  the  time  derivative  of

temperature has been set to 0; that means, you are discussing steady state conditions and

temperature is not varying as a function of time. In such a case the net heat input into the

system has to be 0, net flux of heat at on each boundaries you have a flux. 

But the no net, the system does not gain any net heat; if it gained it the temperature

would raise and you would see that the boundary conditions have been chosen or the

appropriate boundary conditions would be such that q dot A across the four surfaces

would be 0 and you can check that for yourself, right. With this background, now let us

move and show you the code and figure out how would the temperature profiles look

like. 
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So, the code is called Neumann dot Laplace dot f 90, right.
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 And this is the program Laplace Neumann and here I specify the lattice sizes L x equal

to 34 just as the previous case and L y equal to 34 just as the previous case. Now note I

have four arrays called A l y, A l y, C l x and D l x. So, these are those A B C D which I

specify at the boundaries right, those are the amount of heat current and that you specify

at the boundaries and the rest of it is basically very similar to the previous code. 

(Refer Slide Time: 28:19)

Except in my previous case I was specifying the temperature at the boundaries and I was

updating the temperature at only the inside points, not at the boundaries here we are



updating the temperature at the boundaries as well. And so you see that there differences,

where I am not specifying the temperature and the boundaries which I did in the previous

case, here the code starts directly. 

So, old temperature has been set to 0 just as an initial condition. So, the entire lattice has

initial  temperature or initial  does not mean with respect to time initial  here with rest

means at the 0th iteration has been set to 0, right. And d x is 1 and d y has been set to d x

that is when those formulas are valid. And you would see that, I am basically updating

the values of the temperature at the boundaries here. 

So, I am updating the boundaries first, because the formula is different; because you will

have A j s and B j s sitting here, I am just implemented whatever I wrote in the code

here. So, old temperature is the older value of whatever temperature is there, right; which

has all been set to 0. But what is nonzero, in the first iteration are these values, right. So,

here I have set the values of A, A, so this is Fortran’s. 

So, basically though I am writing A all the elements in the area being set to minus 700,

all the elements in array B are being set to minus 400 and so on so forth. So, these are

nonzero values.  So, these are the values which are nonzero,  this  and this at the 0 th

iteration. So, all of old temperature has been set to 0 here.

But after the first iteration, because you have nonzero values here, you have nonzero

values  in  temp,  right.  So,  this  is  you  have  basically  though  tempered  have  been  0

initially; it now has nonzero values. And similarly here for the boundary points you see

that, this is basically x remains 1 and the loop is only from the boundary points.

But note I have left out the corner points, the corner point the formula is different; hence

they are being updated here, right, where you both in the expression for the temperature

updated the corners you both have C 1 and A 1 and at a different point you have D and

you have A right and you have B and you have C. So, the corners are being updated

separately and they are basically 1, 1; 1, l y; l x 1 and l x l y. 

But for all other points on the boundary you have A sitting here, B sitting here; in the

other  cases  you have  C sitting  here  those  are  the  same implementation  of  the  same

formulas  which  I  showed and you have  D sitting  here.  Once you have  updated  the

boundaries and the corners, what you do is basically update the interior of the lattice.
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And the interior of the lattice is very simple.  So, you go to each lattice point in the

interior  from 2  equal  to  l  y  minus  1  and  2  equal  to  l  x  minus  1.  Write  down the

expression  which  you  get  by  solving  the  finite  differences  method,  which  is  also

discussed last time, you update all the points, the new temperature, right; then you check

for convergence at each lattice point, right. So, you go to each lattice point and check

that  the  new  value  of  temperature,  what  is  the  difference  from  the  old  value  of

temperature to the new value of temperature, right

And if it is above a certain tolerance level, so 0.01 or even if you put 0.001 right; if the

difference is more at any point is more than 0.001 then basically you set dummy variable

test equal to 1. And only if test equal to 0 do you exit this number of iterations loop,

right; test has been is being set to 0 every time. This is the loop over iterations; test is

being set to 0. 

Here you are checking, if any of the differences in temperature is above your tolerance

level test is set to 1; then it cannot exit the loop and then you basically old temp is set to

temp and you want doing this, right. Now, what does one do, well one compiles new

Laplace dot f 90 minus o to new Laplace. 
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Then you run it and it you see that it takes 4329 iterations number of iterations for the

results to converge the final temperature distribution. 

(Refer Slide Time: 34:07)

How do we visualize it, well you have again the show color just as previously or the final

data is being stored in 10000.



(Refer Slide Time: 34:16)

So, initialized are 10000. 
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And you can open octave, which I have already opened right and show color. So, this is

the temperature distribution, this is a long x, this is along y and that is something which

is  very  fishy  and  is  what  is  fishy  is  that  the  blue  color  is  minus  5000.  How  can

temperature be minus 5000 right; I mean suppose you are discussing it in Kelvin, you

cannot have. So, there is something which is fishy, which is not sensible, what is that we

will discuss it.



But mean, while if you remember heat was coming in from this direction and you have a

very high red color here, showing high temperatures; heat was going out minus 400 the d

t d x, the heat going out was minus 400 here. Correspondingly you have relatively low

temperatures  here.  There  was more heat  going out  from this  direction,  in  along this

direction of y compared to this. 

So, you see that you have a higher value of temperature even here compared to a, not

higher value; but higher distribution I mean it is hotter over a larger amount of space

here; compared to here because more heat is going out in this direction and this direction

compared to this direction. So, the thing seems to make sense, but this temperature range

is completely of the mark, it  does not make any sense; maybe we should change the

temperature a bit, the amount of heat going in or coming in a bit.

