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There  are  other  ways of also our  more sophisticated  ways of improving the random

numbers. So, let us look into that.
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So, what we are going to discuss now is improvement of Monte Carlo integration. So,

what  does  one  mean  by  improvement  of  Monte  Carlo  integration?  So,  we  want

improvement in terms of two things; one is the error which is of my estimate  which

implies that the variance should be small. And the second improvement which we want

is that the computational cost should be minimal.

So, what that means, is we need to do Fewer Monte Carlo sampling. So, typically the

methods which we are going to discuss in these methods for the particularly for the

second  case  we  will  improve  in  the  time  by  means  of  reducing  the  Monte  Carlo

sampling. But, the time to do one Monte Carlo step in this modified methods will be

more than that of the what we need for the brute force method. So, let us see how this



two can be achieved. So, one way to achieve this; so is first of all one can. So, this two

are achieved in two ways, one is by doing something called the change of variables.

So, we have all done integration in our calculus where to simplify the integrand we go to

some one from one variable to another variable and accordingly we change the limits of

the integrals and so on and so forth. So, it is basically the same idea which is applied

here.  So,  my random number generator  which comes with Fortran gives me random

numbers x that lies between 0 and 1, but it  might  happen my and in many cases in

physics  which have seen that  the limits  of  integration.  So,  with this  I  can just  have

integrals whose limits are 0 and 1.

But in many cases I have integrands whose limit  extend from minus infinity  to plus

infinity or 0 to infinity. So, what do I do for these cases? So, precisely for this type of

thing what we need to do is we need to map x that belongs to 0 and 1 to another set of

random numbers y that belongs to different limits. So, basically you change the variable

and in the process also sometimes you need to might need to change the distribution and

the second method related to. So, this is change of variables is one thing and the second

method is sampling.

(Refer Slide Time: 03:37)

So, what do one mean by fewer sampling? So, what one means by fewer sampling is

basically  you intend or one intends to use as few as random numbers as possible to

compute  the  integrand  efficiently  and  this  sampling  is  related  to  the  shape  of  the



integrand. So, what do I mean by the shape of the integrand? Let us look at an example 1

dimensional example again. So, suppose I have a function which looks something like

this in 1 dimension and I want to do integral say from minus a to sorry from a to b.

So, basically; so if I call this function as f x. So, what I am interested to ever know is

how much is integration of a to b f x d x. So, in the brute force Monte Carlo what we will

do is the following or even in my acceptance rejectance method which is supposed to be

improved  one  what  we  will  do  is  we  will  generate  lots  of  numbers  that  lie  within

between a and b. So, we will generate lots of numbers that lie between a and b and, but if

we  look  at  the  shape  of  the  function.  So,  we  see  that  the  function  has  significant

contribution only from this region.

So, only from this part, the rest of the part the function is has a 0 value. So, the area

under the curve defined by this as schematic function is 0 for these two circle region, it is

only nonzero for this shaded region. So, if I use a uniform if I directly use the random

numbers which is generated by my Fortran code which gives the uniform distribution.

So,  I  have  a  equal  probability  of  getting  a  random number  from here  and an  equal

probability  of  getting  a  random number  which  lies  somewhere  here  in  the  point  of

interest.

So, what it means is that it will give me, I need a enormously large number of random

numbers to have a reasonable estimate of this integral because most of my points both in

the hit and miss method and in the brute force method because most of these points will

lie in the region where the contribution to the of the value of the function to its average

value is close to 0. So, you are losing l lot of points. So, you do not want to have this. So,

rather what we want to do is you want to have a random set of random numbers or you

want  to  generate  a  set  of  random numbers  whose  distribution  matches  exactly  this

distribution which should have the same shape as the shape of the function. 

One classic example of this is seen in quantum mechanics. So, in quantum mechanics we

have a so, we know that my probability distribution function is given by psi star x psi,

where  I  assume  that  psi  is  normalized.  And,  these  are  eigenvectors  of  my  time

independent Schrodinger equation, the psi is are the eigenvectors of my time independent

Schrodinger equation. So, if I want to compute the expectation value for example, of H.

So, that would be like given by this expression integration dx psi star x H x psi x.



So, this is my expectation value. So, what I can do is I can do some manipulations. So,

let us do the following. So, I keep psi star x and then I introduce psi x and then I divide H

x by psi x again and I have psi x dx. So, this I can rewrite in the following form. So, if

you look at this one psi star x psi x is nothing, but my probability distribution function p

x and then this part I call it as H tilde x. So, my integrand become is now a modified

function which is given by p x H tilde x.

But from this equation so, I am just writing the H tilde x clearly. So, I have H x psi x psi

x ok, but from this equation what I can see is that my H x psi x by psi x that is nothing,

but equal to E the eigenvalue. So, what I can do is I can plug in this in place of H psi x.

