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Lecture - 22 
Monte Carlo Simulation Analysis Part 02

The question we have to address is that why is it that the magnetic state of the system is

going from negative to positive. And again after sometime positive back to negative and

this flip keeps on happening; and why as we increase the lattice size the frequency of

such flips becomes fewer.
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So, to understand that let us go back to the board. So, here what we have plotted is the

Energy Per Spin versus Monte Carlo Steps. So, as different Monte Carlo steps are being

accessed basically the system is going from one micro state to the other. Now as it goes

from one micro state to the other basically the energy is fluctuating it is going up down

as the number of flip, as the number of spins are flipping.; But at a time once in a while

the state the system accesses very high energy, relatively high energy as here; and then

again it starts fluctuating and it can go down and so on so forth. But once in a while it

accesses relatively high energies.



Now, consider a system suppose 20 cross 20 lattice, if the temperature is less than T c,

that is the state is magnetized; the thermodynamic state is magnetized most spins are

pointing up or say down does not matter,  right. Most of the spins are pointing either

down or up, but there are a few which are pointing in the opposite direction. So, they are

forming small domains, this is a relatively low energy state. So, basically the average

energy of that microstate is low, it is close to minus 2 per spin, right; some higher value

than minus 2 per spin.

Now, once in a while this system can access energy from the external heat bath, which

we have not directly modeled and it can access high energy microstates. When it goes to

high  energies  and  really  high  energies  relatively  speaking,  then  you  could  have  a

microstate where you have approximately equal number of spins pointing up and down.

And then when it tries to access back low energy microstates, it is possible that suppose

initially before accessing the high energy microstate most of the spins were up; then it

goes to a high energy microstate  where if  there is  equal  number of spins which are

pointing up and down. And while relaxing back to a lower energy microstate it goes to a

microstate where most of the spins are pointing down; most of the spins pointing up and

most of the spins pointing down I have an equal amount of energy. And basically to go

for the magnetic state of the system to flip from up to down or down to up intermediate

steps  it  has  to  access  this  high  energy microstate.  And as  you increase  suppose  the

temperature the probability of accessing these high energy microstates becomes higher.

So, if you notice carefully as I took the temperature close to 2.1, 2.15, the frequency of

the spin not the spin, but the magnetic state of the system became more frequent. So,

they were more frequent from plus to minus, minus to plus and so on so forth; whereas,

if you are lower temperatures say at 1.8 or 1.5 the transition temperature being above 2.2.

Then you there is a much lower frequency of seeing these flips from one magnetic state

to the other from positive to negative.

So,  basically  increasing  temperature  increases  the  frequency  of  these  flips,  because

higher  energy  microstates  are  easily  accessible.  Of  course,  above  the  transition

temperature, the average magnetic state of the system is on an average half of the spins

are up and half of the spins are down. Here we are talking about the system and the

temperature is less than T c, right.



Moreover  if  you have  a  larger  box size;  while  we were  plotting  the  data,  we were

plotting energy per spin or magnetic state per spin, magnetization per spin. But if you

have a larger box size basically the average energy of the system the entire system at T

less than T c is much lower compared to a lower box size, right. Now, when the system

has to access the higher energy state, when all spins are up; a half of them are up and half

of them are down,; their energy difference between the low energy microstates and the

higher energy microstates is much higher, if you have a much larger box size.

So,  the amount  of energy that  the system has to  absorb,  say from the heat  bath the

external heat bath is much higher; and hence, the probability of accessing these high

energy microstates which have equal number of spins pointing up and down becomes

much less frequent. And hence even the flip from the state, from say the positive to the

negative state; remember the all these are magnetized states we are talking about T less

than T c, yet we are seeing these flips.

