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So, welcome to the next module of this course, where we shall be discussing Differential

Equations for the next few 4 or 5 classes, ok. Now, as you would know that the laws of

physics are written often in terms of differential equations and partial differential equations.

Examples are Newton’s laws, Maxwell’s equations of electromagnetic theory, the diffusion

equation and the heat equation and so on and so forth.

And  typically,  the  equations  are  written  in  partial  differential  equations  or  differential

equations and you give the initial conditions or the boundary conditions as the case may be.

And then to  understand what  the  phenomena is  happening you solve for  the  differential

equations to get a value of the field at different points in x the position or time, right. I mean,

suppose you are starting with the partial with the Maxwell’s equations for electromagnetism,

then you basically specify that the electric field is such and such  at the boundaries of the



dielectrics  and then you solve for the electric field given the boundary conditions for the

space within the dielectric, right.

So,  in  this  module,  we  shall  be  focusing  on  solutions  of  different  kind  of,  differential

equations  we  shall  also  do  some  simple  partial  differential  equations  with  boundary

conditions. Now, what you would have already learnt in your mathematical physics course is

basically solve second order differential equations, maybe with constant coefficients and even

with maybe a forcing term, right. 

And with constant coefficients where m, gamma, kappa, are constants with certain numerical

values  and as you see that  this  is  a  second order  differential  equation  because you have

double derivatives here,  right. And this is what you would see if you had  some particle

moving in a viscous medium and in the presence of a spring force and with some forcing. So,

these are the things which you would have already looked at or analyzed, solved in your

mathematical physics course.

But  often  in  nature  when  you  study  different  phenomena  you  come  across  non-linear

equations, where you  have a power suppose this for something like this. So, this becomes

now a non-linear equation. You do not have a linear equation in dy dt. So, you often come

across  non-linear  equation  and  suppose  you  have  something  like  this.  So,  this  is  again

because you have x cube and not a linear term in x, is a non-linear equation both here and

here.

You  can  have  coupled  non-linear  differential  equations,  so  they  are  basically  different

equations for different fields and each is evolving depending on the other, so one example of

a coupled partial differential equation would be suppose curl of b equal to minus del e del t,

all right. And you would have a similar equation for e. So, b f x e and e f x b and so on so

forth. 

And of course, we have already been discussing partial differential equations, heat equation,

Maxwell’s  equation,  they  are  partial  differential  equations,  and you can  have  cases  with

either initial  conditions given or boundary conditions given, right. So, you have all these

complications and more often they are not the solution cannot be obtained, the solution to the

differential equation or the partial differential equation cannot be obtained in closed analytic

forms, right.



Now, you I  have  a,  we often  have  a  series  solution,  infinite  sum that  is  even tractable,

tangible, but in general you might not have the option to even solve it in a series solution, but

we  want  to  know  the  solution.  So,  nature  is  complex,  nature  has  a  coupled  non-linear

differential or partial differential equations and one does need to solve for those to find out

the solution. 

So, what we will do in this course is first look at first order simple differential equation learn,

what are the techniques to solve it compare across different techniques and then basically

increase  the  complexity,  make  it  a  non-linear  differential  equation,  have  two  coupled

differential  equations maybe and then keep on increasing the complexity,  where we have

many coupled differential equations.
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I shall basically be of course, teaching you standard simple textbook stuff. But as and when

need be in the future whenever you need to solve differential equations numerically you can

scale up the complexity, you at least you shall have some exposure to the basics of solving

different kind of differential equations.

At the end, we shall also spend be one and a half classes discussing some simple partial

differential  equations  where  boundary  conditions  are  given.  Initially,  we shall  be  mainly

discussing  differential  equations  where  the  initial  condition  is  given  and  our  aim  is  to

basically obtain numerical solutions as the solution as y of x.



In general,  if  you have a first  order differential  equation,  you can write  your differential

equation like this dy dt equal to y dash, so I mean you can denote dy dt to be y dash. So, the

dash denotes the derivative and that in general will be a function of y or t. So, if y is not there

it is simpler, you can maybe even solve it analytically, but in general the function the dy dt

can will be a function of both y and t. Or I mean you can also write instead of dy dt because t

is reminiscent of time, but you can also a similar equation you can write dy dx equal to f y x

whether you write this or this, so equivalent.

And  what  our  aim  is  if  you  cannot  solve  it  analytically,  you  need  the  solution  to  the

differential equation y of t or y of x, right. And the first methods that we shall use and of

course, we should need improvements of it is called the so called Euler method. Euler was a

Swiss mathematician, who lived from 1707 and to 1783, and he had many contributions to

give in mathematics and the method that we should use is also basically Taylor expansion,

right. 

