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Part 01

Welcome  to  the  second  class  of  this  module,  where  we  shall  discuss  Monte  Carlo

algorithm in much more detail, so that by the end of today’s class you shall be able to

write down a simple Monte Carlo algorithm on the computer and be able to model the

Ising model.

(Refer Slide Time: 00:20)

Before I go on, in today’s class let me give you a 2 minute recap of what we discussed in

the last class. In the last class we discussed that we are going to learn about Monte Carlo

simulations and in particular model the Ising model. And implement it on the computer,

and look at the change in the magnetization of a lattice of, a lattice of atoms as a function

of  temperature  and through that  we basically  understand the ferromagnetic  transition

from such that a magnet which is in a magnetic state at low temperatures goes through

the disordered state at higher temperatures.



So, we have Ising model is essentially a microscopic model to describe this phenomena.

And using statistical mechanics, and using model of this one can basically monitor the

thermodynamic quantities like energy, magnetization, specific heat capacity, and chi, the

susceptibility chi, as a function of temperature and at the transition temperature which is

TC,  the  critical  temperature  at  which  the  ferromagnetic  to  paramagnetic  transition

occurs. 

These  quantities  show  a  certain  change  in  behaviour,  basically  the  order  parameter

magnetization goes to 0 and that is how we characterize the so called critical temperature

C v and chi show other properties, they will show peaks. But we shall discuss this in

greater  details.  The question  is  how do we model  all  this  physics,  all  the  statistical

physics on the computer.

A primary question is also that why do we need to model all such stuff in the computer.

The Ising model can be exactly solved analytically in 1D and 2D. So, let me tell you

what does it mean by solving the Ising model in 2D. It means that you can calculate the

partition function using statistical physics you can if you calculate this partition function,

you know that  all  of the thermodynamic quantities  can easily  be calculated from by

taking suitable derivatives of the partition function, that is what we discussed last time,

right. 

Now, if you have the Ising model Hamiltonian you can exactly calculate the partition

function on circuit they did it way back in the 1930s or 40s and you can exactly calculate

C v, E, M all the thermodynamic quantities as a function of temperature and, so you can

essentially  understand how the Ising model behaves.  You might already have done a

mean field version of magnetic  transitions for magnetic  transitions  in your statistical

mechanics class, but a simple model, as simple as Ising model where you basically have

a spin which is interacting with just its neighbours, just as 4 neighbours in 2D and maybe

6 neighbours in 3D if you have a cubic lattice. 

In 3D the Ising model is not solvable till date. You can only do it either using extreme on

the computer or extremely advanced analytical techniques which where also you will get

you will need approximations, ok. So, just as, so the point I want to say emphasize on is

that of course, you can exactly calculate the partition function of an ideal gas, you can

calculate the partition function of an Ising model in 1D and 2D exactly. But as soon as



you go to slightly more complicated Hamiltonians interaction systems you often need the

help  of  computers  to  be  able  to  exactly  understand,  which  means  calculate  the

thermodynamic properties  you know and relate  it  to the thermodynamic  physics you

need the help of the computer, you cannot do it exactly, more often than not, ok. 

And through this calculation you are basically trying to understand how you are going to

do  it,  how  you  are  going  to  do  Monte  Carlo  simulations  far  more  complicated

Hamiltonians with. So, Ising model is basically one of the simplest Hamiltonians if you

understand that how to implement that. The principles of calculations remain the same.

Other complexities due to the Hamiltonian increases, ok. So, with that background let us

get down to actually discussing what is the broad flowchart or what is the algorithm in

basically modeling the Ising model on the computer.

(Refer Slide Time: 06:07)

So, what we need to know, as you know, as we discussed last time that basically spins on

a lattice can be described by; I will just remind you an array a two-dimensional array of

L cross L, L being the size of the lattice. 

And what one has to do is basically at the beginning initialize the lattice, which means

give values to these different elements of this array as plus 1, minus 1, whatever you

whatever be the you want the whatever way you want to initialize the lattice. Of course,

your  final  thermodynamic  state  does  not  depend  upon  your  initial  state.  So,  after



initializing a lattice you have to equilibrate your lattice or your system which your model

on the computer for a particular temperature.