So, if you have a larger lattice size then you have a lower probability of accessing those

high energy microstates with equal number of spins pointing up and down. Hence the

probability of that the state of the system will flip from positive to negative or negative

to positive also becomes lower, right. And that is exactly what we saw in our data when

we were analyzing the data.
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Now that creates a problem. The problem is, if you have a finite size of the lattice, right;

how do we calculate thermodynamic averages specially at temperatures which is lower

than T c? Because if we take a really good thermodynamic average, right and you run it

for  a  really  large  number  of  Monte  Carlo  Steps;  then  for  any  finite  system on  the

magnetization specially close to T c or at relatively higher temperatures lower than T c;

the  system might  be magnetized.  But  the magnetic  state  of  the system can go from

positive for a negative, negative to positive. 

And if you take an average of the magnetization; what do I mean by average of the

magnetization? Calculate the instantaneous magnetization at different Monte Carlo steps

and average them over. So, that will give you the average magnetization, so right. So,

you are taking an average over the instantaneous magnetization; which we have not done

till  now.  Till  now  what  we  have  been  looking  at,  the  how  does  the  instantaneous

magnetization fluctuate with MCS.

But now if  your average over the number of Monte Carlos Steps to calculate  the so

called  thermodynamic  magnetization.  Now,  in  a  finite  lattice  half  of  this  time  the

magnetization  of  the  state,  the  instantaneous  magnetization  of  the  system  will  be

positive; the other half will be negative equal time on an average. The consequences

when we calculate a thermodynamic magnetization,  average of different Monte Carlo

Steps it will give zero, the system is magnetized.

But when we calculate the magnetization averaging over a large number of MCS, we are

getting  zero which is  wrong,  which is  clearly  a  finite  size  artifact.  So,  then  now of

course, if we take larger and larger box sizes, the frequency of flips will decrease; but for

larger  and larger  box sizes  we also have to  allow for the system to access  different

microstates,  the number of microstates which are accessible also larger. So, we must

average it better.

And if  we really  average  it  well,  than  any finite  size  systems there  will  be a  finite

probability for the system to go from positive to negative and negative to positive and

you will get zero magnetization. It is only when the box size becomes nearly infinity,

that you have an infinite energy barrier for the system to flip it is magnetic state from

positive to negative at any finite temperature; the energy difference would be tending to



infinity between these high energy microstates and lower energy microstates. So, there is

a very low probability or zero probability for the magnetic state of the system to flip.

So, what do we do? So, what is the problem? The problem is relatively high temperatures

lower  than  T  c  however;  if  we  calculate  the  average  magnetization  naively,  if  you

average over the Monte Carlo Steps there is a high probability that you will get zero

magnetization whereas, actually the system is magnetized and how do we overcome this

problem.

So, we should not simply go and start  calculating average thermodynamic quantities,

without understanding these subtleties; because doing it naively and brute force will give

you wrong results, right ok. So, you know that temperature less than T c, we do not know

how to calculate T c yet we will discuss it; but let us suppose we knew it, then we could

get  zero  magnetization.  However,  at  each  Monte  Carlo  Step,  if  we  calculated  and

averaged over the absolute value of magnetization, right; then we would get finite value

of  the  average  thermodynamic  magnetization.  Because  independent  whether  the

magnetization is positive or negative it will give a finite value, I mean it will give a

nonzero positive value.

So, this is one solution,  because that we take only the absolute positive value of the

magnetization. But the problem will be, this will solve the problem that half of the time it

is positive and half of the time it is negative; but what it will lead to is a finite value of

magnetization, the average thermodynamic magnetization at T greater than T c. Why is

that? Because once the system has crossed the value of has a temperature greater than T

c ideally, half of the spin should be up and half of the spins should be down and on an

average the magnetization will be zero and the magnetization will fluctuate about the

zero  value.  Sometimes  slightly  positive  above  zero  and  sometimes  slightly  negative

below zero; but when you average it, it should be zero right that is what it would be.

But now since we are always taking the absolute value, even at T greater than T c we are

going to get a finite value of the magnetization; and this is going to make it difficult to

identify the transition temperature. So, in phase transitions, if you look up your statistical

physics  book;  you would  see  that  one  identifies  phase  transitions  to  overcome such

problems  that  we  apply  a  small  symmetry  breaking  B  field,  B  for  magnetic  field

specially at large box sizes.



