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Part 01

Welcome back, what I am going to start with today is having a quick recap of what we

discussed in the last classes.

(Refer Slide Time: 00:19)

We were discussing Ising model, in which there are spins on a lattice which can either

point  up  or  down,  which  are  interacting  with….  any  spin  is  interacting  with  it  is

neighbors with the Ising Hamiltonian which is minus J sum over S i dot S j where any

spin interacts with it is nearest neighbors; which in a 2 D case is just 4 nearest neighbors.

The size of the lattice was given by L and then the total number of spins is L cross L in a

2 dimensional lattice; if you have a 3 dimensional lattice then the total number of spins

will be L cross L cross L.

In the last  class,  we discussed about  initializing  the spin on the lattice.  So,  you can

initialize the spins, where all the spins are basically pointing up; in that case, that the

initial  energy.  So,  all  this  right,  even  before  starting  the  Monte  Carlo  iterations



simulations you are going to basically initialize all the spins; you can do it as up or down

or even you could have a random initial condition. If you have a, if you start with all the

spins up then the total initial energy of the system will be minus 2 J L cross L right; L

cross L being the number of spins in the lattice. 

The energy per spin will be minus 2 J right, the magnetization will be L cross L and

magnetization  per  spin  will  be  plus  1  because  all  the  spins  are  pointing  up.  So,

magnetization per spin is plus 1; magnetization is simply the sum of all the spins in the

lattice the value of the spins in the lattice. If you have all spins down, then the initial

energy again will be 2 J into L cross L, because 2 spins pointing up or 2 spins pointing

down, they have the same value of the energy. The energy per spin again will be minus 2

J just as here, but the magnetization per spin; however, will be minus 1. 

So, if you get these values right, then at least your calculation of the energies is going

right;  so  this  is  a  quick  check.  However,  if  you  can  also  start  with  random initial

condition and then the initial energy; so half of the spins are pointing up, half of the spins

are pointing down on an average, any spin will have 2 neighbors which are pointing up 2

neighbors which are pointing down. In that case the energy per site you know the energy

per spin would be some number close to 0, it will not be exactly 0 and the magnetization

will again also be some number close to 0.
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Then  what  we  did  in  the  last  class  is,  perform Monte  Carlo  simulations  using  the

metropolis algorithm. Basically what we are doing is, calculating a spin flip, having a

trial spin flip, calculating the energy of the lattice before and after the spin flip. And, if

the  spin  flip  decreases  the  energy  of  the  lattice,  then  you  accept  the  spin  flip,  the

magnetization  changes  and  this  is  a  biased  sampling.  The metropolis  algorithm is  a

biased sampling, because any higher energy microstate is accessed with the probability E

to the power delta E by K B T. 

Or rather flip due to the spin flip, if the microstate has a higher energy as a consequence

of the spin flip, then that microstate or that attempt is accepted with probability E to the

power minus delta E by K B T right. So, what we did in the last class is also plot the

magnetization versus number of Monte Carlo steps and it was fluctuating about a certain

value some value close to plus 1. If the temperature of the system was less than T c, the

critical  temperature  and  if  you were  starting  from a  random initial  condition,  initial

magnetization would be 0. But it would go up and fluctuate about some average value.

Also, if you had a different sequence of random number seeds, it is also possible that the

magnetization goes down and fluctuates to a value close to minus 1; because all spins

are, nearly all spins pointing up and nearly all spins pointing down have an equal value

of the energy. So, both the microstates which are all spins pointing up or all spins or

nearly  all  spins  pointing  down  have  the  same  probability  right.  The  energy  would

fluctuate around just some value above minus 2, if you are in a magnetized state that is T

1 is less than T c. 

However, if you chose temperatures which are higher than T c then the magnetization

fluctuates about 0 right, that is what we saw. And the energy, the value of the energy also

of the system also goes to a higher value than minus 2, right; it also fluctuates to about

some value close to 0. So, when I am plotting this energy and the magnetization; of

course,  I  am  talking  about  the  instantaneous  magnetization,  the  magnetization  of  a

particular microstate not the thermodynamic magnetization.



(Refer Slide Time: 06:22)

But  that,  the  thermodynamic  magnetization  which  statistical  physics  deals  with,  is

basically  the  average  magnetization  over  all  these  different  microstates  right.  So,

basically M and E, so average magnetization of the average energy can be calculated by

basically taking the values of these magnetization of instantaneous magnetization at each

of these microstates and averaging them over.

