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Now, here you would see that even before I enter this do loop where I keep on iteratively

correcting the value of or improving the value of y for all the ‘i’s. You can set a variable

ll  some dummy variable  equal  to  0  and  every  time  this  is  repeated.  So,  far  if  this

condition is not satisfied then it will go back here, then you update ll equal to ll plus 1

what  is  the advantage that  you get?  Once it  comes out of this  loop,  when once this

condition is satisfied you get to know in how many iterations, you get a solution to the

differential equation.



(Refer Slide Time: 00:59)

Now, this method is called the Jacobi method the Jacobi method to calculate the solution

of the difference equation what you have done is essentially using these two relationship,

relations  have substituted  d 2 y d x 2 and d y d x in  the differential  equation,  you

calculate y i for each of the i values right then you keep then you save this new values

obtained of y i into y old and use y old to calculate the new values of i iteratively right.

Now the question is what limits should you set here? So, I said 10 to the power minus 3

it was arbitrarily chosen.

Now, the expressions that you use here they have errors at the order of h cube where h is

the size of your the grid points basically x 2 minus x 1 or x 3 minus x 2 right. So, if the

error anyways this is order of h cube you choose h equal to 0.05 there is no point in

setting, this limit to be 10 to the power minus 8 because anyway you will have large

errors orders of h cube. 

So, you are never going to get a convergence if you expect that you shall accept the

value if this limit is 10 to the power minus 8 only this condition is satisfied for all the

values of y i minus y old for all values of i and if limit is equal to 10 to the power minus

8 when I am going to get it. You do expect an error in the value of y i for each value of i

order of 0.0025 because h is equal to 0.05 right x squared is 0.0025. So, there is no point

in setting a limit lower than this value you are not going to get; you are going to get a

convergence solution right.
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The other point is that in the Jacobi method you were calculating y at each point in i

saving it into y old and we are using y i to calculate and we are using basically y old at i

plus 1 and i minus 1 to calculate y i. Now, while you are updating y i from say y equal to

2, i equal to 2 to i equal to know p minus 1 right before you update y at i you already

have then updated value of y at i minus 1. 

Now in this expression; in this expression y old at i plus 1 you do not have yet when you

are running this loop right here both were old, but as you are updating you already when

you have reached i you already have the new value of y i and in this expression if you

use the new value of y i minus 1 then it is called the Gauss Seidel method and this often

leads to a quicker convergence of the solution ok.

Now, you cannot use y old sorry the new value of y at i plus 1 this you do not have

access to because you are basically changing i from 2 to nop minus 1, but you do have an

access to the newer value of y at i minus 1. So, that is the only expression that I have

substituted here in this expression x i of course, does not i mean it is independent of the

iteration it is basically just dependent upon i and not upon the iteration, but you can get

more accurate values of y i and your solution can converge in a quicker manner if you

use the Gauss Seidel method ok.

Now, with this background let us actually go to the code and see how this has been

implemented and have an idea of the solution ok.
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So,  here is  the code program diff  equation and then basically  you have the  obvious

implicit none and this is where I have defined the interval f x is a 0. So, that is one end of

the interval and end x is 1 the other end of the interval d x or h I have said to be 0.05 as

we were discussing in class, number of points between the 2 end points is number of

points is basically end x minus f x minus d divided by d x right.

And here you have some arrays defined there is the size of the arrays is y old and y and

the length of the arrays as number of points. So, if you change h to say or d x to 0.01

then the size of the array automatically changes. So, if you have h or d x equal to 0.01,

then the number of points between the interval will be 100 and nop will be 100 right.

Now, these are those dummy variables called d 1 d 2 d 3 right which shall sit in front of

the p which will be basically pre-factors in front of y i plus 1 y i minus 1 and so on so

forth. So, those have been defined right at the beginning of the code so, that you do not

have to calculate it multiple times.
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Now, here is a convergence criteria limit equal to 0.0025 because I have set h equal to

0.05 here is your ll which will give me in how many iterations the code has or the code

has achieved convergence for a particular value of h right. And this is the condition the

variable whose value decides whether you are going to exit this open ended do loop once

the system has converged right. 

Here I am specifying the boundary condition that y equal to 1 1. So, the number of grid

points is number of point basically nop and y at 1 is 0 right at x equal to 0, y equal to at x

equal to 0, i equal to 1 and y is equal to 0 and at x equal to 1, i equal to number of points

nop and y is 100 and I have chosen a straight line right as the initial condition.

So, that is what I am doing here I am setting up the grid the value of x i for the different

values of i by setting d x right x equal at i equal to 1, x equal to 0 at i equal to 2 the value

of x will be 0.05 so, that is automatically set here. And the value the initial guess of y

over the entire range is basically set here right it is basically a straight line with the

appropriate slope end y. 

