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So,  welcome  back,  in  today’s  class  we  will  be  discussing  about  partial  differential

equations or PDEs; PDE for Partial Differential Equation and in particular we will be

discussing the so,  called  finite  difference  method.  In the last  class you have already

solved a second order differential equation, which was something like d 2 y dx 2 plus

something into divide x and so on so forth.

And,  there  the  finite  difference  method  was  already  introduced  where  you solved y

versus x. So, that was basically a differential equation and that was only a 1 variable

problem. Whereas, in partial  differential  equation as you might know you essentially

have  quantity  suppose  temperature  or  displacement  as  a  function  of  x  and  y  a

multivariable.  Basically,  it  is  a  differential  equation  in  multi  variable  in  multiple

variables and you have to solve those right.

Now, in  your  physics  course you must  have come across  various  partial  differential

equation  the most  common being the so,  called  wave equation,  which is  basically  a



double derivative of u in time, u might be a displacement, it might be a density location

of the density peak and so on so forth. And, that is related to c square, where c is the

speed of the wave into grad square u right.

Now, grad square has been written as the laplacian or like the divergence of a gradient,

vector  operator  and  in  more  simpler  cases  you  might  have  come  across  the  wave

equation as del 2 u del y 2 equal to c square del 2 u del x 2, but this gradient this d 2 d 2

dx 2 in general in 3 dimensions can be written as grad square right.

And, other than the wave equation you must have come across the so, called Laplace’s

equation  in  electrostatics  grad  square  phi  equal  to  0,  where  phi  is  the  electrostatic

potential and this equation is valid when there is no charge in the place where you are

calculating phi in more general, in electrostatics you would have come across the so,

called Poisson’s equation, which is grad square phi again being the electrostatic potential

equal to rho xyz the charge density as a function of xyz.

And, you can solve this equation to at the points where there is a charge density we

calculate the electrostatic potential. Maxwell’s equations of electromagnetic theory are

written as partial differential equation divergence E equal to rho is rather rho by epsilon.

And, the basically divergence B equal to 0 curl of E equal to minus del by del T and curl

of B equal to mu 0 J J being the vector, the current vector plus nu 0 epsilon into del u del

T.

So, these are all  examples  of partial  differential  equations moreover  you might  have

come across in your statistical physics course about the so, called diffusion equation and

that relates the single derivative with respect to time. So, suppose n is a quantity n will

being could be suppose the density, number density of molecules in a certain volume.

And, del n del t equal to D; D being the diffusion constant into grad square n right. So, in

contrast with the wave equation you have a double derivative with respect to time here,

here you have a single derivative with respect to time.

So in the next rest of the class we will be solving the diffusion equations under different

conditions.  So,  let  us discuss  the diffusion equation  a  in  a  bit  more detail  this  is  of

course, a partial  differential  equation.  And, let  us suppose that n right is the number

density of particles over space. So, suppose this is some box or a channel and here you

have higher density of molecules, which is suspended in water say.



And, here you have a lower density. Now, you might have read about Brownian motion

and what you expect is that these particles from the higher density regions are going to

diffuse slowly and come towards the lower density part right. So, n is the local number

density of particles and if you plot n versus x x being this direction suppose right, then n

is increasing as a function of x.

So, this is the n at high density region this is n this is a function of the number density is

a function of x y and t. So, nx y t this is the low density region and to get where the

diffusion equation comes from one can understand it as the so called Fick’s law ok.

So, what does the Fick’s law state? Fick’s law states that the particle current. What is the

particle current? Particle current j is the number of particles crossing per unit area per

unit time right. So, the number of particles moving in this direction say per unit area per

unit time that is the particle current, and that as for Fick’s law can be written as minus D

D being a proportionality constant grad of n n being the number density.

So, it is basically saying the current is proportional to how fast n the number density is

changing as a function of x. Why is this minus sign here?. Why is this minus sign? So,

the current the particle current will move in this direction right. So, it is then move the

particle current will move in the negative direction, but n is increasing in the positive

direction in the positive direction right.

