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Now, we will  do in  go  into  multidimensional  integral.  What  we will  do is  we will

evaluate this 6-dimensional integral so, where basically x and y here are vectors which

has three components; each has three components x and y. So, the total the integral the

dimension of this integral is 6 and we will evaluate this particular integral.

And, we will use it two use two Monte Carlo methods: one is the brute force one which

is the simple Monte Carlo technique and then we will use what is called the important

sampling which is a improved and more efficient way of evaluating this integrals using

Monte Carlo method.
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So, let us first look into the brute force way. So, this is my file multi dimension brute

underscore f90.
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So, this is  the program which will  do the brute force integral  for us and the idea is

exactly same as the previous examples which we looked for Monte Carlo integration for

example, e to the power integration of the e to the power x, but there we had one variable

x, here we have six variables; so, x 1, x 2, x 3, x 4, x 5 and x 6. So, for that what we need



is six random numbers instead of just one random number and this volume will be a 7-

dimensional volume that is that is the value of the integral which we will get.

And, though I mean the limits of this integral are from sorry, there is a mistake at this

will be from minus infinity to plus infinity, but we cannot do that  on a computer. So, we

will restrict the limits to minus 5 to plus 5 and this is a very valid assumption because,

this function as you can see it is a form of a typical deform of a Gaussian which decays

exponentially e to the power minus x square of that is or that is how it is decays. So, it

decays very fast so, which has a long tail which will have negligible contribution to the

integral.

So, let see how it is done. So, by length that here instead of the complete length of the

integral I have used just one side from 0 the positive x 1 for example, or 0 to positive x 2

or 0 to positive x 3. So, the total length along each dimension say for x 1 the total length

is twice this value that is 10, we have 2 into length and since this is a 6 dimensional

integral so, the volume will be given by to the power 6. So, this is my volume. I need to

multiply the average of the function with this volume to obtain the integral.

So, now, I start computing a again as before I am I will be doing it for several values of n

I will be evaluating say the integral using 10 by computing the average 10 times, then

100 times, 1000 times so on and so forth and we will see how the number is accuracy is

changing. So, what we and those values are stored in this particular file here then I asked

the user to give me small value the starting value, then I initiate my variables to 0. This

one stores the final value of the integral, this one stores the variance and this one stores

the sigma.

Then,  what  I  do is  this  is  the place where I  am executing this  do loop helps me in

computing the average. So, each time this do loop is executed what it does is it calls

random 6 random numbers.  So,  now, unlike  the  previous  cases  here  you see  this  p

argument which is used which is a dummy argument for my random number generator it

has a dimension six. So, what it means is that it will return 6 random numbers. And, once

I got this 6 random numbers so, what I need to do is these random numbers are 0 4 2 1

and again as before now I need to have these random numbers as space from minus 5 to

plus 5 and this is how that is done.



So,  the  p’s  I  am converting  to  p’s  which  lie  between  to  0  to  1  I  am now here  is

converting it from minus 5 to plus 5.
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And, once I have that value of p I call this function so, this function does nothing, but

evaluate the integrand. So, basically this is what it does e to the power minus a x square

minus a y square minus b x y, where a and b are 1.0 and 0.5. So, it is nothing, but just

basically this particular function. So, if you compare this with this thing yeah. So, this is

a function it is trying to evaluate here. So, this is e to the power minus x square minus y

square. 

So, my x square will be x the x component x 1, x 2, x 3 that the mod of that vector and

then that  is  what  is  here,  the x square x 1 square plus  x 2 square  plus  x 3 square;

similarly, y square will be given by x 4 square x 5 square and x 6 square and then I have

x minus y whole square. So, this is how the function is evaluated and once I get the value

of the function at a given at a given set of values of x I add to this particular variable and

I keep on doing it 10 times. 

Similarly, for the same way I do for the sigma and once that is done so, for the integral

what I do is I compute the average and once he average is computed then I compute the I

multiply it by volume to get the value of the integrand. So, once that is done what I do is

I write my n, then the value of the integrand and then the standard deviation. So, this I



print into the file and this is done till a certain number of n takes a certain value. So, this

is how it is done and then let us see how efficient how it performs.
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So, I compile it as before dimensional mult dim underscore brute f90. See, if I compile it

then this is the executable that has been produced here. You can see, then I run it.
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So,  it  asks  for  a  value  of  10,  I  start  with  a  ridiculously  small  value  though  it  is

meaningless, but let us start with that. And, so, if the code is now doing the calculations

so, let us wait for some time for it to finish the calculation and, then let us we will see



how the results are. So, where particularly the last two points take a significant amount

of time so, that is why it is it is still doing it is done. So, now, if I do ls minus ltr, so,

what I see is that this is the file where I have my data which is generated by the code.