So, what does this achieve? This achieves that one of those magnetic state, so B is a

symmetry breaking field. It prefers suppose you apply it in the positive direction; then on

an average the magnetic  state  where all  the spins are pointing up will  have a lower

energy, so that and that magnetic state will be preferred. So, basically you are choosing,

you are biasing one of the broken symmetry ground states of the system, you are biasing

by applying this B field you are biasing one of the two ground states, without the B field

equal.

So, whether the system is pointing up, most of the spins are pointing up or most of the

spins are pointing down there is a symmetry in the system, both of the energies have the

same energy; that is why it is able to go from positive to negative given enough for

thermal large enough thermal fluctuations. However, if you apply a B field what happens

is this, symmetry in the energy is broken by the application of this external b field and

one of the ground states is preferred.

So, after that what you could take is the thermodynamic limit; so that the system cannot

go from positive to negative and negative to positive. So, one of the micro one of the

thermodynamic states  is  preferred,  you take the thermodynamic limit,  you will  get  a

finite value of magnetization at T lower than T c. And zero at or a slightly higher value

above T greater at T greater than T c and then you tend take the limit B tends to 0 to

calculate the thermodynamic state.

We can also do that in simulations basically apply a small magnetic field to bias the

system towards one of the ground states. Suppose you give a in the suppose you do your

give  the  magnetic  field  in  the  positive  direction;  and  then  the  positive,  I  mean  the

magnetic  state  where  all  the  spins  are  up,  pointing  up  will  be  preferred.  Then  you

calculate the magnetization do your finite size scaling and do the analysis to figure out

what will be the magnetization as N goes to infinity. Then do the same calculation for

lower and lower B fields and basically extrapolate to calculate the magnetization and B

equal to 0 or B tends to 0.

So, that is also possible, but for the purposes of the simulation which I shall demonstrate

to you; I  shall  use this  method and of course,  it  comes with artifacts  we will  try to

understand the artifacts. Because you are choosing absolute value, then of course, it will

be difficult  for us to identify the transition temperature. Because you will have finite



magnetization at T greater than T c; however, we shall learn how to overcome it and find

the transition temperature accurately.

So,  till  now  what  we  have  been  doing  is  finding  out,  how  the  instantaneous

magnetization varies with the box size at different temperatures, how does it fluctuate

and so on so forth. Now, to calculate the phase diagram what we need is, basically to

calculate quantities like the magnetization per spin, the average energy per spin or even

the E square average; basically the energy of the entire system not per spin, the entire

system E square is the energy square average or the magnetization square average, not

calculated per spin as well as the entire magnetization of the entire box, the energy of the

entire box.

And we shall need these quantities as we have discussed in our previous lecture; in one

of our previous lectures to calculate the specific heat capacity or the heat capacity and

magnetic susceptibility of the system. And these quantities shall prove very useful to

understand how the transition temperature itself changes with the box size.

So, now our aim is to calculate the thermodynamic averages at different temperatures

and  plot  these  different  quantities  as  a  function  of  temperature.  And  see  how these

behave and this actually is the comparison with experiments which will tell us; because

these  are  the  quantities  to  calculate  in  statistical  physics,  you  measure  in  the

experimental lab and how well we do it depends upon how well the behavior of these

quantities, the variation of these quantities with temperature match with the experimental

system, alright.

So, basically what we have to do is, start at a high temperature or at a low temperature

does not matter. We will start initially at higher temperature, any initial conditions say;

random  initial  condition,  equilibrate  the  system  at  that  temperature,  calculate  these

different thermodynamic quantities which will give us this and this and so on so forth.

Measure  this  at  a  particular  temperature,  calculate  the  thermodynamic  average;  then

slightly  change  the  temperature,  allow  the  system  to  reach  equilibrium  at  that

temperature in the new temperature. 