And Euler  we are  not  here  to  discuss  all  the  contributions  of  Euler,  but  just  to  give an

example that much of the notation that we use today in physics or in maths like e its 2.72 or

pi  which is  3.14 or i  the imaginary number i  which is  square root of minus 1,  all  these

notations where coined by Euler. Just that is a side story.

And we shall  solve a differential  equation,  simple first  order  differential  equation by the

Euler method. See that it is not a great method the deviations, and then we shall go to the so

called modified Euler and the improved Euler and we see we shall see that solution to the

differential equations becomes much better.

So, we shall compare the 3 methods by solving dy dx equal to y square plus 1. It is a non-

linear equation of course. Now, this particular differential equation can be solved analytically

which is basically you divide by y square plus 1 can be written as dx, and if you integrate

both sides you will get tan inverse y equal to x or the solution is y equal to tan x. 

So, we chose this example intentionally though we know that it can be solved analytically, so

that  we  can  compare  our  numerical  solution  to  the  differential  equation  with  the  exact

analytical one. So, basically we can compare and have an understanding of what is going

wrong, where it is going wrong and once you have standardized the methods of course, you

can apply it to an unknown problem which cannot be solved analytically, right. So, this is just

for comparison, this is just for learning that we are choosing this differential equation to learn



to  solve.  And after  that  we shall  keep  on increasing  the  complexity  of  problems  as  we

develop better and better methods, ok.
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So, what does the Euler method say? So, here we essentially are using Taylor series and y

dash the single derivative which is dy dx is in general f x y, right. So, y equal to integral of f

x y dx and if you can do that integral analytically, well and good, but often we cannot. And in

our case, f x y is of course y square plus 1 divide x equal to y square plus 1, so in our case the

case we shall be discussing is this quantity is 1 plus y square.

And in general, in the Taylor series if you know the value of y at a certain point say x 0, right,

so then y x plus h at a slight distance away from x 0 x 0 equal to; so, at some x which is x 0

plus h, h is small, you can write this as the value of y at x 0 plus h, h is the small increment it

is this one dy dx calculated at x 0 y 0, all right. In general, x 0 y 0 f x y and this dy dx for our

case at  x  0 y 0 is  nothing but  h into f  x 0 y 0,  right.  This  is  the  definition,  this  is  the

differential equation we are starting out to solve anyway, right. Plus h square by 2 y double

dash double derivative calculated at x 0 y 0 plus higher order terms, right.

So, that is all that is there to the Taylor expansion and in the Euler method what we do is

neglect the terms of h square and higher order terms. And then what you have is if you are

neglecting the higher order term and if h is small enough then one can write this equation to

be y x 0 plus h equal to y x 0 calculated at x 0 plus h into f x 0 y 0, and we have neglected the



higher order terms, right. So, that will be the value of y at a point slightly away from the

value of x 0.

Now, suppose you specify as an initial condition, you know what is the value of y at x 0 as an

initial condition, then you can calculate what is the value of y at x plus h, right where this is

nothing but dy dx and this is the differential equation you are starting out to solve. Now, if

you know that then you know the value of y at x 0 plus h call it y 1, right and then you can

calculate basically the value of f at x 0 plus h and at y 1, right. So, it is like x 1 and y 1.

So, you basically if f x y, so suppose this is a graph this is y and x and f x y this quantity, this

function is suppose this curve like this, right. You know, you have been given the initial

condition, the value of f x 0 y 0 at this point, right at this point. And then, if you know this

point then you are calculating the value of y x 0 plus h x 0 plus h using the slope dy dxs using

the value of x 0 y 0 at this point and if you know the value of y 1; y 1 is this. Then putting

this and x plus h you can again calculate this quantity and thereby calculate this quantity.

Having known this you can again calculate the value of y at x plus 3 h and so on so forth,

right. And that is all that we are going to do.

In our case, just to remind you f x 0 plus h is 1 plus y square because this is the differential

equation we are solving and the initial condition we shall be solving is y equal to 0 for x

equal to 0, because we know the solution, right we are basically learning to do it. So, for tan x

equal to 0 we know that y is equal to 0 and that is the initial condition I have chosen, right.
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But if you are calculating the numerical solution you not only need since you are calculating

in numerically, you not only need the initial condition, but you need to tell the range over

which you want to calculate the solution because you are going to calculate it y plus h, y plus

2 h, y plus sorry y at x 0, y at x 0 plus h, y at x 0 plus 2 h, so on so forth and y at x 0 plus n h,

when n is the number of iterations, n is  some large number, right.