So, if I pull that out so, I get the following. So, again just reminder so, this is the value of

n that is the number of random points I used to compute the average of my function this

is the value of the integral and this is the standard deviation. So, what you see is that so,

so for example, with 10 grid points random numbers or it is 100 random numbers you get

some ridiculous values of the integral, it is completely wrong you see.

And, to get somewhere close to the very small so, in I mean in Monte Carlo integration

the accuracy of the of the integral typically is determined by the a standard deviation

here and you see that even with so many points with these many points also the standard

deviation  is  still  pretty  high which you do not  want.  You want  a  very low standard

deviation, the lower the value, the more accurate will be your calculations.

So, now to improve this what we will do is we will use the we will evaluate the same

integral here using this importance sampling. So, if just to recollect what importance

sampling is what we do in importance sampling we modify the function in such a way or

in other in importance sampling we what we do is we have a distribution of random

numbers which has a uniform distribution, we change the distribution in such a way that

the shape of the distribution matches the shape of the function.

So, for example, here this function is sort of like a Gaussian function. So, what we will

do is we will do a change to two things: one is we will change the random number

generator which gives us uniform distribution we will use that random number generator,

generate a set of random numbers with uniform distribution and change the distribution

to that of a Gaussian deviator. And, once it is done we will also do another thing that is

the change of the variable.

So, when we do the change of the variable that is basically what it means is we will

divide this function by e to the power minus x square and minus y square that way. So,

once we divide that this by that function so, what will happen is these two terms will go

away. So, my modified function will just be the exponential  minus x minus y whole

square ok. So, this is what.



So, I have to integrate this new function with a distributional random numbers which has

a Gaussian distribution now instead of a uniform distribution and the way we have also

learnt  that  how  to  generate  a  Gaussian  distribution.  For  a  Gaussian  to  generate  a

Gaussian  distribution  what  we  need  is  two  random  numbers  at  a  with  uniform

distribution at the given time and then we will use the Box-Muller method to do that. So,

let us look at how the code is. So, we go so, this method is called the important sampling.
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This is what my program does. So, again as before I have a set of integer variables which

are used for the same purpose. Here I have one more extra counter, then again I need 6

basically I will be needing 6 numbers. So, that is stored in this variable x and each time I

need 2 for each number random number with Gaussian distribution I need 2 numbers

with an uniform distribution which are stored in this variable p 2.

And,  then  I  have  this  particular  function  which  generates  my  Gaussian  distribution

random numbers with Gaussian distribution and this is the function which evaluates the

value of the integrand at those set of 6 numbers. So, again this length is given by this.

Now, if we do the algebra your volume we have to multiply it by a factor of pi cube. So,

this what is given here and the in the Box-Mullar method the standard deviation of my

Gaussian distribution is different from the standard deviation of the Gaussian distribution

we need to use.



So, and if one does the algebra as we have seen before in the lecture so, we need to

multiply this or divide the number by square root 2. So, this is what and since we need to

do it every time so, instead of evaluating this every time we evaluate it and the very

beginning and store it in this variable and then we as before we write the value the values

of my integral and the error in this file for different values of n. We ask the user to

supply us the starting value of n and then I have read that same thing then I set my

different variables to 0, and then I start doing the average.
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So, basically what I am doing here is I am doing the average the first loops unlike before

now I have two do loops. So, this is the first loop here starting with do i equals to 1 to n

and it answer and then I have the second do loop what it thus is it generates six random

numbers with the Gaussian distribution starting from.

So, what I am doing here is I am calling my random number generator to return me 2

random numbers with uniform distribution these a 2 random numbers I am giving as a

input to my function Gaussian underscore dev and that returns me one random number

with which forms a uniform Gaussian distribution and that I multiplied by square root of

2, so that my sigma of the Gaussian distribution remains the same as y desire to do my

integration and not the original Box-Mullar sigma for the original Box-Mullar.

