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Coming back to the slides the value of the critical temperature for the 2D Ising model, it

can be calculated exactly and the value of J by k B T k B T C is half ln of 1 plus root 2,

but in our case we have set J equal to 1 and we are measuring temperature in units of J.

So, in that case we putting J equal to 1 the value of k B T C will be exactly this factor

and it is 2 by ln of 1 by root 2. And, when you put in the numbers the value comes out to

be 2.27 when J equal to 1. And that is exactly what we saw right there the peak in the CV

and the chi was in this range it was below 3, but above 2.2 definitely and of course, the

peak was shifting.

The problem remains since the position of the peak were shifting continuously how do

we calculate  the  value  of  T  C  right?  For  the  2D Ising  model  of  course,  it  can  be

calculated  exactly  we  are  doing  we  are  implementing  the  2D  Ising  model  on  the

computer because we can exactly check, but for the 3D Ising model as of date nobody

can calculate the value of the critical temperature accurately. By the way just let me tell



you  that  by  computer  simulations  and  also  by  analytical  techniques  which  are

approximate you are you can be accurate only up to a certain degree the value of the of J

by k B T C for the 3D Ising model is known and it is value is 0.2216 right and if you set

J equal to 1 if you measure temperature in units of J which is what we have been doing

till now.

Then, the value of k B T C comes out to be 4.51 is basically one of one by this number

right. Just for the sake of completeness I think I have said this before that, in the 1D Ising

model. So, when all those spins are placed along a line so that each spin has just two

neighbors, so, on the two sides and this was proposed by Ising sometime in the 1920s

and Ising did not find any phase transition. What does it mean? It means that as soon as

there is any finite value of temperature the tiniest T value going very close to 0 right as

soon as there is a finite value of the temperature there is no order in the system, that is

that the average magnetization goes to 0 all right.

So, there is no transition only at T equal to 0 do you find that all spins are either pointing

up or down but, at any finite temperature and it can be calculated easily for the 1D case

he found that the transition is 0. So, he gave up without the model is of no use and it took

some quite a few years 20 – 25 years before  Onsagar could calculate it exactly, could

analyze the Ising model exactly in the 2D case, for the 2D Ising model and use the sum

transfer matrix formalism which you should read up in your statistical mechanics book if

you are interested in the topic.

And, there you found that yes at any finite temperature there is an ordered state, there is a

large number of spins pointing in the same direction so, say the positive direction. And

only  when  a  temperature  is  raised  above  a  certain  critical  temperature  do  you  get

disorder in the 1D at any small finite temperature you will getting disorder, in 2D we are

getting disorder only when the temperature is raised above a certain value right and of

course, different systems would have different values of J, I mean where or what you

could do that if a system is has interacting spins which in the Ising case, you find out the

T C and back calculate to the J that is also possible and for 3D of course, it is even higher

value in terms of J .

The problem remains that for suppose the 2D or the 3D case and suppose you did not

know the T C, then how would you figure out or how would you calculate the exact



value of T C. Specially since there has been significant finite size affects the value of the

T C they have the value of the peak in the CV and the chi were shifting to the left as you

went higher and higher, box size is larger and larger box sizes.

The way you do it is by calculating the so called Binders Cumulant and where it comes

from and  so  on  so  forth  is  out  of  the  scope  of  this  course.  One  needs  some more

statistical physics, some scaling theories and finite size scaling analysis to understand

from where this Binders Cumulant comes from, here I shall simply tell you the method

how to identify the exact critical point. So, what one has to do is calculate the Binders

Cumulant  which  is  1  minus  M  to  the  power  4  expectation  value  by  3  M  square

expectation value at each micro scale state calculate the value of M, M square calculate

the expectation value and then take a whole square and note that here I have written

basically a subscript L here and a subscript L here.

So,  for different  box sizes  for different  lattice  sizes you can calculate  M 4 average,

calculate M square average, square it, calculate this quantity entire quantity this is called

U of L or the business cumulant. Now you can calculate this quantity for different box

sizes different values of L. And, at T C the values of the Binder Cumulant is exactly the

same independent of the box size.As I said before where and why this happens we are

not discussing this that is outside the scope of the course, but what you could do is

calculate U L versus the temperature for different box sizes near the critical point.

So, basically suppose this blue line and the green line and the dashed line they are for

different box sizes, you are calculating U of L near the critical temperature and plotting it

as  a  function  of  temperature  in  these  different  lines  or  box sizes  and at  the  critical

temperature all  the lines will  intersect.  So,  the point of intersection is  essentially  the

critical temperature.