So, you have to reach the equilibration (Refer Time: 06:59) to basically you have to do a

few Monte Carlo steps of your system, so you have a few iterations  of your system

where you evolve the system, so that the system first reaches equilibrium. And once it

has  reached  equilibrium what  you are  doing essentially  you are  generating  different

microstates of the system on the computer. 

So, the system is accessing different microstates and basically in the Ising model as per

the algorithm that we discussed in the last class, you are essentially modelling or you are

using the canonical  ensemble description of the Ising model  on the computer.  Why?

Because energy can fluctuate;  basically,  the energy of the lattice can increase.  When

there is a spin flip happening, it could either the total energy of the system could either

increase or it is possible that it could decrease in which it is giving away energy to a bath

essentially all right.

And while generating, so once you have reached equilibrium you can have basically N

MCS, N for the number of Monte Carlo steps, at a particular temperature where the

system accesses different microstates and as the system accesses these different various

microstates  you  can  use  those  to  calculate  different  thermodynamic  quantities.

Thermodynamic quantities like the average energy say, or the average magnetization or

the average C v being the specific heat capacity or the susceptibility, the average values.

These  are  averaged  over  these  angular  brackets  imply  averaged  over  different

microstates, you are taking a basically an ensemble average, right. 

Now,  how  would  you  calculate  these  averages  as  the  system  accesses  different

microstates  different  spin  configurations?  Basically,  the  expression  for  the  average

energy here is summation over different microstates k. The energy of the microstate; so,

after every month one Monte Carlo iteration everyone MCS: Monte Carlo Step, there

will be a certain configuration of spins in the lattice which will correspond to a certain

value of the energy E i, right. 

And  the  statistical  physics  formula  is  essentially  the  energy  of  a  microstate  into

probability of accessing that microstate which is given by E to the power minus beta E i



by z,  z  being  the  partition  function.  This  is  the  so called  probability  of  accessing  a

particular microstate in a canonical ensemble, right.

But  here  in  this  in  our  case  as  we  discussed  we  are  doing  a  biased  Monte  Carlo

simulation.  So, what is a biased Monte Carlo simulation? We are basically accessing

different microstates with the probability E to the power minus beta E i by z, right. Why

that  we will  discuss it  later.  But  with the algorithm which I  discussed last  time that

already ensures that different microstates are being accessed with this probability. So,

this  is  what  I  told  you that  met  in  the  metropolis  algorithm various  microstates  are

accessed with probability e to the power minus beta delta i, it is a biased Monte Carlo all

microstates are not equally accessed we are already using the background physics that

we know to access different microstates. 

Now, since different microstates with higher and higher energies are accessed with lower

and lower probabilities,  once  a  particular  microstate  has  been accessed basically  the

average energy of the system is the sum of all the energies that the system accesses, all

the different energies as the system goes on from one microstate to the other. 

Sum up all the energies, and divided by the total number of Monte Carlo steps N MCS

that  the  system  remains  in  that  particular  thermodynamic  state  at  that  particular

temperature, right. And you can control how many iterations you want to give for the

system to remain in that temperature. So, in how many microstates you want to generate

at a particular temperature, right and you can control that. And how would this is done

and how this is chosen we shall discuss this later. 

So, once you have calculated the thermodynamic quantities at a particular temperature

what  you  can  do  is  change  the  temperature,  right.  And  allow  the  system  to  go  to

equilibrium, equilibria equilibrate at this new temperature, generate different microstates

at a different temperature, calculate average energy magnetization C v, chi, etcetera at

that  new  temperature  and  keep  on  changing  different  temperatures,  you  keep  on

calculating this these quantities at different temperatures after suitable equilibrium. Then

we what we do is try to do the physics, plot and monitor these various average quantities

and how do they change with temperature and extract the physics out of it. So, this is the

basic broad flowchart of what we shall be doing, all right. 
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Having discussed this immediately you should be having quite a few questions such as

that how do we know that the system is in equilibrium. So, you have a lattice, you are

generating different microstates as per your metropolis algorithm. When do we know

that the system is in equilibrium? How do we know that the thermodynamic averages

that we have calculated over a certain number of microstates, they are good and reliable?