And, once I have this 6 numbers here through this do loop what I do is I fit them to my

function. The function is evaluated using this particular function here.
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So, this is the function where I am evaluating it. So, now, you see the function is just

minus half xy. So, only that part left. 
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So, once this function is evaluated here. So, what I do is I take compute the average in

this  line,  then  similar  way  I  compute  the  sigma  by  computing  the  average,  then  I

compute the variance and then what I do is I multiply it by the factor of pi whole cube

and the sigma also by volume and then square root of n and then I print them out in the

file. So, this is how it is how the code works.
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So, let us see let us now try to run it and see what happens. So, first a before running it

we need to compile it gfotran minus o mult dim underscore imp x Monte Carlo dot f90.
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So, again if we do ls minus ltr so, I have this particular executable file which I will use to

run my code. So, start again with a ridiculously small value of 10. So, it is running and

we will  soon.  So,  one  thing  we  should  remember  is  in  most  cases  in  Monte  Carlo

simulations  will  not  be  able  to  evaluate  the  exact  value  of  the  integral  and  that  is

precisely the purpose why you are using this methods.



So, in those cases the error is basically given by the value of the sigma. So, the smaller

the value of sigma the more better  is the estimate of their unlike in other grid based

methods. So, sometimes you might be able to know the value of the integral exactly. So,

this takes some time here and so, let us wait and hopefully it will be done soon.

So, it has it is doing for several values of n starting from n equals to 10 then 100, 1000,

10,000, 1 lakh 1 million and so on. It goes I think till 10 to the power 9. So, that is why it

is taking such a long time but yeah, let us wait for some time and it will be hopefully

done soon.
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Let us see how much it is done it is still running if you use the top command in a Linux

machine those who are new to Linux then you can see what job is running. So, as you

can see this is still running here. Let me close this.
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Still doing something.
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So, it is taking time because it is done, but because it is now we were doing an extra step

that is it  is generating a new distribution of random number.  So, that way it is a bit

expensive.  So, once it  is done then what  we do is, so, this is the file which is been

produced, where the data is stored and let us look at it. So, imp dat. So, again this is the

first column is my n, the second column is the value of the integral and the third column



is the sigma. So, as we see and let us compare this with the brute force one which we did

in the previous thing.

So, if we see that in the brute force one the lowest value of the sigma that we can get is

0.11 which is just one order of magnitude, smaller than the value of integral. For the

same number of points here and here now with my important sampling you see it is

converging very fast, the sigma is decreasing very fast and if you do the algebra you can

you can see that the sigma will go up as sigma; 1 by square root of n that also you can

check and see whether it is valid.

So, this is a clear example that in doing this type of integrals the important sampling,

though it might be slightly expensive than the brute force method performs or gives a

much more accurate estimate of the value of the integral.
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So, we will see how to test the random number with. So, I will take you through a code

which has been written by me which what it does is it does the different steps of the

random number. So, in the lectures what I have told is so, we have to check whether one

gets  the expected value  or average  value,  the expected  value of  sigma,  then the co-

relation plot one should do, one should do the scatter plot, one should do the histogram.



So, these are the five tests one is to do. So, I will not go the histogram. I will not show

how to do the histogram, but I will show a code which does the other stuff. For so,

example this is my code test random number dot f90.
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So, I start with the Fortran keyword program and then I have the program name. And,

then I have a set of variables and it is a long list variables. Some of them are temporary

variables  which reused in  the code and others  are  others the significant  ones I  have

within comments I have kept here what it means. For example, average avg – variable

stores  the  mean  of  distribution;  sigma  variable  stores  the  standard  deviation;  c

underscore k stores the auto co-relation and these are some again dummy variables.

So, to begin with I make it 0 , I set the sum1 and square of sum to be 0. So, what I will

do is; so, I need to have two files. One file will store my co-relation coefficient which we

have defined already in the lecture as a function of k and in other one I will store x 1 and

x 2 that I mean the basically what I am going to do is I am going to store the data for the

scatter plot. Then in this part what I am doing is I am asking the user to give me to tell

me how many random numbers I want to use and then I read that number.
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So, this particular section what it does is, it will compute for me the average and the

standard deviation. So, what it does is it will these first two loop what it will done do is it

will call the random numbers n random numbers that depends on the value of n and these

random numbers are I sum them up and store in this variable and then I also take the

square of the random numbers and sum them up and store in this variable.

Once that is done what I do is the average is computed by dividing the sum the number

stored in sum1 by the number of times or the number of random numbers I used that is n.

