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Lecture - 11
Numerical Integration Part 06

So, far we have seen how to do Numerical Integration, in particular, multi dimensional

integration numerically, using the stochastic Monte Carlo integration base method. So,

far what we have been doing is we have been doing it in a very brute way. So, in order to

get good converged value of the integral with few random numbers or few Monte Carlo

steps, we need to improve the present or the existing method which we are doing.

(Refer Slide Time: 00:57)

So, one such method which helps in improving  the sampling is called a acceptance or

the acceptance rejection method. It is also called the hit or miss method. So, it is based

on the famous scientist Von Neumann. So, let us let me try to explain what this method

is through a through an example. So, the example which I will be using is basically an

one dimensional integral.  The reason I am using a one dimensional integral though I

have already said before, is that one dimensional integrals with Monte Carlo is not very

efficient, that  is because one can then visualize the things much more clearly rather than



trying to visualize or imagine a multi dimensional space. So, what I am trying to do is, I

am trying to evaluate this integral I  which equals to integration 0 to 3 exponential x d x.

So, this is the integral I am trying to evaluate. So, if I plot this function e to the power x.

So, what it will look like is the following. So, I have x here y  axis here. So, at x equals

to 0. So, e to the power 0 is 1. So, it will go from 1 from here and it goes all the way up

here. So, this is my x equals to 0 and this is my x equals to 3. Similarly here my f x is

equal to 1 and here my f x is equal to e to the power exponential 3.

So, what is  done in this  method is so, I  consider this  rectangle.  So, my rectangle is

defined by x varying from 0 to 3  and y belonging from 0 to e to the power minus 3. And

then what I do is I generate two random numbers, I generate a random number x which is

3  times  my original  random number.  So,  remember  so,  my Fortran  random number

generator  returns  me  uniform  distribution  random  the  set  of  random  numbers  with

uniform distribution between 0 and 1 .

So, for my x I need to scale this distribution from 0 to 3. So, I need to map these to a

distribution to a set of random members which spans from 0 to 3. So, the way to do it is

3 into this random similarly for the y also I need to map. So, this is for x; for y also I

need to map this distribution to a set of numbers which would lie between 0 to e to the

power 3. So, what I do is I take y equals to exponential to the power 3 into my random

number. So now, I have got two random numbers y and x. Then what I do is I check

whether my this random number y, the second random number which I have generated

here, whether it lies inside this shaded area or it is outside.

So, how do I check this? I use the if statement. So, I check if y is less than exponential x.

Reason I am taking exponential x is because this curve is given by the equation e to the

power x. So, if y is less than x what it will mean is that random number is somewhere in

this shaded region and I include that number in my count. So, what I have to do is I have

to keep a counter,  and to find out how many such random numbers are there in the

shaded region. So, suppose such counter is given by s. So, I increase my counter to, s

equals to s plus 1.

So, I start with s equals to 0. So, I do what this I repeat this step these therefore, say n

number of times. So, what I will get is, fraction of numbers that lie in this shaded region,

which is my area of the curve and that is given fraction of numbers in shaded region and



that is given by ratio of s by the total number. So, once I know the fraction of such points

lying in the shaded region. So, what I need to do is, find out the area, find out I need to

multiply this fraction with the total area of this rectangle. So, then that will give me the

estimate of this area over under the curve.

So, my value of the integral will be equal to 3 that is the length of the rectangle into

exponential 3 that is the breath of the rectangle and the fraction of points which falls

under this shaded region. So, this is my estimate of the integral. So, the reason we are

calling it as the acceptance rejection method or hit and miss method is because of the

following. So, what we are doing is we are generating random number and then checking

whether it is within the concerned area or within the concerned volume. If that particular

random number do not lie within the volume of interest or in this case the area of interest

we are throwing away that random number.

So, we are accepting some and we are rejecting other and as a result this method is called

the acceptance rejection method rather than we generating a set of random numbers over

all this area, we are just now using a fraction of them to evaluate the integral. So, this is

what is the summery of the acceptance rejection method, but still as we will see that this

method is also very brutal.  If your function is not a well behaved one it you need to

generate still a large number of random numbers to have a reasonable estimate.
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So, now we will use the Monte Carlo integration how using Monte Carlo integration we

can numerically evaluate this integral. So, what we want to do is, we want to find out the

value of the integral e to the power x with a lower limit from 0 to 3. So, this we can solve

analytically and we know that the exact value is e to the power 3 minus 1. So, what we

will do is, first we will just solve it with the trapezoidal rule and then we will use two

different flavors of Monte Carlo. 

In the first flavor of Monte Carlo this one this brute force Monte Carlo we will just use

the conventional philosophy that the integral of a function in mth dimension gives me the

volume in at m n close by that function in the m plus 1th dimension. So, that is what is

this brute force Monte Carlo and then we will again evaluate the same thing with the

acceptance rejection method. So, let us first see the code for then evaluating the integral

within the trapezoidal rule.