Basically we have two equilibrate the system for say; N equal Monte Carlo Steps, we

have to implement that in the code as well;  and again measure these thermodynamic

averages,  again  change  the  temperature,  slightly  measure  the  these  thermodynamic



quantities and keep writing these in a file. And at the end of our simulation so, we would

have done it for suppose 15 or 20 different temperatures between say 3 and 1.5 or we can

even increase the range; we have the thermodynamic quantities and we shall plot these

quantities as a function of temperature. 

Again we shall do finite size analysis; how do the transition temperatures change, how

fine the temperature should we change temperature as a 0.1 or should it be 0.01 or should

be 0.025; these are all questions which we have to try out and we shall try out on the

computer. So, with this background let us go back and look at the code, I have already

modified the code a bit.
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So, the changes that I have done in this code is basically previously we had time equal to

1 to niter and the temperature was fixed at whatever value we would give, a we could

change it, here I have introduced a temperature loop. Now, when you have a do loop the,

you the variable in the do loop can change only as integer; so I cannot in Fortran 90

change the change these variables from say 3 2.9 2.8 and so on so forth. So, I have, I

want to start at this temperature 3. So, I have multiplied this by 10, so that is 30, I want

to stop at 1.5 temperature, I have multiplied it by 10 and to calculate the temperature I

have divided this dummy variable T temp by a factor of 10. 

So, as temperature change, so as this variable takes in value 30, 29, 28 and I have minus

1; so the value of T temp will decrease. Then when you divide it by 10, you get values of



T to be 2.9, 2.8, 2.7, 2.6 and so on so forth. So, the value of this temperature will vary

from 3 to 1.5 right I have to keep this quantity an integer, these quantities I have already

defined at the beginning of the code.

So, I will be discussing various values or the calculation of different quantities in the

code, but I have in the not in the class, but otherwise changed the values and defined

those values as real or integer quantities. The other change that I have done is, I have

made  all  these  real  quantities,  they  were  real  when  were  being  introduced.  I  was

introducing you the code I have converted into real star 8. Real star 8; means that these

variables are accurate up to 16 places of decimal, right. So, number of significant digits

has increased.

The other thing that I have done is, I basically  change  various parameters, lattice size,

sometimes I shall go from low temperature to high temperature, high temperature to low

temperature; however, I shall always start with a random initial condition. As I told you

the  final  thermodynamic  state  of  the  system  does  not  depend  upon  your  initial

configuration; however, later we shall see some artifacts, specially at lower temperatures,

if we start from lower temperatures, but we will discuss that later.

So,  what  we  have  here  is  the  initial  condition;  then  I  basically  calculate  the  initial

magnetization and energy of the entire lattice this is exactly as before. And then here we

calculate the magnetization per spin, the energy per spin and printed this is exactly as

before; here I have introduced a new loop over temperature, which goes from 3 to 1.5.
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In addition at each of these temperatures we have to calculate the average energy, the

average magnetization, e square average, m square average and these quantities at each

temperature have been initialized to 0.

Why  have  been,  they  initialized  to  0  these  average  quantities?  Because  at  each

temperature, I am going to add the instantaneous value of e square, the instantaneous

value of energy, the instantaneous value of magnetization to these variables keep on

adding  it  as  we  go  over  different  Monte  Carlo  Steps.  And  the  end,  at  the  end  of

calculating the average at each temperature I shall write it down. So, I have introduced.
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So, at each temperature, you have the end of the do loop over time, a time goes from 1 to

niter, right. And so, here is where we calculate the different average of these quantities, I

am adding average m the to magnetization to the quantity average m, energy per spin to

average e and so on so forth. And after a certain number of Monte Carlo Steps at each

temperature, I am calculating the thermodynamic averages. Now, we have calculated it

over you have added it over and over again, over a certain number of Monte Carlo Steps,

so you have to divide by it, right.

So, that you get the average thermodynamic state of the system. So, that is being done

here and here is the end of the loop of temperature. Now, one more thing as I told you,

when we were working on the screen is basically at each temperature you have to allow

for  the  system to  reach  equilibrium.  So,  when you choose.  So,  here  is  at  each  at  a

particular value of temperature time goes from 1 to niter, but over n equal ah. So, n equal

for number of Monte Carlo Steps you allow the system to equilibrate at each temperature

only  when  time  is  greater  than  n  equal  right.  Basically  you  start  collecting  data  to

calculate thermodynamic averages .