So, my integral is reduced to p x E dx which is nothing, but a constant since integration

sorry this d x will not be there since integration d x p x is equal to 1 because my wave

functions are normalized.

So, what it has done? It has converted highly non homogeneous type of a function into a

constant the in the integrand is quite non homogeneous here as you can see in this case

into a constant one. So, basically what it does? So, the idea is you choose in this type of

sampling,  you  choose  set  of  random  numbers  whose  distribution  I  was  probability

distribution function p x matches with that of the shape of the function. So, what it does

is it ensures smooth behavior in the neighborhood of the exact solution.

So, this is the idea of how one can improve the sampling ok. So, with this brief idea

about the change of variables and the improvement of sampling; so, let us come back to

the change of variables.
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So, we will now talk a bit more about how one can do change of variables ok. So, we

keep in mind. So, we will see some examples how you can change your variable and go

from one type  of  distribution  to  another  distribution.  So,  your  starting  point;  so my

starting  point  one  should  remember  is  a  set  of  random numbers  with  a  probability

distribution function given as p x is equal to 1 for x less than equal to 0.

I mean x between 0 and 1 and equals to 0 elsewhere and also the following normalization

condition is satisfied by this probability function that if you take the if you integrate it

over  the  whole  range  you will  get  1.  So,  this  we need  now need  to  transform.  So,

basically we need to transform x to some variable y, what is the general method? So, we

will use the idea of conservation of probability ok. So, what were you trying to do? I

have set of random numbers which has a uniform distribution and lies between 0 to 1, I

want to generate a set of random numbers y whose probability distribution is given by

the probability distribution function is given by d y.

So, what I have. So, according to the conservation of probability equation what I have is

p y d y should be equal to p x dx. So, here my p y d y is the new probability distribution

function which I want to go to, but we already know that my p x is equal to dx. So, this is

nothing, but equal to dx the right hand side this part is nothing, but dx because p x equals

to 1. So and then we do an integral. So, we do an integral from 0 to y prime p y prime d y

this gives me x.



So, basically what I have now is x as a function of y which is given by 0 to y prime p y

prime d y.  So, this  is  nothing, but if  you look at  this is nothing, but the cumulative

distribution of p y. So, if we can somehow compute the cumulative distribution of the

desired new distribution then we can easily get the mapping. So, once we know x as a

function of y if this expression is invertible then we can map also we can get y as a

function of caps. So, this is how the transformation is done.

(Refer Slide Time: 14:39)

So, we take some example. So, the first example is which is a simple one is that suppose

I want set of random numbers which has the following distribution p y d y equals to dx is

equal to d y by b minus a. Such that between when a y lies between a and b and is equal

to 0 elsewhere.

So, what we do? So, again we use the conservation of probability. So, d y by b minus a

equals to p x dx now my p x is my uniform distribution. So, this is dx and then if I do the

integral. So, my x and y will lie between a two y prime d y b minus a. So, the value of

this integral if we work out is nothing, but y minus a by b minus a right.

So, if I redo the, I mean if I do the algebra I will get y equals to a plus b minus a into x.

So, basically what this transformation or this change of variable do is that if I have a set

of random numbers with uniform distribution lying between 0 to  1,  it  converts  it  to

another set of random numbers again with uniform distribution, but now between a to b.
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So, another type of distribution which we often find in particularly in the area of physics

is my exponential distribution which is example 2. So, what I mean is basically, what do

I do is I want to generate. So, this is my desired distribution of random numbers is equal

to e to the power minus y d y. So, again I apply the conservation of probability, so what I

get is the following. 

So, e to the power minus y d y is equal to d x and if I integrate it on both sides. So, 0 to y

prime e to the 0 to y sorry e to the power minus y prime d y prime and this is nothing, but

gives me 1 minus e to the power minus y if I do the integral and then I can express y as a

function of x will then be given by minus log 1 minus x. So, now, you see, so what will

be the new limits?

So, my y; so x belongs to 0 and 1; so, for x equals to 0 here we get y is 0, but for x equals

to one we have the open limit that is y becomes infinity. So, now, the question is how we

apply this; so how to apply this to perform the integrand? So, suppose I want to use this

distribution to form the following integration I equals to 0 to infinity F y d y. So, how

will it I do it? So, what I will do is from this F y I will pull out e to the power minus y.

So, I have e to the power minus y if y divided by e to the power minus y d y.

So, now if I look carefully in this equation; so, this term here this is nothing, but my dx

and this other term f to the power y minus a divided by e to the power minus y this I am

calling as G y. So, G y is equal to F y by e to the power minus y. So, once I have that



then what I can do is I can rewrite this into the for this integrand in the following way.