(Refer Slide Time: 10:10)

So, that is contained in this file called trap underscore x where is contained let us see

what is the file name. So, the file name is trap underscore auto underscore e x p dot f 90.
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So, basically what I have done is I have used same file with just modifying my function.

So, this will be integration 0 to 3 just to correct it, then we have e exponential x d x. So,

this is the function which I am trying to integrate. As before these part is all same the

only change which I have made here is I have change the function.

(Refer Slide Time: 11:12)

So, instead of the evaluating the function 4 by 1 plus x square, what I will do is I will

evaluate this function e x p 2 e x p x and then rest part is completely same. And, then I

write down the bin size the value of the integral as a function of the bin size and also the



error has the function of the bin size in this file with this name trap underscore e x p dot

dat. So, let us run it and see what we get.

(Refer Slide Time: 11:51)

So, as before we compile it with my gfortran compiler, gfortran minus o trap underscore

auto dot underscore e x p dot x then that is the name of the executable look and then trap

auto underscore exponential dot f 90.

So, I have compiled it and then I will now I am running it dot slash trap underscore auto

underscore exponential dot x. So, I give the starting value of n let me start with the small

value say 10 the limit of the integral if you remember it is from 0 to 3 as I have written it

here 0 to 3.
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So, the lower limit is 0 the upper limit is 3.

(Refer Slide Time: 12:40)

So, it will take some time to evaluate and then. So, we have to wait till it is done because

it is doing for several values of the integral.
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So,  now it  is  done  and then  what  I  have  is  the  file  containing  the  data  trap  e  x  p

underscore dat. So, like before if I see what are the contains of the file let me just grab

them out and this is what I get. So, these are the that is now here I do not have it as a bin

size rather I have written it as a function of the number of grid points. So, as I increase

the grid points, you see that the error is decreasing very fast . So, with the hundred grid

points I am already doing very good with a error of 10 to the power minus 3, but the

movement I went to this grid size the error decreases to 10 to the power minus 12. Now

the same thing how will I do it using Monte Carlo integration?
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So, the code that does that is the following. So, the name of the code is crude underscore

m c underscore int underscore exp. So, let us open this file.

(Refer Slide Time: 14:04)

So, again I here in the comment line, I have to correct this. This is integration 0 to 3, then

I have exponential x d x ok. So, what I have here is I have 2 integers the n is the number

of points now remember unlike the trapezoidal rule these points will be random points

which will be given by which will generate by using my random number generator. And,

I  is  the  counter  p  is  the  dummy  variable  used  for  the  subroutine  called  random

underscore number, which returns the random number when I call this random number

generator  crude  underscore  m c is  the  variable  where  I  am storing the  value  of  the

integral, then x is a number which basically lies between 0 to 3.
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And,  then  I  have  my function  f  u  n  c  is  a  function  as  we have  seen  before  which

evaluates the value of the function e to the power x, when I give the value of x.

(Refer Slide Time: 15:22)

And then what we have is then sigma stores the value of the sigma, var stores the value

of the variance, length stores the total length of the interval over which we want to do the

evaluate the integral and since here the it is done from 0 to 3. So, I have set length to 3.

Again I am using double precision here and actual stores the actual value of the integral. 



And actual value of the integral as I mentioned before is exponential e to the power 3

minus 1. So, this is my actual value of the integral here I do it for several value of n. So, I

want to store the data either I mean I want to store the value of my integral as a function

of different values of n. So, that information is stored in this particular file. So, how do I

do it? So, first I set this crude underscore m c, where I will be storing the value to 0 and

sigma to 0 

So, once I do that what I do is, I follow these steps n number of times. So, each time

what I do is. So, basically what here I am doing is I am computing the average value of

the function, but instead of taking a fixed grid I am taking the grid is a random one

depending on the random numbers which is generated by my random number generator.

So, and also remember that this random number generator what it does is, it gives me

random numbers from 0 to 1. So, that random numbers from 0 to 1 I need to distribute it

from 0 to 3, and this is how I do it.  I just simply multiply it by 3 times the random

number p where p is a random is a random number which lies between 0 to 1.

So, this is my new grid point x which is which I find it this way and once I find it this

way then what I can do is, I can evaluate using the function I can evaluate the value of

the function at this particular x point,  similarly and then I keep on adding it up and

similarly for the sigma also I do the same thing, but sigma you know it is square of the

function which I need to do. 

So, because this 1 the integral is the average, now I am computing this I want to compute

the variance and so, I need to sigma which is the average of the square of the function.

And once this do loop is executed what I do is, I to compute the average and need to

divide  it  by the real  n.  Here is  the  number of time.  So, I  compute the value  of  the

function similarly for sigma and then my a integral the actual value of the integral, I need

to multiply it by the volume of which in this case  is  one dimensional, it is  length.