How do you know that you do not need to generate more number of microstates? 

After all statistical physics tells you that basically the number of the ensemble average, I

mean you have nearly an infinite number of microstates accessible. So, have you done a

good thermodynamic averaging or not? Third question. What about finite size effects?

After all we will be calculating or doing our simulations over a finite lattice, it might be

20 cross 20 or 100 cross 100 or 1000 cross 1000, if you are doing a 3D 100 cross 100

cross 100, lattice size is already 1 million lattice sites, you have 1 million spins it seems

large for a computer. 

Not for today’s computer, but anyway it is a large lattice size. But what is 1 million

spins? In statistical physics in a magnetic sample you essentially have 10 to the power 23

spins setting on a lattice and you are basically interested to calculate the thermodynamic

properties of a very large lattice, right. I mean why do you think that if you do your

modeling and calculating of a thermodynamic averages  over a even a 100 cross 100

lattice that is sufficient. 



So, that is what is basically finite size effects. We shall be discussing each of these topics

as we go along in the course, as we modulate in the computer I shall be showing how

does one check for equilibrium, how does one check for whether the thermodynamic

averages are reliable or not. So, all these will be discussed. But let us start with finite size

effects.

Even within finite size effects there are two parts, I mean at least two parts, one could

say that well there are boundary effects and the finite size of the lattice. So, we shall

discuss this later. But let us talk about boundary effects. What do you mean by boundary

effects? Well, you know you have in experimental in a real system you have 10 to the

power 23 atoms spins, magnetic moments sitting in even a small sample or if not 10 to

the power 23, 10 to the power 21 which is anyway very large number.

And then at the end of the sample, right; so, if you have a material of this size say in the

end of the sample basically those atoms are not surrounded by other atoms, but they are

exposed to the air see, right. But the number of atoms which are setting on the surface of

a sample of a macroscopic thermodynamic sample are relatively few, much smaller than

the  number  of  atoms  which  are  in  the  bulk  which  is  basically  where  atoms  are

surrounded by 4 atoms if you are talking of a 2D system or 6 atoms if you are talking

about the 3D system, cubic lattice. Of course, you could also have triangular lattices, so

we are not going into that at the moment but, assuming a square or a cubic lattice.

What basically I am saying that if you are doing a 100 cross 100 lattice or a 20 cross 20

lattice  you  have  relatively  large  number  of  spins  sitting  at  the  boundaries  and  that

number is relatively comparable to the number of atoms which are sitting in the bulk, the

number  of  spins  which  have  atoms  spins  which  are  basically  surrounded  by  4

neighbouring spins. Whereas, the ones on the right at the end these ones this, this, this

there are they have only they have basically spins only on one side and not here, not

here, right. And while we can neglect the effect due to the surface atoms on the in a real

sample, can we really do it in this simulation? How do these show up?

So,  the  way  we  get  rid  of  boundary  effects  in  simulations  is  that  we  use  periodic

boundary conditions. What is periodic boundary conditions? You essentially say that you

know  what  this  atom,  so  this  atom  has  one  neighbour  which  is  this  one.  So,  the

neighbour of this atom is this, this, this and this, right. So, now, so there is a continuity.



So, periodic boundary conditions you must have used also in your theoretical courses. Of

course,  this  one has basically  this  neighbour,  this  neighbour,  this  neighbour and this

neighbour, so it is not a problem at all.  So, here this is how we get rid of boundary

effects in simulations.

Now, let us say that this is spin i, j. So, suppose this is I am talking of this spin and this is

basically spin i, j. So, that is how basically each site on the lattice is denoted by an array

and choosing i and j basically fixes a particular lattice site. Now, one could say that the

neighbour on the right can be denoted by the index the lattice index i plus 1, j.  The

neighbour on the left can be denoted by i minus 1, j, this being i, j; this is being the spin

of our interest. 