So, suppose you decrease the amount of heat going here, heat current and let us see what

happens, you will see that the problem will remain. Now you have got to the final value

of the temperature distribution in a fewer number of iterations. 
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But if you again plot the data, you have a similar distribution of temperature; but the

range of temperature is still minus 100 though it has gone from minus 500 or minus 1000

to 1000, temperature cannot be negative. What is going wrong ok, it is very important to

realize this. It is intentionally that I showed you this code. 



So, what is happening is you have set the temperature arbitrarily to 0, right as the initial

condition; that really does not make much sense. And I have also set it to 1000 right and

if you are talking in Kelvin setting the temperature arbitrarily the initial condition if you

like to 0 is pretty arbitrarily. And from that all that you have is amount the heat current,

the amount of heat going in and the amount of heat going out. So, all that it cares about is

the gradient in temperature, the changes in temperature about this certain arbitrary value

of initial temperature scale that you have set right.

And if you set that correctly you would not have such problems. So, what you have to do

is, say that somehow you set the temperature at one corner to be 2000 right; I mean, you

set your temperature whatever in your right units, right now all the units all the scales the

R 1 right. But you can, I mean not necessarily you will be working with a 34 cross 34

lattice you might be working with a plate of size 0 to 2. And then you need to then

discretize the lattice, then you will have finite values of delta x and delta y and so on so

forth. 

So, putting in units is suppose at some point you say, that at one corner at corner suppose

one and one. So, the left hand bottom corner, you set the temperature to be 2000, so that

every time you in an iteration you change the temperature; but you want that temperature

at this corner one and one to p remain 2000 right. And that is how you implement it,

think about it, how you would implement it; I am intentionally not explaining this part. 

Now, but suppose you wanted maintain the temperature at  this point to be 2000 and

accordingly shift the temperatures of all the other points, all that you have is the gradient

right, news and the differences in temperature. And now you are saying that one corner

shall  maintain  of  temperature  whatever  2000,  you  can  choose  1000  does  not  really

matter. And then with respect to this point where you are specifying both the temperature

and the gradients is like Cauchy right. 

What  are  the temperatures  at  the other  points given the certain  boundary conditions,

where you are specifying the heat coming in and the heat going out right? Now if you do

that, I compile it again, run it again and the data is being stored in the same file, you

should put it if you want you can put it in a different file. 
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And if you plot the data this is what you get. 
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And  this,  now  makes  more  sense,  right.  So,  under  those  conditions,  if  you  are

maintaining  l  x  1  1  to  be  temperature  2000  which  is  here;  then  the  temperature

distribution over the rest of the plate, so here it will be higher than 2000, because you are

putting  in  a  certain  amount  of  heat,  but  less  amount  of  heat  is  going out  from this

direction. 



So, here you have higher values of temperature than 2000, here you have lower values of

temperature, so it would be somewhere here; here your medium values of temperature

and  this  is  how  the  temperature  distribution  would  look  like  given  the  boundary

conditions. Now of course, you can have put in boundary conditions, so that the amount

of heat current is also changing along here.

So, right now it is 100 here and 200 here and it come incoming heat is 700 and outgoing

heat is 400 you can make them more complicated depending upon your real engineering

problems or whatever problems; when you are doing a thermal conductivity problem you

can have different boundary conditions, those have to be put in and you can find out the

temperature profile, right. 

So,  this  was  essentially  a  discussion  of  the  Dirichlet  boundary  condition  which  we

discussed in last class; Neumann boundary condition which we discussed in today’s class

and we touched upon Cauchy boundary condition. But really you know; what if you are

discussing diffusion equation you would also might want to know that,  if you set up

these  boundary  conditions  at  time  T  equal  to  0,  how would  the  temperature  profile

evolve as a function of time? 

Del  T temperature  del  tau,  tau being the time.  Now if  you have to do that  you can

basically put in a suitable finite differences method for del T temperature versus del tau

time; but you can do it, but one has to be a bit more careful, because you can use the first

order finite difference formula and then one has to look carefully analyze the stability

conditions, the criteria not always the answers are stable or alternatively you have to

basically given initial conditions, the initial boundary conditions and then maintain the

boundary conditions the rest of the time. 

So, this is a bit more involved when you do it, you also have a Laplacian on there on the

right side of the equation. And you have also temperature as a function of time, but that

would actually need quite some bit of learning stability conditions, what are the different

expressions, what order scheme should we use for writing del T del tau and that if and

when you need it, we hope that with this at least introduction you can read up the book

and learn about it. 

You might have realized that in this course we are touching few of the topics Monte

Carlo, Ising model and random numbers, random number integration we are doing this in



a hands on manner. But if we had to basically do larger number of topics, we would not

be have, we would not have so much time to discuss these things in a hands on manner.

So, the hope is, we are exploring, we are basically giving you an introduction to various

kinds of computational techniques and algorithm building. 

And in the next class you will be doing will be starting molecular dynamics. And with

this various exposure to different kinds of thoughts and algorithms and implementing

different kinds of algorithms in the computer; whenever you need in the future right,

which will of course, very likely to be beyond the scope of this course, techniques. You

will  be  able  to  read  up  the  book  and  learn  from what  the  algorithm  building  and

implementation and the background physics from the book right. 

So, this class is basically the end to the this module and from the next class you will have

a different module. And I shall teach you molecular dynamics after a few more lectures,

which will be given by Prasenjit Ghosh.

Thanks. 