Now, let me tell you I mean you are supposed to do it for your homework. But, let me

tell you that to calculate the critical temperature exactly one has to do it iteratively which

means like you already know from the data that you have seen that basically the critical

temperature lies between 2.2 and 2.3. So, take different values of dt small values of dt,

change  the  temperature  from 2.2  to  2.3.  Calculate  U  of  L  plot  it  as  a  function  of

temperature for different box sizes and what you will see is, the different lines nearly

seem to intersect at a point, but not exactly.



But, once you identify the player the approximate range of the temperature where it is

approximately intersecting,  now again run the simulations  for even smaller  values of

temperature over a smaller temperature range nearer the critical temperature and if you

do it iteratively you will come across a temperature you will come across a point value of

T where all the lines intersect and that is your critical temperature and that is what it

means by doing it iteratively. If you want to know more about it details the background

theory and much better analysis has been discussed very well by none other than Kurt

Binder on whom the Binder’s Cumulant is named.

So, there is a book by Kurt Binder and Dieter, D. W Heermann;  and the book is called

Monte  Carlo  methods  in  statistical  physics  want  to  know  Monte  Carlo  methods  in

statistical physics in greater detail. There is also a book by Kurt Binder and D. P Landau

and it is called Monte Carlo Simulations. This is a quite an advanced book, it really

discusses  all  the  advance  techniques.  If  you are  learning  Monte  Carlo  simulations  I

would advise you to refer to this book; if you are already an expert and want to know

advanced techniques then this is the method.

In this course the aim is not to make you an expert in Monte Carlo, but basically expose

different types of computational methods to you, so that whether you do stat mech or you

do space science or gravity or whatever be it, material science, you can develop the skill

set to go into that research area, do the calculations, implement the code and test it out.

So, our aim is not to have a great or detailed understanding of a Monte Carlo simulations

or physics of phase transitions, this is just an exposure.
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Just to let you know so, we will be stopping with within the next 10 minutes, but if you

have wanted to know more there is the entire phenomena of finite size scaling, there is

the scaling laws, this is critical phenomena. So, even in the Ising model as you go close

to  the  critical  temperature  various  quantities  such as  the  magnetization,  the  CV, the

correlation length they show certain scaling laws and that is within the realm of critical

phenomena.

So, unless you know more about statistical physics and critical phenomena it would not

be relevant to discuss those points in detail. But, the point I am trying to make is I just

give you give you a brief exposure to Ising model simulations, just to have an idea how

to model things on a lattice, find out its properties and implement boundary conditions

and so on so forth.

Just to let you know in our current simulations the ones which I showed you I we were

calculating we were collecting data to calculate thermodynamic averages – average e,

average m every Monte Carlo step right every Monte Carlo step we were calculating it,

that is  for overkill, one should basically take thermodynamic averages over microstates

which are not linked which are statistically independent of the previous microstate. In

one Monte Carlo simulation it is not necessary that you will get independent microstate

that is particularly true at lower temperatures.



And, here I want to mention that to do it properly to figure out whether you are getting

independent microstates at the end of every Monte Carlo iteration, one Monte Carlo step

one has to calculate the so called relaxation time and the relaxation time specially goes as

L square L to the power x, where x equal to 2 for a 2-dimensional lattice and what one

should ideally do is take this data after every a few MCS and it really depends whether

the check and it is really important to check whether these microstates over which you

are collecting data to calculate thermodynamic averages are statistically independent or

not.

(Refer Slide Time: 13:41)

So, we shall end this module with a last point which is basically discussing the principle

of detailed balance. Till now, I have been when I have been discussing the algorithm, I

have been basically telling you that you know to implement the metropolis algorithm an

important sampling way what you should do is, flip give a trial flip to a spin selected

randomly. If due to this flip the energy of the system locally over the spin and the system

decreases accept the trial flip; however, if due to the trial flip the energy of the system

increases then accept it with probability e to the power delta e by k B T.

Now, you have been asked to simply accept that, but where does this algorithm which I

basically  dictated  to  you come from? And that  comes from the principle  of detailed

balance it comes from statistical physics. Now, what is the principle of detailed balance?

So, for that we have to discuss the so called masters equation. Masters equation is an



extremely general generic equation. Now, suppose that you have a set of states . So, 1, 2,

3, 4 so on so forth and in general called one of the states these are energy states to be i

ok.

And, suppose that in each of these energy states there is a certain number of particles

later we will change the language from particles to microstates, but for the simplicity just

we will make that analogy later, but suppose there are some discrete energy states 1, 2, 3,

4 with energies e 1, e 2, e 3, e 4, e i, e i plus 1 and e i plus 2 and so on so forth and each

has a population number of particles if you like n 1, n 2, n 3, n 4, n i and then higher state

is n i plus 1 ok.