So, hence the particle current is opposite to the direction of gradient of n and which is the

Fick’s law, and in addition the conservation of mass is typically written in physics as

such a in such an equation del n del t and again reminding you is the number density of

particles. So, in a certain volume how fast is the number density changing and that is

proportional to the flow of particles the particle current, which is entering the certain

volumes.

So, this is nothing, but the so, called differential form of the Gauss’s law which you

would have studied in your BSc right. And, this is how you write your conservation of

mass and combining the Fick’s law with the conservation of mass. So, basically del n del

t minus divergence j instead of j you use the Fick’s law you just substitute minus D grad

n and what you get is D grad square n x y z t.



And,  if  you  solve  this  partial  differential  equation  for  the  appropriate  boundary

conditions, you shall know how does n change as a function of time with time and as a

function of xyz. So, this is the differential equation and a partial differential equation if it

is an xyz multi variables. If, basically density is changing in the x direction as well as in

the y direction, there is a certain current etc if you solve it you will get the so, called

solution to the diffusion equation.
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Where else have you seen the diffusion equation?
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So, basically now if you talk about heat conduction through a metallic plate right. Now,

you this is again a problem which you would have studied in class now suppose this is a

metallic plate, and T 1 end you fix the temperature at T 2. At the other end you fix the

temperature at T 1 at T equal to 0 at time T equal to 0. And, you want to find out what is

the  temperature  distribution  within  the  metallic  plate,  now  if  the  plate  was  at  a

temperature different temperature T 0.

And,  you  put  them  between  2  regions  and  ah  temperatures  T  2  and  T  1,  then  the

temperature of the plate itself shall evolve in time, but after it reaches a steady state, after

a considerable period of time, the temperature variation along the plate on the plate will

be basically independent of time and T will be a function only of x and y . So, to study

the problem what one uses is the so, called Fourier’s law and this is very similar to

Fick’s law which is and then what you say in the Fourier’s law is that the heat current.

So, in the Fick’s law you had the particle current and here you have the so, called heat

current  which  is  a  function  of  x  y  and  t  is  proportional.  So,  this  is  the  so,  called

proportionality  constant,  the  thermal  conductivity  right.  And,  the  heat  current  is

proportional to the gradient of temperature. So, that is what is the Fourier’s law is so,

what you did in the Fick’s law was del n del t the particle current was proportional to

gradient of the number density.

Here in this in this case, the heat current is proportional to the gradient of temperature

right. And, just to remind you I have written down that q x y t the so, called heat current

is nothing, but the magnitude of heat flow. At point x and y at time t per unit area that is

the heat current how much heat is passing through a unit area right at time t and that is

function of xy and t, kappa is the thermal conductivity what is thermal conductivity it is

the amount of heat.

It is the amount of heat that passes through a unit area per unit time when dT dx equal to

1. So, that is the heat current and just like the conservation of mass you can also write the

conservation of energy in a unit volume right and del Q del t, Q is capital here. So, here

Q is capital here right. And, Q is the internal heat energy per unit volume. So, how much

heat energy per unit volume is increasing in a certain time the rate of change of heat

energy per unit volume.



And, that is proportional to the gradient in the heat current sorry the divergence of the

heat current right. It was very similar to this divergence of current. And, again here you

have divergence of current being heat current being denoted by small q and the total

amount of heat in a certain volume is a scalar quantity being represented by capital Q

right. And, this small q the heat current by the Fourier’s law can be written like this

minus divergence of minus Kappa, Kappa being the thermal conductivity into gradient of

temperature.

Temperature is a function of x y t and that in turn can be written as Kappa into grad

square T right. Now, to put it in the diffusion equation form I would ask you to remind

yourself that del Q del t is this quantity del Q del t the amount of heat per unit volume

the  amount  of  heat  change per  unit  volume,  the  rate  of  change of  it  is  because  the

derivative with respect to time is the specific heat capacity C into the density into d T.