So, basically  you have magnetization  the instantaneous value of M at after  1 Monte

Carlo  step,  after  the  2nd Monte  Carlo step,  after  the  3rd Monte Carlo  step and just

average them over a large number of Monte Carlo steps and then you have the average

magnetization E and M. So that is the principle; but of course, just reminding you the

system will have a relaxation time. So, if you are starting from the initial condition, you

should first  allow the system to equilibrate  and then calculate  start  calculating  these

quantities.

We also saw, that if we increase the box size then the fluctuation in the magnetization or

the  fluctuation  in  the  energy decreases.  You have  larger  number  of  spins,  since  the

fluctuation  decreases  furthermore;  if  you  decrease  temperature  right,  then  also  the

fluctuation in the magnetization and fluctuation in the energy decreases. That is what

temperature does, temperature basically gives fluctuations to the energy, hence to the

magnetization.



So,  if  you  remember  your  canonical  ensemble  statistical  physics,  you  basically  the

system takes energy from a external heat bath or gives energy to the external heat bath.

As a consequence of which, the system is able to access different microstates of different

energies and that is exactly what we are doing in our Monte Carlo simulation of the Ising

Model. Except we do not have an explicit  heat bath, I mean we have not modeled it

explicitly; but we are taking in energy, we are giving out energy, right.

So,  that  seems  quite  simple,  because  you  can  now  have  access  to  those  so  called

thermodynamic quantities and that is what  the phases are that the experimentalist  is

interested in?

(Refer Slide Time: 08:53)

And one can  also calculate  the  specific  heat  capacity  which  is  del  E  by del  T  at  a

constant B at no magnetic field say or a constant magnetic field. And you can see in

statistical physics and I think I discussed in one of the previous classes, that C v which is

del E del T, the amount of change in energy of the system due to a change in temperature

is related to E square average. Which is the average energy of the system not per particle

of the entire system E square average minus E average square which is nothing, but the

variance; it is nothing, but the variance of energy divided by K B T square right. And

you can just look that up.

So, basically the specific heat is related to the fluctuation in energy divided by K B T

square. And you can see that the dimensions del E del T, so it has dimensions of energy



per  temperature;  and here  you have  dimensions  of  E square  energy square  and you

divided by K B T that is dimensions of energy and then there is an extra T. So, the

dimensions match right. So, if you calculate C v, just like you calculate the value of this

quantity E square average minus E average square. So, this basically this angular arrows

are of course by calculating the value of E square at different microstates as you go on

doing the Monte Carlo simulations. 

At the end of every Monte Carlo Step you can calculate the value of E square right; and

then take an average E average you can of course, take when you can calculate the total

average  of  basically  average  the  energy  over  the  entire  number  of  Monte  Carlo

simulations; then you get C v. Similarly you can calculate susceptibility chi which is

nothing, but del M del B; del M means when you switch on a magnetic field and so,

there is a slight perturbation in the magnetic field B; then how much is the change in

magnetization; that is what the susceptibility chi measures. 

And one can check the basically chi is related to M square average minus N average

square by K B T. So, M square average minus N average square is nothing, but the

variance in magnetization, right. So, this is the variance, expression for the variance. One

point, till now when we wrote down the Ising Hamiltonian there was no B,  no magnetic

field B, right. So, where does susceptibility come from?

So, basically and how can you calculate susceptibility just by using the variance. Just to

give you an idea and so, the Hamiltonian H was minus J S i dot S j sum over all spins

right and you can also add a term which is nothing, but minus mu dot B; mu being the

magnetic moment of each spin into B, B being the magnetic field. And here since we are

writing in terms of essentially  the spin, where basically  mu is nothing, but the Bohr

Magneton multiplied by the spin.

So, hence I have written instead of magnetic field, I have written at B dash where B dash

is nothing, but the magnetic field B into the Bohr Magneton. So, you can also write it

like this, and then in this case the partition function Z will be e to the power minus beta s

sum over all possible microstates, the free energy is of course, minus K B T lon of Z.

And the average magnetization right, can be written as the M subscript small m which

means basically the instantaneous magnetization, the magnetization at each microstate;

the average magnetization is basically sum over all possible accessible microstates the



magnetization of that microstate the instantaneous magnetization of that micro straight

into e to the power minus beta Hamiltonian energy, right.

And this can be written as basically as some overall microstates here minus del del B

dash, B dash being the magnetic field expressed in terms of Bohr Magneton. So, this

rescale magnetic field del del B dash into minus e to the power minus beta, beta 1 by K

B T minus J i minus J S i dot S j summation minus B dash summation S i right. So,

basically where, if you take a derivative with respect to B dash, basically this sum of S i

will come down in the denominator right this is an exponential function. And sum over S

I, the total sum of all the spins in the lattice, is nothing but the magnetization of that

microstate, right.