So, I have now G y which I know is the function of x from this expression here. So, G y

which is the function of x in terms or in terms of x dx; so, this is what my original

integral F y is converted to.

Now, what will be the limits? So, my y was. So, now, we will need to go the other way

around. So, when my y is equal to 0 here, so y x will also become 0, but when my y is

infinity. So, this one will go to infinity and x becomes 1. So, this is how the after the

variable  transformation  how the integrand will  look like  and then this  I  can use the

Monte Carlo to approximate it in the following way.

So, instead of evaluating this function F y now I will evolve find out the average of this

function G y x i where my x i is random number in the interval between 0 and 1. So, in

this similar fashion if you want to if you know the form of the mathematical form of the

desired distribution of random numbers you can just do the change of the variables.

(Refer Slide Time: 21:28)

So, in the last part we go to the second part of this improvement method which we call as

important sampling. So, the idea is already explained briefly a couple of slides back I am

just reiterating. So, basically what I need to do is I need to generate a random number in

this case whose distribution maps or whose distribution or the shape of the distribution

matches with the shape of the function.



So, suppose if I have a exponential Gaussian this function here  which I want to integrate

I  would  rather  prefer  set  of  random numbers  which  has  a  normal  distribution  or  a

Gaussian distribution than a set of random numbers which has a uniform distribution. So,

how one change the shape of the sampling is done in a following way. So, let us assume;

suppose let us have say that we have a PDF probability distribution function p y which

matches a function F which is defined in the region a and b. So, and the normalization

condition is integration a to b p y d y is equal to 1.

So, what we are going to do is we are going to evaluate the integral of this function F y

dy; so, as before as in the previous case. So, we will use the same trick. So, I multiplied

the integrand with p y and also divide the integrand with p y. So, I have now p y d y d y

and then we can see that this is nothing by dx and this is my modified function. So, what

I do is. So, I change the variables accordingly a my b and then I have my modified

functioned p y x and again p as a function of x dx, where my x as a function of y is given

by the cumulative distribution of my original of this probability distribution function p y

of the desired probability distribution function p y ok.

So,  once we have this  then it  is  the simple  standard procedure where we instead  of

keeping it as a continuous we discretize the thing, so y in my function my integrand. So,

that is F y as a function of x y by p y as a function of x i. So, this gives me then estimate

of the integrand ok. So, so this is how the. So, now, this shape of this function. So, you

are basically modify what you are doing is you are modifying this function to in such a

way that you can have maximum number of sampling points lying in that.

So, but this is nontrivial to do having said that it is a important and its a very efficient

method, its non trivial. So, there are certain conditions that needs to be satisfied, that my

desired probability distribution function should satisfy.
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So, first of all since this is a probability of distribution function; so, the first thing is p y

has to be normalizable. So, you should be able to normalize p y what it means is if you

take the integral over of p y it should give you about the complete interval, it should give

you one and not only that since probability is always positive and it has a unique at a

given value of y it has it should have a unique value.

So, it should be positive definite throughout the desired range this function p y should be

positive definite and as you saw that what we need to do is we need to compute the

cumulative integral ok, we need to compute the cumulative integral of p a cumulative

distribution of p y. So, in other word what it  means is that p y should be integrable

analytically  So, given assuming that you can integrate solve this integral analytically.

So, say you will get some value let us say z y; so I say some value z.

So, to get y I need to invert this equation. So, I need to put this back here and I need to

write y as a function of z some z prime. So, this is obtained by; so I invert this and I get

this. So, what it means is that in addition to these two conditions it should be invertible

ok. So, these are the very three strict conditions and in many case most cases it is very

difficult to satisfy all the three conditions particularly the integrable analytically and the

invertible one. So, having said this, if we can come up with a probability distribution

function whose shape matches with the shape of the integrand that we are interested to



compute the integral of; so, this is one of the very efficient way and the error or the

variance can be computed then in the following way.

So, where sum over I equals to 1 by N F tilde square minus sum over 1 by N sum over I

equals to 1 to N F tilde and then whole square where my F tilde is this modified function

this is my F tilde. So, I will just write it here where my F tilde is equal to F of y x i by p y

x i. So, this is my error estimate . So, so let me just summarize these two things. So,

basically what we have learnt is how to improve the efficiency or how to improve of my

Monte Carlo integration. Improve the efficiency not compared to the grid based method,

but compared to the brute force Monte Carlo. 

So, we do it in two ways we change the variable and we change the distribution of the

random  numbers.  So,  we  choose  a  new  distribution  of  the  random  numbers  which

typically a matches the shape of the function which we want to integrate and this way we

can do it very efficiently the integration with fewer sampling points.