So, this T the T at the numerator capital T being the temperature and the small t being the

time right.

So, as the temperature increases if the temperature increases fast quickly, then the energy

in that volume also increases quickly and that is related to the specific heat capacity C

and the rho being the density the density of the material right. So, just remind you what

is C specific heat capacity C is the amount of heat in joules to raise the temperature of 1

gram of material  by 1 Kelvin right. And, so, C rho is essentially the amount of heat

required to raise the temperature of a unit volume right we are talking Q is per unit

volume.

So, the amount of heat required to raise the temperature of unit volume of material by 1

Kelvin.  And,  this  relationship  holds  if  you just  look up your  whatever  BSc physics

course. And, this so, del Q del T equal to this this quantity we are going to basically

substitute here right. And, that is exactly what I have done here and then you get gets C

rho del T capital T by del T time equal to Kappa grad square T and this is nothing, but

the diffusion equation again right. Where I am writing Kappa by C rho as Kappa dash

right and this is very similar to the diffusion equation you saw just here right. So, this is

absolutely similar.

Now, as  I  said  before  now when the  system reaches  steady state  right,  steady state

suppose this is the your material and you are holding one end one edge of the material at



temperature T 2 the other edge is being held at temperature T 1 right, then you can solve

the diffusion as then you can solve the so, called diffusion equation. And, once it reaches

steady state there will be no explicit time dependence in the temperature at T will be a

function of only x and y, which means that the temperature is not going to change as a

function of time.

So, del T del T can be written equal to 0, which means grad square T equal to 0, which is

nothing,  but  the  Laplace’s  equation  which  you  also  solve  for  electrostatics.  Just  to

remind you steady state is not equilibrium, because in equilibrium you would have the

temperature uniform over the entire space.  A steady state means that there will  be a

current there will be a heat current a certain amount of heat is going to enter this end and

in steady state an equal amount of heat is going to leave this surface from the other end,

there will be a temperature profile there will be a T as a function of x and y. But, that is

not going to change.

In steady state there will be a net heat current and what would be the heat car what would

be the temperature profile across in this region we can find it out by solving. So, called

grad square T Laplace’s equation, when appropriate boundary conditions are given right.

Now, you might have handled such problems in 1 dimensions in your college and your

BSc or your masters considering that y and z being infinite plates being infinite in this

direction.

And, this and suppose this is the x direction and you find out how the temperature varies

around along x, but suppose instead of considering a fully blown T as a function of x and

y and z suppose a long z. There is no temperature difference the T does not vary along z

that, but it varies along x and y only right. Suppose, T varies along x and y only and you

have finite boundary. So, this is of a finite dimension and not extending along y. And,

the question is to solve the temperature profile 1 has to solve the Laplace’s equation and

given the appropriate boundary conditions .
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So, what is the Laplace’s equation it is nothing, but grad square phi equal to 0 or in this

particular case basically grad square T as a function of x y equal to 0. And, if there no

explicit z dependence let us solve the Laplace’s equation that is take the case, where it is

a function of only x and y. Then, we can write this as del 2 T temperature del x 2 plus del

2 T del y 2 right equal to 0 and just to remind you from the last class by the finite

difference formula one can write del 2 T del x 2 as T at x plus delta x plus T at x minus

delta x minus 2 T calculated at x divided by delta x square.

So, what are we doing we are basically discretizing space. So, suppose your space started

here at x equal to 0 and it the tip the metal plate ended at L x right. So, what we are

going to do is calculate the temperature at discrete points within this range right. So, if

you have continuum we have infinite points between 0 and L x, instead on the computer

we are going to calculate temperature and discrete points between 0 and L x

So, suppose called the one end of the plate which is 0 basically the first point, and the

neighboring point to be the second point, and then the third point, fourth point and so on

the i minus 1th point ith point and i plus 1th point. And, the distance between say the

third point or the fourth point is delta x right.  So, you are calculating temperature at

discrete points of space separated by delta x and the distance between 1 and 2 is delta x.