The spin at the bottom, right; so, it is like one is can be denoted by i. While discussing

this let me first set the convention I should have done this earlier. So, now, let us suppose

that the spin on this corner is 1, 1, and then as you go on the right you are essentially

increasing the index, so that this spin is called L 1, right. So, I, i plus 1, so this is 2, this is

3, whereas, the second index j remains the same, so this is L 1. Call this one essentially 1

L. So, basically y is increasing in this direction and this is L, L. So, in this convention

basically the right neighbour of this one is i plus 1, that an left neighbour of this one is i

minus 1, the down neighbour of this is i j minus 1 and the one which would be here on

the top would be j plus 1; i, j plus 1. Yes. 

But you have a problem when you implement periodic boundary conditions because the

neighbour of L 3, suppose this is L 3, right, so this is L 3. The neighbour of L 3 will be 1,

3. So, it is basically this one and the neighbour of 2, 1, right. So, what is 2, 1? It is

basically this one, right; will be 2, L which is this one, right. So, when we calculate the

neighbours  and  identify  the  neighbours  we  have  to  be  aware  and  be  careful  about

periodic boundary conditions. And this is how you identify neighbours. We shall see that

in the code also later, ok. 
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So, the next thing to discuss before we actually move to the computer code and show

how the algorithm is implemented is the issue of units. What do you mean by units? You

already know that  basically  we are looking at  magnetism,  basically  what  is.  So,  we

should be looking at the magnetic moment, but we know that the magnetic moment is

essentially related by the Bohr Magneton to the spin of the system, right. And I am been

telling you that the spin can either point up and down, and we will take its value to be

plus 1 if it is pointing up and minus 1 if it is pointing down.

But,  actually  the spin of the system of an atom say is  measured in units  of  angular

momentum h cross, right. So, when we say that the spin is plus 1 or minus 1 we are

basically setting h cross equal to 1, in after we calculate the magnetization we have to put

back the units of spin which is a h cross. 

And, basically from the spin we can go to the magnetic moment by multiplying suitably

by the Bohr Magneton. But all those are essentially set to basically we are ignoring that,

we are saying yes the spin is just plus 1 or minus 1 instead of saying say minus half h

cross and plus half h cross, right. So, that is all hidden for the purposes of the simulation.

Of course, for the real system it is there. 

Moreover, we are measuring magnetization when we use the word magnetization, we

actually mean magnetic moment, which is the magnetization at a particular temperature.

Well of course, having units of magnetic moment and we use magnetization as the order



parameter, but for purposes of the calculation we measure magnetization as the magnetic

moment at a particular temperature which is essentially you know this angular brackets

again represent the canonical ensemble average divided by the maximum magnetization

possible which is can be only at 0 temperature,  right.  And this can be related to the

average spin of the; so, average spin of the system at a particular temperature divided by

the maximum spins maximum if. So, if all spins were basically pointing in the same

direction say in the positive direction, so that would be the S MAX. 

So,  basically  the  number  of  spins  on  the  lattice  into  plus  1  say  and  we  use  this

normalized quantity as the order parameter to calculate the statistical physics, right. But

of course, the units are there, though in the code we will not be really worried about the

values of very small numbers like the Bohr Magneton and h cross. Why? Because we

can put it back in the calculation after we have finished our calculation and we do not

want  the  computer  to  deal  with  very  small  numbers  at  as  that  will  decrease  the

efficiency. So, you calculate it in so called simulation units and put it back when we

want to compare with experiments.

Talking about order parameter, you already know that the maximum value of the order

parameter. We have defined it in such a manner by suitably normalizing it that at low

temperatures the order parameter is nearly equal to 1 or close to 1 and at exactly T equal

to 0 it  should be 1 which means the system is  perfectly  ordered there is no thermal

fluctuations. Of course, there are quantum fluctuations, but we are at the moment treating

the system classically  which means that h bar goes to 0, we are looking at  only the

thermal effects. 

So, for classical spin system at T equal to 0, the order parameter magnetization will be

equal  to  1,  which  means  it  is  perfectly  ordered,  all  spins  are  pointing  in  the  same

direction and that is minimizing energy. Actually, I remind you and this is extremely

important. In the thermodynamic system what is minimized is not the energy, but the

free energy, but at T equal to 0 the free energy is u minus t s, t is equal to 0. So, energy

minimization happens when all the spins are pointing in the same direction whether it be

plus 1 or minus 1.

