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This would be the last lecture of our course where, I would like to make some quick

announcements. So, we are now in the position of evaluating the entire course by an end

semester exam so, just to sort of give you guys a feeling of what is expected in the end

semester exam.

So, we will ask questions spanning across the course on you know various chapters and

the weight age would be roughly 60 percent from the final exam. And, this will be a 3

hour exam where we will give some descriptive questions pen and paper calculations

where you will be asked discretely what is required in a problem, so you to work out the

various steps and give us the answer

And if you have done the assignments carefully or invested time in the assignments and

you have done you have attended all the classes then there should not be any problem at

all. So, there will be about 6 descriptive questions in a total of 3 hours and today the task

is to just get a flavor of the type of problems that you can expect. And, one should know

at the end of any statistical mechanics course introductory statement course the student is

expected to know a few basic things.

So,  we will  sort  of  do  some problems not  indicating  that  this  is  these  are  the  only

problems you will encounter. But, these are the type of problems you are supposed to

solve with very simple calculations.
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So, we shall do that now and so, I am going to title this particular lecture as Problem

solving demo, if  that is  a meaningful  name right.  So, we will  start  with the Poisson

distribution a very important distribution in statistical mechanics and how about we do a

simple problem here?

So, if you recall this process of Poisson statistics is applicable to completely random you

know processes in time or in space and they are completely independent of each other,

the processes are the events are independent of each other. So, and under such a setting

the only rate only thing known to us is basically the mean rate of events, which means if

you start your window of observation this is the time axis, then you may see processes

happening very randomly ok.

So, when the processor are random, all you can basically comment reliably is what is the

mean rate? So, mean rate is given as some number of events that are happening in some

interval in some interval T divided by the length of the interval ok. So, for instance the

example that comes to my mind is let us say you go to a factory where, but basically

which is involved in manufacturing dolls.

Now, in such a condition if you happen to visit such a factory which is manufacturing

large number of dolls, if you stay there for a minute you may see a doll coming out of the

you know whatever their manufacturing process; if you stay for another minute you will

say maybe 2 dolls coming out.



So, if you stay there for let us say 60 minutes and you observe for a 120 dolls then you

can say that  the average  manufacturing  rate,  which  is  alpha its  basically  2 dolls  per

minute. That is not to say that if you stay there exactly minute you will say 2 dolls you

may see more than 2, you may see 3 dolls, even 4 dolls or you may see 1 or nothing;

because the dolls that are coming from the conveyor belt  are basically  these random

crosses in time you may see 1 or you may see nothing or you may see more than 2.

So, what is known for sure is that the average rate of the manufacturing of dolls is 2 dolls

per minute. Now the question you can ask interesting questions that you can ask is what

is a probability of observing or the manufactory, manufacturing 4 dolls in 4 minutes 4

dolls in 2 minutes?

So, the average rate is basically 2 dolls per minute and stay there for 2 minutes what is

the probability that you will see 4 dolls? By this question I mean that objectively I mean

that if you collect 30 volunteers and these volunteers could be your friends. And, you ask

them to go to this factory at random times and ask each one of them to stay there for 2

minutes; and count the number of dolls they see coming out of the conveyor belt.

Most of them will say that they observed 4 dolls because that is what the average see a

rate seems to convey, because the average rate is 2 dolls per minute. So, most of them

will say I saw 4 dolls because I stayed there for 2 minutes 2 times 2 is 4, so that is the

answer. But some of them will say I saw 5 dolls and some of them will say I saw 3 dolls

some will even say I saw 1 doll or I saw nothing because dolls are a random variable in

this problem.

So, eventually what you will do at the end is you will just add up the guys you got 4 dolls

and divide by the total number of volunteers, that would give to you the probability of

observing 4 dolls in 2 minutes that is how you would do it the problem objectively.