And,  then  basically  this  is  how  you  can  write  down  the  second  derivative  right.

Basically, you are calculating the temperature at suppose x plus delta x like, i plus 1.



This is would be the temperature at T minus delta x and this is the temperature at x right.

And,  just  to  remind  you  that  the  first  derivative  del  T  del  x  can  be  written  as  T

temperature at x plus delta x minus temperature at x minus delta x by 2 delta x.

And, how these formulas come you can look up the book and there are Taylor series

expansions and then there are first order expressions and second order expressions those

are important ah, but not possible to cover in this short class. So, if you are interested and

you should be please look it up. So, this was the expression when you had delta T del x

2, now when we are writing a partial differential equation right, then this expression will

become this is this expression and correspondingly you will have del 2 T del y 2 and that

is basically this expression right.

So, it is a very similar except now the derivative the y plus delta y is taken x is remaining

constant this x y remains again x is unchanged and here again you are taking y minus

delta y. Instead of x minus delta x y minus delta y, x plus delta x x remains the same y

plus delta y, because now you are taking the derivative in the y direction right previously

you are taking derivative and the x direction. Now, you are taking derivative along the y

direction say right. Now, if that entire space so, from here this was in 1 dimension.

(Refer Slide Time: 23:00)

If, you think about 2 dimensions what you have is basically you have discretize space in

the x direction separated by delta x, and in the y direction you have again separated you

have discrete points in the y direction separated by delta y right.  And, now you can



calculate basically these quantities x plus delta x y and x minus delta x y, you can write

them in terms of i and j where i and j are discrete they have numbers like 1, 2, 3, 4 so and

on so forth.

And, each of these point suppose this is i on j the point x minus delta x would be this

point right separated by minus delta x. Similarly, y plus delta y will be basically this

point right, this discrete points i and j plus 1 then a neighbor in the y direction separated

by delta y. So, this term can be written like this where x plus delta x has been written as i

plus 1, y remains fix for j remains fix and here again xy corresponds to i j x minus delta x

there is an error here.

So,  this  is  T  i  minus  1  j  right  and  the  similarly  this  should  be  j  minus  1.  So,

corresponding to minus delta x. So, you have i minus 1 and here where you have y plus

delta y and y minus delta y you have basically j plus 1 and j minus 1 right. So, basically

when you discretize space this minus delta x you are writing in terms of lattice points.

So, basically this is your expression of the Laplacian, when you have discretized it and

use the finite difference expressions for it and your aim is basically if you know all these

different terms you have to find out T i j.

So, T i j the temperature at a certain point i and j can be written as i have just basically

played around algebraically with this with this equation. And, this can be written as T i j

can be written as delta x whole square into delta y whole square upon 2 delta x whole

square plus delta y whole square please work it out, you will see that it will come. And,

what remains within the brackets is T i plus 1 j T i minus 1 j delta x whole square, then T

i j plus 1 plus T i j minus 1 and in the denominator you have delta y whole square.

Now, if delta y is chosen to be delta x. So, that you essentially have a square lattice right,

then this expression becomes even simpler basically all these terms cancel out just put

delta x equal to delta y and the expression becomes so simple right. The 1 within the

bracket remains the same ah, but this becomes just one-fourth.

But, they solve this partial differential equation you need also the boundary conditions

right.  And, basically in the boundary conditions now when you used to solve this  in

suppose 1 d right you would have solve this.  So, then just to remind you and I will

remind you that and then you do not tell you that when you are solving this problem in 2

dimensions when you have del T del 2 T del x 2 plus del 2 T del y 2, how the boundary



conditions  are  going  to  change.  Just  to  remind  you  when  you  were  doing  it  in  1

dimension grad square T equal to 0 would be nothing, but del 2 x del 2 T del x 2 equal to

0 all right.