So, basically y 2 minus y 1 divided by x 2 minus x 1 and that is exactly what is written

here and the value of y i is basically y equal to m x so, this equation of a straight line. So,

for each value of x i the value of y i has been calculated nothing more than that and here

is the actual do loop right.
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So, ll has been set equal to 0 right at the beginning of the code. So, this is the do loop to

the open ended do loop ll equal to ll plus 1 if condition remains equal to 1, then x z this I

have written right at the beginning. And here is where I write y old equal to y this is the

actual line where you update the values of y where I am using y old at i plus 1 and y old

at i minus 1 and x i at the end of this step I have the updated values of y over the entire

range.

 At each of these grid points and I set cond equal to 1 and do i equal to 2 to number of

point minus 1 at each point I am checking. If the absolute value of y old minus y i is

greater than the limit then I set cond equal to 0 this is the condition to check convergence

right. And here I write down the number of iterations required to achieve convergence

which is ll once it has come out of the loop, I have a fixed value ll they write down the

value of x i and y over the entire range and i plot this right.
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So, I compile this differential equation. So, in g fortran, so, this is the compilation of this

code.
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And basically what I have done carefully is that for a particular value of d x or h 0.05 a

limit I have saved I am going to save the value of the solution x and y for different values

of i in this file right. So, if I run it you see that I have essentially 20 grid points and the

number of iterations required to achieve convergence was 623.



(Refer Slide Time: 12:12)

Now, suppose I changed this two. Now suppose I say well I choose my h to be 0.01, but I

keep the same convergence right because this is the same and then of course, I want to

change the name of the file where I am going to store the data right because I want to

compare the data for these different values of h and the convergence factors.

So, here what I have said is I am not going to change the limit, but I have changed the

value of h if you like or d x if you like and i compile it again and run it again. Here I

have now I have 100 points in the between x equal to 1 and x equal to 0 and now I

needed 7,000 and 2 points 2 iterations to get converge to the right value right now what

happens if I. So, now, have a smaller value of s, the tolerance should be even less. So,

here I am changing. So, I am keeping d x to be the same as 0.01, but this limit I can

easily change to where am I defining limit yes.

So, I am changing the limit 2 points x square again right and then I must change the

name of this file as well because limit has been changed; d x remains the same as before

and if I compile it and run it needs 17,386 iterations before it converges with a lower

tolerance because I have lowered the because I have a smaller value of h, I have also

lowered the tolerance for it right.

And now I can go to even smaller values suppose 0.0 two 0s as 1 and 1. So, 10 to the

power minus 3 and I set my limit as just 10 to the power minus 5 say right though I can

set the limit to be 10 to the power minus 6 as well, but I just choose to cheaper higher



tolerance and correspondingly I am changing the name of the files where dx equal to

0.001 and the limit is point. So, I am not explicitly written the point as 0000110 to the

power minus 5 all right.
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And if I run it, it does takes a number of grid points is 1000. So, bit the range between x

equal to 0 and x equal to 1 has been changed has a 1000 grid point. So, basically the

number of y calculations have significantly increased at each of these points, moreover

the number of iterations required to basically converge to the right value with a higher

accuracy because I have both decreased h.

 And hence I am allowed to decrease the tolerance and it requires nearly 10 lakhs right

this is 10 lakh equations iterations to reach the; to reach the required accuracy. Basically

it keeps on iterating it so many times before reach converges where the difference in the

values of y old and y i at each of these i points is less than 10 to the power minus 5. So,

this is supposed to be a much more accurate value.
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Now, if you had Gauss Seidel. So, what would be the difference? Just all that you have

in Gauss Seidel is.
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Basically  the  previous  code it  is  just  that  if  you compare  this  y  old  right  has  been

changed by to y i minus 1. Because in the previous iteration when I run a loop from 1 I

equal to 2 to nop minus 1, I already have the new updated value of y at i minus 1 though

not the updated value of y at i plus 1. So, here I use the old value, but here I use the new

value of y i and this is the only difference between Gauss and Seidel and you can do the



same thing and you will see that it will have a lower number of iterations to reach the

converging value with the converged value.