So, at each temperature time goes from 1 to niter; however, niter should be such. So,

niter should be always greater than n equal number of iterations you allow the system to

equilibrate; one has to be careful while giving the value of niter. And after, suppose you

choose n equal to be 10000 iterations that is exactly what I have done here, right at the



beginning of the code; where I define various variables where I choose the lattice size

and the number of iterations, etc; it is there that I set n equal to 10000.

Now, you would have remembered that even for relatively large lattice sizes L equal to

around 60 cross 60 and 80 cross 80 you were needed around 2500 iterations for the

system to reach equilibrium. At higher temperature the system will relax to equilibrium

even faster, but then why have I chosen n equal to be 10000 iterations? Because when we

were analyzing the data, when we were looking at relaxation to equilibrium, we were

primarily looking at relatively higher temperatures as you go down in temperature 1.5

and 1 and so on so forth, even lower temperatures.

The  time  that  the  system  takes  to  reach  equilibrium,  before  we  can  start  taking

thermodynamic  data  or  statistical  data  to  calculate  thermodynamic  averages  is  even

higher.  You  can  explicitly  check  how  much  time  it  takes  for  the  system  to  reach

equilibrium at lower temperatures. I have here taken it to be 10000 iterations for safety.

But at very lower temperature you might even take much higher number of iterations for

the system to reach equilibrium; however,  for 1.5 10000 iteration temperature of 1.5

10000 iterations is enough.
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And  only  when  time  is  above  10000,  do  we  start  taking  data  for  calculating

thermodynamic  averages.  And  when  we  calculate  the  average  magnetization  or  the

average  energy  of  the  system;  we  suitably  divide  it  because  we  are  adding  it  over



different Monte Carlo Steps, we suitably divide it by niter minus n equal. We are, if we

are  collecting  data  every Monte Carlo  Steps  as  the  system accesses  different  micro-

states, then we should divide it suitably by the number of micro states over which we

have collected data.

The  other  thing  which  I  have  not  implemented,  I  mean  I  have  implemented  and

commented it out is; it is often not necessary that you calculate thermodynamic or you

collect statistical data to calculate thermodynamic averages at every Monte Carlo Step.

The  when  you  collect  data,  these  different  micro-states  have  to  be  statistically

independent; they have to be changed significantly.

Now, at  higher temperatures it  does change and that is why I have collected data to

calculate thermodynamic averages every MCS. However, depending upon the problem

in question you might want to calculate different thermodynamic quantities or collect

data to calculate different thermodynamic quantities after every n stat step.

So, you do not calculate collect data every Monte Carlo Step. But suppose n stat is 10 or

20 or the time it takes for the system to relax to a new micro-state. So, only, so if you

have this relation, if mod time n stat equal to 0; so if n stat equal to 10 mod time comma

n stat will be 0 every 10 iterations. And if you have these, if you include this line in the

code of course, with a suitable ‘endif’; then you are collecting data every 10 steps if n

stat is 10 and suitably you have to then also while calculating the average you have to

multiply the denominator by 10 .

With this background, so here I have basically discussed how the code has been changed,

what  modifications  you need to  put  include  in  the  code to  calculate  thermodynamic

averages. So, in the next class we shall actually look at the data, various thermodynamic

quantities as a function of temperature and analyze it as a function of different lattice

sizes and see what we can understand about the system. Or even before identifying the

so,  called  critical  point  the  temperature  at  which  the  system  goes  undergoes  a

ferromagnetic to paramagnetic transition or vice versa. 

If you are going down in temperature, what are the things to be aware of in terms of

simulations,  what  other  artifacts  could  creep  in,  before  we  reach  our  final  answer.

Understanding these little details are extremely important to do a simulation correctly;



writing the code will give you some result, but it could well be junk. And so, unless you

understand these various artifacts even with the correct code one could get wrong data.

Thank you.