There was no y dependence and then you can solve this del T del x equal to C 1 and T

equal to C 1 x plus C 2. And, the boundary conditions would be that the temperature is T

2 at x equal to 0 and temperature is T 1 at x equal to lx and then you just substitute and

you would get a straight line straight line variation of the temperature from T 2 to T 1

along x, but that can be done identically.

But, now if you have more complicated temperature variations right. Now, suppose this

is your box and this is your metal plate, you are specifying the temperature on this on the

boundaries, which is basically along this, and along this, and along this, and along this

these are the boundaries right. So, you have to specify the temperature. And to take a

slightly non trivial problem, suppose the temperature was not fixed T 2 on at x equal to 0

which is on this plate.

But, the temperature was 0 at this point the origin basically the 1 1 point, but temperature

was gradually increasing from 0.1 and 0.2 and 0.3 as you move. Suppose j equal from 1

2 3 4 up till the end. Now, suppose you are taking a 34 cross 34 lattice right. So, the

temperature would increase from 00.1 so on so forth to 3.3. And, suppose along the x

direction here the temperature from here which was 3.3 would decrease 3.2 3.1 and so on

so forth up till temperature is 0, at L x and L y at this edge right.

And, similarly and this edge along x here again temperature gradually increase from 0.1

0.2, 0.3 so on so forth to suppose 3.3 and along this temperature is decreasing from 3.3

from 3.3, 3.2, 3.1 and so on so forth to 0. So, we have complicated this situation right.

So, now, suppose the boundary conditions are such you are the temperature are such that

temperature is again increasing along x in this direction.

But, temperature is decreasing here at x equal to L x along y. So, that this point is again 0

same as here and again along this temperature is decreasing. So, these are the boundary

conditions that temperatures along the boundaries are fixed,  you cannot change them

their  conditions  externally  given  boundary  conditions  and  what  you  have  to  do  by

solving the Laplacian is find out the temperatures at these middle. I mean at these points

within the metal plate as a function of x and y or i n g as you would like all right.



The boundary conditions  are  given you have  this  expression T i  j,  if  you know the

temperature of the neighbors, then you can find out the you can find out the temperature

at  any point.  And,  at  iteration  number  note  I  am not  using the  word  time,  iteration

number 0, we can set the temperature the unknown temperature here inside to be say 1 or

0 it does not really matter, but because you do not know you have to iteratively find out

the right temperature, you have to find out the temperature distribution as a function of x

and y. And all that you know is the temperature at the boundaries of the box.

And, if you know the temperature of the boundaries of the box, then you can find out the

temperature iteratively here, here the temperature might be 0 in the first iteration, here

you have a finite value of the temperature, there by you find out what the temperature

here is and if you know the temperature here, then this is again 0 and you can find out in

the next iteration what is the temperature here. So, in each iteration you try to find out

the  temperature  of  all  the  points  leaving  out  the  boundaries,  because  the  boundary

temperatures are fixed all that is evolving.

Because of the boundary conditions or the temperature within this square a plate the

points within this plate not at the boundaries and you find out the temperatures with each

iteration at each of these points. And, just like in the previous class when you see that

from one  iteration  to  other  iteration  the  temperature  at  any  point  within  the  square

boundaries does not change less or changes less than a certain tolerance level that you fix

it might be 10 to the minus 4 see right.

Then, you say this is my final temperature distribution this is how my temperature is

going to be distributed in x and y right. So, what we are going to do today is very similar

to what we did in the previous class where we had only a differential equation. Now, we

are just solving it in 2 dimensions right. Using this formula moreover there the boundary

conditions was only at x equal to 0 and x equal to 1, here we are specifying the boundary

conditions not at 2 points.

But, along 4 lines these are the 4 boundaries and we are specifying the boundaries what

the temperature is at each of these points along the boundaries right. With that let us

move to the computer the basic principle is the same we are going to have an endless do

loop and only when the temperature variation from one iteration to the other at each of

the points does not change or changes by amount lower than the tolerance we say we



have iteratively reached our temperature profile. So, now, let us move to the computer

and see how the thing works.