So, length into crude underscore m c and similar way I also compute my variance and

once that is done I write it here in the screen and I also write the error in the file the value

of n, the number of iterations or the number of times I am evaluating out of the number

of random numbers; I am using to make this estimate and then the crude value I mean of

the  integral and then the error compared to the actual value of the integral.
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Once this is done what I do is, here I change n to n into 10, I increase it n fold, and then

until and unless the n is or as long as n is less than this number, I repeat these  steps.

So, I go back to this point go to 7, 7 is this point I again set my this crude underscore mc

and sigma to 0 and repeat all the steps. So, once this is done, then it will come out of the

loop.  So,  let  us  again  compile  and  run  the  code  and  see  what  happens  crude  m c

integration.

(Refer Slide Time: 19:48)

Sorry I missed the minus .
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So, it has produced this executable file this one here. So, let us run this . So, I start with a

very small value say 10 and then it automatically does  it for several values.

So, to wait  for some time for it  to come out  of the loop and do that  and finish the

calculation it is done.

(Refer Slide Time: 20:35)

So, if I do l s minus l t r. So, I have this file which has been produced which contains the

value of the integral as a function of the number of random numbers I used to compute

the  average.  So,  if  I  do  it.  So,  this  is  what  I  get.  Now,  let  us  compare  it  with  my



trapezoidal rule. So, this first part here is the output of the value of my integral as a

function of n using the crude Monte Carlo and this one here is the value of the integral

for the same thing using the trapezoidal rule.

So, what we see is that,  in comparison to this Monte Carlo simulations Monte Carlo

integration here the accuracy achieved by the trapezoidal rule is much higher, but this is

true  in  1 dimension and in one dimension typically your trapezoidal rule is much better

and much more faster also compared to the till the Monte Carlos integration. So now, we

will do the same integration using the acceptance rejection method. So, in the acceptance

rejection method what one needs to do is so, this is the integral which I am evaluating.

So, basically  what I will do is, I will  consider a square whose origin is a which are

formed along the x direction it goes from 0 to 3 and in the y direction it goes from 1 to e

to the power 3. So, what I will generate randomly through points inside this particular

square and then I will find out, how many points are there which lies and within this

curve. So, that fraction gives me the value of the integral.

(Refer Slide Time: 22:30)

So, again as before what I have here is integer variable set of integer variables I start

with i the counter, then I have n which gives the total number of points and then I and

this p t underscore curve will calculate how many points will that lie within the curve,

then I have the value at of x and then p is the dummy variable from the random number



generator y is the value of the function and integral is the value of the integral and then

exact is the value of the analytical value of the integral.

So, I ask a user to send me the value of n and since I want to do it again for several

values of n and do it in automated process and I stored them here. So, I said the counter

to the number of points that lie within the curve to be 0 each time I want to evaluate this

integral for each value of n, then what I do is the first step is I find a random value of x

between 0 and 3 and this is done by this two lines. So, first I call a random number a

random number generator which gives me the value of a number between 0 and 1 which

which  is  stored  in  p  and  this  number  I  convert  to  a  number  between  0  and  3  by

multiplying it by 3 and I store it in x.

(Refer Slide Time: 24:00)

So, once that is done, then I evaluate the value of the function at a random point between

0 and e to the power 3 which is exponential  3, which is the maximum value of the

function, that I do it in a similar way as I have done  to find a random number x. So, I

call  a random number p which lies between 0 and 1 and then I multiply the random

number to e to the power exponential 3 . Now, once I have got these two numbers what I

do is, I check whether this random number y sub which is the value of the function any

value of the random value of the function that  lies between 0 and e to  the power 3

whether it is less than that  exponential of the random number x.



If it is so, then we can assume there then we can consider that the point is lies within the

within the curve enclosed by or the area enclosed by the curve and I take it, I count it.

So,  I  repeat  this  process  several  times  and  I  count  say  if  I  throw 1000  times  such

numbers  on my square how many such numbers lie  within the area enclosed by the

curve. So, once I know it, then I can compute the integral in the following way. So, this

gives my so, this part is basically the fraction of the points which lies within the curve

and then this is the area under the curve form. So, if I do the integral and then what I am

doing here is I am also evaluating the exact value of the integral and then I am writing it

in this file.
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So, and then as before I am automating the process and it is done till the n takes a value

of which is larger than this one.



(Refer Slide Time: 25:55)

So, let us compile it as before and see what we get. So, I start with the very means small

value and let the code run it will take some time to run it. So, once it is done. So, what

we will do is let us see what is the file. So, you see it has produced this particular file.

So, let me just copy it and let us see what it has done. So, these are the set of numbers.

So, see again this method also the accuracy is given with such a huge number accuracy is

few orders of magnitude what is then what we achieved with a trapezoidal rule. So, this

is how one does the integration using the acceptance rejection method and the crude

Monte Carlo and we have also seen how these compares with the trapezoidal rule for a

low dimensional  case.  So,  for a  low dimensional  case definitely  the trapezoidal  rule

works much better.