(Refer Slide Time: 17:46)

I have already done that and I have plotted it for you right. So, here what I have done is

solution of the differential equation with boundary conditions with h equal to 0.05, 0.01

and 0.001. 
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And here I am plotting y as a function of x versus x and this was this line is your initial

straight line which was the guess with the values of y that I calculated for each value of i,



which was the initial guess bit for basically x equal to 0, y equal to 0 and at x equal to 1 y

equal to 100 right. And if you have h equal to 0.05 and the limit is 0.0025 basically h

square, this is the solution that you obtain after a certain I think 673 iterations or so, as

we saw previously right.
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Now, as we change. So, when h equal to 0.01 and limit is 0.0025, you have this red curve

right. So, this is this I made more accurate, but I have not changed the limit then you

have essentially this red curve when I change h equal to 0.01 and limit equal to point like

10 to the minus 4 compared corresponding to h square, you get this green curve. And

when you have essentially h equal to point 10 to the power minus 3 right and limit you

set to be 10 to the power minus 5 and it ran for 10 lakh iterations if you remember then

you essentially have this blue curve which you can expect to be the most accurate. 

When you have h equal to 0.05 of course, you have discretization errors here hardly

surprising right because you have only 20 grid points between 0 and 1. But when you

have h equal to 0.01 your convergence might more take more time, but it would be more

accurate right and when you have h equal to 0.001 your tolerance is even lower and this

blue one is expected to be the most accurate  data right.  So, you can try this out for

various values of h and tolerance of course, there is no point in setting tolerance  lesser

than h square.



Now, the last thing I want to discuss in this class is that since these expressions of y dash

and y double dash are accurate only as s the error is an x cube, then suppose you were

had need to calculate more and more accurate values of the solution to the differential

equation. Of course, one method would be to go to lower values of h and you already

saw that over a such a small range and for a relatively simple differential equation, it

took quite a few seconds around 10 seconds to get the solution.

And especially if you now increase the range and have more complicated differential

equation it would take more time right. As you decrease and decrease h to get to the

accurate solution. Is it possible to have a higher value of h lesser number of grid points,

but yet obtain and more accurate solution y as a function of x at each of these grid points

in that case you basically what you need is more accurate expressions of phi dash and y

double  dash  so,  that  you  can  use  higher  values  of  h  without  compromising  on  the

accuracy or you can have lower tolerance.
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 And more accurate values of d y d x and d 2 y d x have been derived in this book that I

have already referred to (Refer Time: 22:12) you can look up the derivation and what

you have is d y by d x can be written as y at x minus 2 h minus 8 y x minus h plus 8 y x

plus h means and y at x plus 2 h.

So, previously all the expressions where calculated from just the first neighbor on the left

and first neighbor on the right on the other hand here what you have to do? You are



taking the help of the y at a grid point 2 points removed 2 points to the left and 2 points

to the right so, right. So, you are basically calculating your averaging d y by d x over a

larger range in the grid point right. 

And of course, this it can be written as y i minus 2 and this will be written as by i minus

1 and i plus 1 and so on and so forth and when basically you are calculating the new

value of y i you have to use the old values in the Jacobi method and for some cases you

can use for the Gauss Seidel of course, you can use the updated values similarly the

expression for d 2 y by d x 2 is this again it depends upon x minus 2 h.

So, basically 2 points you move to the left and 2 points you move to the right and you

have these pre factors here right and this expression. So, the expression here and here

they are accurate to the order of h to the power 4. So, the error is you are neglecting

higher order terms in the Taylor expansion this is nothing, but the way it is obtained is

basically Taylor expansion and you basically match coefficients and neglect terms at the

order of h 4. 

So, that is where the error will come in and basically what you have to do if you had

wanted a higher accuracy is calculate d 2 y d x 2 well substitute d 2 y d x 2 and divide d

x and this differential equation whichever 1 you have to we want to solve right. And now

similarly there are expressions for d 3 y d x 3 as well and what you have to do? One then

you will get an algebraic equation and then solve for y i which of course, now will be

written in terms of y i minus 2 and i minus 1 and i and i plus 1 and i plus 2 right. 

So, when you actually use this there are some other set subtleties, but if and when you

need to use it you can learn those up remember that since you have x minus 2 h or i

minus 2. So, then you have a. So, if you want to calculate the new value of y i at just next

to the boundary. So, suppose y i equal to 1 the value of y is specified it does not change,

but at y equal to 2 here it depends upon i minus 2.

 So, basically i goes as minus 1 which is ill defined. So, there are some issues of how to

solve it and similarly you will have a similar problem when you do i plus 1 specially

again near the other boundary, but there are methods how to solve for it I am not going to

discuss this over in this lecture right.



When you need it you can learn it, that is anyway the scope of this course that we are

giving you an introduction of how to develop different algorithms. So, that whenever you

need to know more about a topic, you will read it up, learn it and implement it in the

computer right. With this I shall end this class today thank you and in the next class we

shall discuss partial differential equations.

Thanks. 