And, due to some  background physics suppose the number of particles in each state in

supposed state i which let us focus on that on the energy state i that can change. How can

it change? Because particles will jump from i to suppose energy state 3 or 2 or 1 or i plus

2 and so on and so forth. And, so, basically from here particles are jumping to different

energy  states  and  similarly,  from  other  energy  states  there  are  particles  which  are

jumping into state i.

In that case one can write in the most general manner the so called master’s equation

which says dn i dt, the number of change in the population of state i as a function of time

that depends upon P K i's; so, the probability of hopping from state K to state i from state

K to state i and the population of state K. So, suppose K will be 1, 2, 3, 4, i plus 2, i plus

1 all  states except  i  sum over K a K goes over all  the states and this  comes with a

positive  number  because  from different  states  particles  are  hopping  into  state  i,  so,

transition from K to i population of n K right.

So, it will depend upon this transition probability multiplied by the population density of

a state K minus so, from each from state i there is a certain transition probability for

number of particles to go to state 3, 2, 1 and so on so forth in general from i to K the

transition probability i to K into number of particles in state i and this comes with a

minus sign because as particles hop the transition from state i to other states in other

energy states, the population density of i decreases. Hence there is a negative sign here

right.

And, this equation will always be true in general P K I could also be a function of time,

but if it is not, if one has a so called stationary state in that that the population densities



in each of these states are not changing as a function of time. So, dn i dt equal to 0 say

so, that would be a stationary state and that can happen in two ways.

Now, let  us  focus  on  state  i  right  and that  can  happen if  the  sum is  0  as  a  whole.

Alternatively, if each of these terms in the bracket are 0 so, basically this quantity is 0 for

each term individually right and then also you can have that dn i dt equal to 0 which is a

stationary state.
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Now, if there was a current from any pair of state, so that only the sum of the sum which

was on the right hand side of the equation is 0 the sum is 0, then also you can have dn i d

dt then you what you have is a steady state. Basically, there is a net flux of particles from

one state to the other i to i plus 1 or negative current if there is from particles going from

2 to i and so on so forth and that is when you have a steady state.

On the other hand, if each term in the bracket this term is equal to 0, that is a condition

for equilibrium. So, individually for any pair of states i and K, if this condition holds,

that is a condition for equilibrium.
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Now, with this background we know that we are looking we were looking at Ising model

in equilibrium right. Now, think that these energy states that I was talking about those are

the various energy states that the Ising model can access and at for at a particular value

of energy corresponds to a certain number of micro-states you know different micro-

states can have the same energy right. So, just think that this n i's are not particles, but

the number of micro-states which are accessed at energy i, 3, 2, 1 and so on and so forth

energy i.e,  e 2, e 3, e 1 right.
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For equilibrium this relation holds and that relation holds for every energy state pair of

energy states i and K. Now, we also know that the number of microstates which will be

accessed. So, basically n i will be e to power minus beta E i by Z; n k will be e to the

power minus beta E k by Z. So, higher energy microstates are accepted with are accessed

with lower probability the basically normalizing constant is Z.

And, in that case we can write this to be we can rearrange this put in the expressions of n

i and n k and we can write it; so, here there is a mistake there has been a mistake. So,

now, I have corrected it and then this comes to be e to the minus beta E i minus E k is

something like the Boltzmann factor; of course, the Boltzmann factor has to come here.

And, then one can write P K i equal to P i K into e to the power minus beta E i by E K.

Now, suppose now suppose the particular K I am talking about is such that i is higher

than K which means E i is has a higher value than E k right and if we set P i K equal to 1

then P K i  automatically  becomes a basically  if  you fix this  value so,  there are two

unknowns here. So, we fix this value we immediately the value of this is fixed we can fix

it to be 0.5 or 0.25 or 10 and then immediately the value of this gets fixed.

Here we have said let P i K equal to 1 and then P K i automatically gets fixed at this

value which means that if i was at a higher energy if you basically say that if a micro-

state is being accessed K which is of lower energy than i, accept the transition, accept the

spin flip with probability 1, then between K and i the probability of accessing from going

from K to i is this and that is exactly what we have implemented in our simulations and

this relation holds for every pair of i's and K’s right.

So, if it  is going if this value is more I mean so, even if it was i plus 1 and K then

basically you can again choose this that to be 1 right P i plus 1 to K to be 1 and then the

probability  of  P  K to  i  plus  would  suitably  be  affected  right.  So,  this  is  where  the

metropolis  algorithm  comes  from  and  this  is  the  background  physics  is  extremely

important to know where the metropolis algorithm comes from. I intentionally discussed

it at the end, so that you understood the algorithm.

With this I come to the end of this module and from the next class we will be discussing

differential equations.

Thank you.