So,  basically  then  the  average  magnetization  in  statistical  physics  can  be  written  as

minus del del B dash into Z, which is derivative of the partition function with respect to

B dash or the magnetic field; and later we can take B tends to 0 right. So, hence what is

the point? The point is, basically even though you do not have an explicit magnetic field

in the system or you are not modeling that explicitly when we wrote our code; you can

get the chi susceptibility right. Even in the absence of magnetic field, calculating it from

equilibrium properties right;  it is related to the M square. 

You can just check that M square minus M average square it will be nothing, but double

del M del B; you can carry this step out for once more right. You take the derivative of

this quantity with respect to B and you can get M square minus M average square by K B

T, because you will also have a beta factor there right; the beta will also come down

which I have not written here, but you can fill that in. So, in principle basically if you are

able to generate different microstates, then you can calculate M, average M, average E, C

v, chi over these different microstates which we generate  in a computer and we can

compute all the properties of the system.

We can also basically calculate these quantities as a function of temperature and then

basically  study  the  phase  diagram  of  the  system.  However,;  before  you  complete;

however, before you start calculating these things there are some other issues or artifacts

of simulations to be aware of; and only after fully understanding those issues should one

start calculating the average magnetization the average C v high and so on so forth. So,

let us move to the computer and see the data and let us learn a bit more about the artifacts



before  coming  back  to  the  physics  and  calculating  C  v,  chi,  M  as  a  function  of

temperature.

(Refer Slide Time: 17:12)

So, looking at the code again v i J Ising dot f 90.

(Refer Slide Time: 17:20)

What  we want to do right now, is basically  plot  magnetization energy versus Monte

Carlo Steps (MCS) for slightly smaller box sizes. So, we already did it for box size 40

and 60 and 80 in the last time and we saw all the energy fluctuations; but if we have

slightly smaller box sizes box of 10, 15, 20, let us see if we see something strange or



unexpected when we plot the magnetization versus MCS. So, all that I am doing here is

basically I am going to run the data at temperature T equal to 2 box size is equal to 20 all

right and all the data which is basically the time. 

Here is the time the magnetization per spin and the energy per spin is going to be written

down in this file, just as previous times right. So, g fortran minus 0 3 jising dot f 90

minus o jising, compile and jising I am going to run the code 20; temperature is already

given as 2 in the code just as we did it last time and suppose we have 300000 iterations.

Now, I have already done the simulations for different box sizes and what I shall do is

basically just show you the data, I have plotted it ok.

(Refer Slide Time: 19:13)

So, this 2 D Ising model and basically I am plotting magnetization per spin versus MCS

the Monte Carlo Step and I have showing the data for 300000 iterations right. Now the

black data is for L, the lattice size equal to L equal to 10, so you have 100 spins in the

lattice. The red data is for L equal to 15 and the green L is for 20.

Now there is something which you did not see last time, when you have L equal to 10

starting from a random initial condition the spin, the magnetization, the instantaneous

magnetization essentially went up some number close to plus 1. But after fluctuating for

some time, you see that the magnetization has gone from some number close to plus 1 to

minus 1. And then here it goes up again and comes down again and here there is a gap



and here again it goes up to plus 1 and here again it fluctuates about minus 1; of course,

the average energy in these two states either close to plus 1 or minus 1 is the same, right.

So,  but  previously  we saw that  the  energy was  going up or  down and sticking  and

fluctuating about some average value. But here we see that the state of the system is

going from plus M to minus M. Now if you just took an average for L cross for L equal

to 10, if you average the magnetization over a long run right; in the previous cases you

would get a constant value, but here since sometimes it is plus 1 close to plus 1 and

sometimes is close to minus 1, if you take a good average you will get a 0. So, why is

this happening?

So, this is the question whereas; for larger lattices L equal to 15 or L equal to 20 you see

it is fluctuating about some average, value just as seen it previously. Now the L equal to

10 case  is  a  bit  strange.  So,  let  us  try  to  see  what  happens,  when you increase  the

temperature slightly. So, I have already done that and here is the data for L equal to 10

up to 300000 iterations ok; a Monte Carlo Steps equal to 300000 and the number of

iterations at temperature of 2.1.