So, basically, since you do not have an analytic form you have to specify the initial condition

and calculate the solution for a certain range of x, right. So, you not only need the initial point

you also need the end point, in this case we know the solution is y equal to tan x and we

know that at x equal to pi by 2 tan x goes to infinity, the computer cannot handle infinities. 

So, here having the hindsight we shall choose to integrate the function divided x equal to 1

plus y square from x equal to 0 to x equal to some value slightly less than pi by 2, because

exactly at pi by 2 it is going to go to infinity pi by 2 is approximately 1.57. And say, we are

going to calculate what are the values of y, is a solution of this differential equation from x

equal to 0 to x equal to 1.55 say. I mean you can even do it 1.56, but there basically f x y well

the solution will sharply increase and so, you have to take smaller and smaller values of dx;

dx is nothing but h the point which is basically moves you away from x 0, x 0 plus h, x 0 plus

2 h and so on so forth.

So, for an Euler since you just have a simple first order differential equation and you have the

first term in the Taylor series the code when you write it should be should look something

like this. Of course, I am not writing everything, but suppose you call the program Euler and

you have your end program Euler always do implicit none that is a good practice, so that all

the variables you have to define by hand. And you can basically  define all  the variables

REAL star 8, and INT,  whatever variables you shall be using.

Now, say that x equal to 0 that is the initial condition, at that value y equal to 0, dx or h you

got a 0.01 say and we shall see if you change the value of gx how good or how bad the

integration becomes. And the number of iterations n iter, n underscore iter stands for number

of iterations is basically the range over which we are going to integrate, suppose 1.55 by dx,

so, many times iterations we have to do, right; x plus h, x plus 2 h, x plus 3 h, x plus n iter h,

right. 

And so, the Euler scheme is rather simple. The loop shall, the code shall look something like

this do equal to 1 comma n iter number of times, you know you are going to change x 0. You



are basically calculating the f x y at these different values of x 0, right. And f x y in this case

is 1 plus y square.

So, the new value, so basically you have value of f x 0 at this point where x equal to 0 and y

equal to 0, so f x y in our case is 1 plus 0 y square is 1, right. And you are trying to calculate

the value of y at a slightly farther distance away, at a slightly from this point from this point,

right, you are going to calculate what is the value of y when you are displacing from this

point. So, this new value of y is nothing, but y which is the value y at x 0 y 0; so in this case it

is. For the initial iteration it is value will be 0 plus f x y, right whatever 1 plus y square, y

square 0 into d x.

Now, you have a new value of y, right and with that new value of y you are going to again

calculate f x y to calculate the new value of y. So, the loop looks like this do I equal to 1 to n

iter, you calculate the value of f x y, update the value of y, write it down in a file, suppose

you call that file where you want to write it down 21, d float i, you just write the number of

iterations into dx. So, you are changing x on the x axis and the value of y and you keep on

doing this in a loop. So, basically repeat this in a loop and i into dx is nothing, but x and keep

on doing this every time the value of f x y will change as the value of y will change, and you

keep on doing this from x equal to 0 to x equal to 1.55, right and then compare, and then

compare with the analytical solution and see how good or bad the integration is, right.

Now, this I am already telling you and we shall see it we shall see it in the code what the

result of the integration is. Euler, you are just keeping the first term in the Taylor expansion

and it does not work very well. Why? Because you are just using this value of f x y to guess

the value of y at a slightly far away point from the original point, right. And this slope, and

this function could is basically changing like this.

But here you have to take a finite value of the h or the dx and so, you are not calculating this

correctly, it will be absolutely accurate only when dx goes to 0; dx goes to 0 to even go move

a slight away point you need infinite iterations not very useful, right, you want to have the

you want to have a nature of y as the function of x some finite time, not with infinite not with

the infinite loop. 

So, here the value of f x y is changing, but you are using the value of f x y at this point to

guess what is the value of y at the next point and that is of course, not very good. So, what is

the correction? What is the better correction that one could do? One says, let me use Euler



method not to calculate the value at y equal to y at x plus h, but let me calculate using Euler

what is the value of f x y at x plus h by 2 or dx by 2 here. So, use the slope here to guess what

the value of y 1 is and that is nothing but the so called modified Euler, right. And in the

modified Euler what you do is basically dy dx equal to f, so dy dx at x 0 y 0 is nothing but f x

0 y 0. Calculate using Euler method f at x 0 plus h by 2, right.
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Now, you have a new value of y 1 not at x 0 plus h, but x 0 plus h by 2. With this value of, so

with this value of y 1 recalculate f x 0 plus h by 2 and this new value of y 1 that you get. So,

what you do is basically use this new value of f that you have calculated at x 0 plus h by 2

and thereby the new value of y 1 that you have to really calculate the value of y at x plus h.