And, then similarly I compute the I take I compute the average of the square sum that is

given by square underscore sum divided by real n and once that is done I get the sigma

using this formula and then it prints out the average value and then the sigma.
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So, once that is done, in the next part I compute the co-relation function. So, if you refer

to the lecture notes the co-relation function is given by it again involves a sum over n and

that is what I am doing here. And, this part of the code computes the co-relation function

and this now I am using q number of I using a different set of random numbers to do

that.

And, then again I use the same set and to write the data in such a way I write I plot i

versus i plus 1-th random how the plot looks like. So, that is what is my scatter plot.
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So, let us compile this. So, it is done.
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And, then if you see do ls minus ltr we have this executable to run it. So, we run this. So,

let  us start  with a  very small  set  of random numbers say 10.  So, we know that  the

average value of a uniform distribution is 0.5 and the standard deviation sigma is 0.2886.

So, let us see what values we got.
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So, you see with 10 random numbers here the value of the mean is quite far away from

0.5;  similarly,  the  standard  deviation  is  also  quite  far  away from 0.2886.  Now,  if  I



increase the number of random numbers, say it is from 10 I go to 100. So, you see it has

still away from both the values are still away from the exact value, now we make it say

10000. Now, you see it is slowly gradually going towards 0.5 and this is gradually going

towards 0.2886. Now, if I increase it further. So, then you see it is much closer to that

value. So, it is taking time because it is computing the correlation function also .

Now, let us look at what happens to the co-relation plot. So, let us do it with first say

10000.
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So, if I run it then this is the data is stored here. So, you can use any plotting software

you want. So, in my machine I have xmgrace. So, I will use xmgrace to plot it ok.
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So, this is what my data will look like.
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So, if I instead of if I put the just the symbols here along with the lines so, at k; so, in the

x-axis I have k and in the y-axis I have ck. So, for k equals to 0 it is nothing, but the auto

co-relation and it should be one. So, you should expect a point here and it somewhere

which is close to 1. The reason it is not going to 1 is because the number of points are

very few.



Now, let  us  try  to  run it  again with a  few more points  and see  how the  things  are

changing.

(Refer Slide Time: 27:25)

So, what we do here is, so instead of 10,000 so, rather than that so, I will put 10 lakh a

part and let it run. So, once it is done what I will do is I will plot it in this one only. Let

me try to plot it in this graph see it is done.
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So, let me just try to reload the data ok. So, the two things to notice here ok, let me just

put some make this 25. This is not. So, the two things to notice so, if so, ideally if there is



a completely random the numbers are completely random you expect the co-relation to

be zero. So, what you would expect is that these numbers this plots will hover around

zero, but when we have a fewer numbers for the co-relation plot what we see is that it is

it  is  having a  certain  non-zero  value.  And,  the moment  you increase  the number of

random numbers that goes into the evaluation of the co-relation plot you see that it is

starts hovering around zero nicely.
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So, this also tells you another thing that in addition to that in these type of methods. So,

what is also very important is the average. So, one needs to do a very good average I

mean good average I mean average over sufficient to large number of points to get into

some meaningful and realistic number.
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Now, we will also look at the scatter plot. So, for the scatter plot what we will do is we

will use fewer random numbers, so that you can see. So, let us put say 10,000 random

numbers and do the evaluation.
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So, let us open it in xmgrace.
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So, if your numbers are co-related then what your scattered would have look like? Let

me just first make this plot proper. So, circle slightly straight line I do not want, I just

want to see the dots here. So, this is how it you see it is I mean the points are spread all

over this area from x-axis is from 0 to 1 and y axis again is from 0 to 1. Had there been

co-relations, then what you would have seen is that certain parts of this area is covered

while the other parts are empty or it would have been something like a diagonal one. So,

this says since in all the points are scattered all over the space, all over the extent of my

plot this  tells  that the numbers are not co-related and it  is genuinely a good random

number.

 There is one more test which I am not going to show it to you and I leave it to you as

exercise that is you what you can do is you can generate say a million random numbers

divide  them into  small  bins  and once  you  have  them in  small  bins  you  can  plot  a

histogram that is in each bin how many random numbers are there. So, and what you

would see is that the height of the histogram and of all of them are same that is what it

tells  you  that  is  a  uniform  distribution  because  each  random  number  has  an  equal

probability  of  there  is  an  probability  of  finding  each  random number  in  a  uniform

distribution.

So, if you use very few random numbers in plotting the histogram then you will you will

find that some bin heights are larger, some bin heights are smaller, but then gradually as



you increase the number more and more as you increase the more and more random

numbers that is as you enhance or better  the sampling what you will find is that the

heights of all the bins are same.