(Refer Slide Time: 21:50)

And here we see when we increase the temperature to 2.1, there are rapid flips where the

magnetization of the L equal to 10 lattice goes from plus from plus to minus back to plus

back to minus and so on so forth; it becomes much more frequent. What about L equal to

15 and L equal to 20, so I have already plotted it, I will just switch it on. So, when you



go to L equal to 15, again now at a slightly higher temperature the spin goes from minus

1 to plus 1 again back to minus 1 again to plus 1; but for a higher the size of the lattice

this jump from plus 1 to minus 1 becomes less frequent .

With the increase in temperature the frequency increased; but as you increase the lattice

size the jump from plus 1 to minus 1 is less frequent. If you remember for L equal to 80,

L equal to 60 or 100000 iterations we hardly saw such behavior. Now this is very odd

and fishy, because if you have a magnet right; so what is this plus 1 to minus 1 mean,

basically the magnetic state is flipping.

So, if you take a real magnet, if you keep it suppose the North Pole is pointing in this

direction in the morning, you do not come back in the evening; and say see that the

North Pole has become in the opposite direction the North Pole and the South Pole does

not flip right. So, the magnetic state is it is either plus 1 or minus 1 is basically saying

that  the  direction  of  the  magnetization  and  it  does  not  flip  really.  So,  why  is  this

happening? So, this is a finite size artifact.

So,  let  us  explore  this   in  a  bit  more  detail,  because  unless  we understand what  is

happening here and we take a naive average we will get 0 magnetization; if you average

over all microstates especially at temperatures close to T c when you see such large flips

happening. And the you will get 0, because half of the time the system is in the plus

state, half of the time it is in minus state; magnetization the magnetic state is still not, it

is not unmagnetized, it is either plus 1 or minus 1. 

If  you take  the  average  you will  get  a  0,  which  is  an  erroneous  value,  why is  this

happening and how do we overcome such issues; to understand that let us look at what

the spins are doing more explicitly ok. So, what I am going to do is, basically may show

you a movie of where I explicitly follow each spin as a function of time; and the way I

do it is basically I have some commented out statements, I comment them in.
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So, here all that is being done in these steps is, after every around 20 Monte Carlo Steps I

am writing down i equal to 1 to L, j equal to 1 to L. So, I am going to each point in the

lattice and writing down the coordinates; i and j are the coordinates of that lattice point

and the value of the spin at that lattice point. 

So, what is happening is after every 20 steps I shall explicitly get to see, what is the spin

state right. We are already calculating that, but here we can follow each and individual

spin. And we write down the microstate the position of each spin in file, right; and what I

am going to do is then make a movie file and see it, so that we can follow it.
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To make the movie file you can use the software called Octave, it is equivalent to the

MATLAB except that Octave is free, is freely downloadable. And I am going to use the

command called p color to basically plot all the data. So, I have already done that and

you can learn this on your own if you want by reading about p color and reading about

octave. But what I am going to focus is I have already saved the positions of all the spins

every 20 iterations in some file; and I am going to basically show you the movie about

the state of those spins.

(Refer Slide Time: 26:52)

So, this is for a 10 cross 10 lattice at temperature of 2.25 and let us see what happened?
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So, just to stop it, let us suppose here you see that the entire lattice, blue suppose stands

for spins pointing up; red stands for spins pointing down. At temperature of 2.25 you see

most  of  the  spins  are  pointing  up  and 3  spins  are  pointing  down.  So,  basically  the

magnetic state is plus 1, some number very close to plus 1.

But  as  we  evolve  the  system  through  Monte  Carlo  Steps  you  see  that  there  are

fluctuations right, and suddenly the entire state of the system has changed where all the

spins are pointing up. So, these are these red colors have basic sorry they are pointing

down, red was corresponding to spins pointing down in a few, only a few spins are

pointing up. So, basically the magnetization has gone from a state which is close to plus

1 to close to minus 1 and we see that all the spins are going either up to down and down

to up rather frequently, right.

So, here you are able to follow each spin and different microstates; this is basically an

explicit  representation  of  the  microstates  right.  And,  we  see  rapid  changes  in  the

magnetic state of the system from plus 1 to minus 1 as we change. Now, for a larger

lattice you have 20 cross 20 lattice sites. Again let  us say blue corresponds to spins

pointing up; red corresponds to spins pointing down. And here you see that the, you have

these fluctuations some spins are pointing up and down; but on the large times most of

the spins were pointing blue. But after a considerable amount of time it has changed to

red.



So, again that is what we saw in the graphs also, right; the spins by going from plus m 2

minus m. But for a larger lattice as you saw explicitly in the movie, the changes from

plus 1 to minus 1 or minus 1 to plus 1 is less frequent.