So, what you are doing is basically from here you are moving a small step here half by h by

2, calculating f x y at the value here and use this value this mid value of f x y to move to

calculate the value of the new y starting from here. So, what you do is y equal to y 0 plus dx

by 2 or h by 2 into f x 0 y 0 which in your case is 1 plus y square, right. Now, with this value

of y calculated at dx by 2, you calculate your new f 1 say x y, right, use this value to calculate

this. 

And your final, your actual updated value of y at x plus h is y equal to y at x 0 plus dx, now

you have that entire interval dx into f 1 x y. So, you are basically using the value of f x y

calculated here. Previously you were using the value of f x y calculated at this point. Now,



you are doing half a step calculating the value of f 1 x y at this point using this value to

update and get your new value of y. Keep on doing this. 

Now, you have the value of y is suppose here and use this to again take a half step calculate,

so take a half step here calculate the new value of f 1 x y, right using this and then from here

move to here,  which is again this  step and keep on doing this.  And this  is the so called

modified Euler.
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Even better than that is the so called improved Euler. So, what do you do here? You use Euler

integration step to calculate f x y at this point then do (Refer Time: 26:41) x plus h Euler

method and move suppose here, right. Now, calculate f x y also at this value and take an

average. So, calculate, so what does improved Euler entail? Calculate f x y at x 0 y 0, suppose

call that f 0 which is basically here. Then use Euler to calculate y at x plus h, y equal to y 0

into dx into f 0 that is your standard Euler method, right.

Now, we have moved, we have your new value y 1, right at y 0 plus dx into f 0. Now, using y

1 recalculate f at y 1 and x 0 plus h, right. So, it is x 0 plus h and y 0 at h f 0 which you have

done Euler. Let us call that fe; fe is at the end point, where end point of the step which you

have done using Euler. Calculate the average. This is the average slope, is this is this f x y

here, and f x y here, and the average of the f x y at this point and at this point, and using this

average f x y which is f 0 plus fe by 2 use this to calculate the actual y at x plus h. 



So, here you have taken a dummy step, you have updated your y 1 by an Euler step, right, but

using this y 1 you basically calculate fe and thereby f x y which is an average of f x y here

and here, and using this value of f x y you actually calculate y x plus h which is equal to y at

x 0 plus h or dx, I am stretching between these two into f x y which is nothing, but this

quantity.

Keep on doing this and this is the one which you want to plot. This is the one which is your

actual integrated y at x plus h. And similarly you can repeat this. From here, you again take

an Euler step, thereby you can calculate f x y at basically 2h, right and then again calculate

the average, and then you can calculate y at x plus 2h and so on so forth, right. Keep on

iterating that and you will get y as a function of x and you can compare the 3 cases. That is

exactly what we shall do now.
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Now, switching to the computer what I have done is basically already integrated this function

dy dx equal to 1 plus y square using the Euler scheme, the modified Euler’s scheme and the

improved Euler scheme and we shall compare what is the quality of the integration with the

theoretical function. 

So, here in this blue line we I denote the theoretical tan of x and it of course, goes to infinity

as you go towards 1.57, right which is pi by 2. And using the Euler scheme and if you have

dx of say 0.02, then basically at these points when x is small there is  a very good match with

the theoretical curve, right.
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But as you go to larger values of x and in particular when the slope becomes higher one sees

a distinct deviation from, so, this is this black curve is the Euler scheme, right and there is a

distinct deviation from the theoretical curve. So, you see that the integration here, the solution

to the differential equation here at this point for x closer to 1.5 is pretty bad, it does not

match, right.
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But what happens if we basically look, what happens if we basically did the integration with

the smaller value of this integration this value of h? Right. So, here I have integrated using



the Euler scheme, but with dx of 0.01 and you see that well at smaller at smaller values of x

of  course,  this  is  a  very good match  this  there  will  be   an even better  match.  But  as  x

approaches  1.5  where  the  function  the  solution  to  the  differential  equation  is  sharply

increasing while it has improved from the previous case this black curve, but this magenta

color curve is closer to the blue curve which is the analytical this is theoretical solution, but it

is still not good enough. So, you do not you, have not really even with a relatively small

value of h. Yes, it has improved, but not good enough. 