But any at any finite temperature the minima minimization of the free energy will be

decided by u minus t s, the entropy of the system and the temperature as well and that is



why after all we get the phase transition. We will understand this better as we actually

code it and we see the effects. 

Anyway, because of the effects of entropy at high temperatures the what will matter in

the minimization of free energy is not the contributions due to E, the average energy, the

average internal energy, but rather the minus t s term will dominate. It would rather the

system will prefer to basically be in a disordered system, so that s is minimized through

the minus t s term, right. So, that is what it means. So, that dominates over the internal

energy, right. The contribution of minus t s dominates over the internal energy and that is

how free energy is minimized. 

Now, how to calculate average energy? So, we discussed order parameter here. Just to

remind you we also, so we discussed order parameter magnetization, magnetic moment,

the other quantity of interest is essentially the Hamiltonian, right, the energy. The energy

comes from the expression for the Hamiltonian which is basically minus J S i dot S j,

where the summation is over although where i goes from 1 to N, N being the number of

spins in the lattice L cross L and the summation over the nearest neighbours J goes from

1, 2, 3, 4 in a square lattice, right. 

And we also need to discuss what is going to be a units of energy. And what is energy?

Essentially, energy is this average value of this quantity, of this quantity in the centre and

this.  So,  this  is  basically  the  this  quantity  within  the  angular  brackets  is  going  to

determine the spin of a particular of a particular micro state of or the spins are going to

be arranged in a particular manner at the end of one Monte Carlo step. And that will

depend  the  instantaneous  energy  of  that  lattice  at  the  end  of  a  microstate.  And  to

calculate the thermodynamic or the average energy, right, one has to do this average over

different microstates basically take an ensemble average. 

You  generate  different  microstates  and  calculate  the  energy,  averaging  over  these

microstates, right. Now we have to also discuss the units of energy. 
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Now, you know that this quantity J, so S i and S j you call it plus 1 and minus 1. And if

you are saying that you want to calculate the average energy then the units of energy are

essentially sitting inside this minus J. This is a minus J has all the Bohr Magneton, this,

that  everything.  And so,  J  we shall  be  using  as  a  parameter,  but  the  value  of  J  for

different  systems cobalt,  nickel,  iron,  you can  also get  it  using quantum mechanical

calculations,  right.  And they typically  J is measured in units  of electron volts, so by

doing the suitable quantum mechanical calculations, right, by putting in all the electrons

all  the  various  degrees  of  freedom,  but  here  we are  interested  only  in  the  magnetic

moment degree of freedom. 

The other unit of energy which is relevant in the problem is K B T, thermal energy, right.

It is basically a competition between as I said ju which is determined by minus J S i dot S

j and the entropy of the system be where the spins can take different  configurations

minus t s. Now, how is K B T measured? 

Now, K B is the Boltzmann constant you might be knowing and that is written as R by N

A, where R is the gas constant p v equal to n r t that gas constant whose value is 8.32 in

SI  units.  Whereas,  N A is  the  Avogadro  number  of  atoms,  K B is  R by N A and

Avogadro number of atoms as you might should be knowing by this now time is 6.02

into 10 to the power 23. And this gives the value if you divide it you gives 1.38 into 10

to the power minus 23 SI units. 



K B T, K B T is has units of energy. You might have read in a statistical physics course,

that using the equipartition theorem, the kinetic energy per particle mono atomic gas is 3

by 2 K B T. Kinetic energy is essentially units of energy, so K B T has units of energy.

And K B T at T equal to 300, T equal to 300 Kelvin which is essentially 27 degree

centigrade is 3 into 1.4, I have taken 1.38 to be 1.4 into 10 to the power minus 21 which

is basically 4.2 into 10 to the power minus 21 Joules, ok. So, J is measured in electron

volts typically and K B T is measured in say Joules. Now, we cannot be working with

different units, so we have to set the units for our simulations, right and we want to have

a easy unit. 