Subjectively you can compute this from Poisson statistics which is basically saying what

is the probability of seeing 4 dolls when the average number of dolls is actually 4, you

may be tempted to say that this says 100 percent, but it is not it will not come out to be

100 percent.
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So, if you recall your formulas the probability let me write down the formula first. From

Poisson statistics the probability of seeing m events when the average number of events

is alpha T is alpha T to the power m into e raised to minus alpha T over m factorial. So,

in this case our alpha T is basically 2 per minutes which is the rate and the observation

time capital T is 2 minutes ok.

So, that is the capital T which is my observation time and this is basically 4. So, I can

write down for P 4, when the average number is also 4 probability of observing 4 dolls

and the average number of dolls that you expect is also 4, as basically 4 times 4 into e

raised to minus 4 over 4 factorial, so this would be 4. So you can knock this off and this

will give you 32 over 3 into e raised to minus 4. So, this is the probability of observing 4

dolls when the average number of dolls expected is 4.
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And this should not surprise you because you already know the graph of the Poisson

statistics, which says that if I am asking what is the probability of seeing m events in a

time interval that the mean number of events is alpha T; this should have a maximum

near the mean and it should then go to 0 as intuitively ok.

So, this is basically the behavior of the this value is very close to alpha T and this value

is basically e raised to minus alpha T. So, for large observation time the curve will hit

devices at 0 (Refer Time: 11:15) and that completes the problem for the probability of

finding exactly 4 dolls.

So, you may also ask in connection to this as what is the probability of observing less

than 4 dolls, in the same interval of 2 minutes where alpha T becomes 4. So, this rate is 2

dolls per minute and my observation time is 2 minutes. So, my average number of dolls

that I expect its still 4, but I want to see what is the probability of getting less than 4 dolls

because many observers either 30 volunteers that you brought in did also some of them

also saw less than 4 dollars some of them saw 2 dolls, 3 dolls M 1 doll and nothing.
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So, the probability of seeing less than 3 dolls, when the average number of dolls that you

were expecting to see was 4 is basically sum over all the values 0 to correct. So, you can

compute P 0, P 1 and P 3 and that should be the answer you can also ask: what is the

probability  of getting more than 4 dolls,  when the average number of dolls  that you

expect is 4.

So,  we are not  changing the  average  so our  rate  is  still  2  dolls  per  minute  and my

observation time is also 2 minutes. So, I expect 4 dolls as the average, but now I am

asking,  what  is  the  probability  of  getting  more  than  4  dolls;  because  some of  these

volunteers who you chose will see more than 4 dolls ok.

So, so then you will basically ask what is P m greater than 4 when the mean number of

dolls was 4. So, then this is basically all the probabilities m equal to 5, 6 all the way to

infinity. So, you need to just sum over all the probabilities now this is tricky, because you

have now infinite terms here.



(Refer Slide Time: 14:31)

So, the best way to do this is just use the axiomatic definition of probability that we

know that you know there is a condition that this probability must be normalized. So, if

we have this summation m going from 0 to infinity P of m which is unity right this is

normalized probability ok.

So, which means I can write down this particular sum from probability greater than 4 as

simply 1 minus the probability of m less than 4 fine. So, that is basically 1 minus P 0

plus P 1 plus P 2 this is the answer right. So, then we come to the closure of this problem.
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So, we can pick up some problems from statistical mechanics the basic postulates so, I

will start with the canonical ensemble so right. So, in the canonical ensemble we know

that the system under consideration is at constant, if I take an ideal gas as a working

system it is maintained constant N comma, V comma, T. So, suppose if I ask you to

compute let us say to compute the equation of state, now this is a problem that we have

done in the class, but let me just concoct a question that is of relevance from the point of

view of stability of matter.

Let us say if I ask you to prove that free energy is a negative quantity, which means if I

allow the gas which is in contact with the reservoir, thermal reservoir and if I allow the

gas to expand by removing the walls  the particles  are  thermo started coupled to  the

reservoir. Now, there is no constraint on them to stay inside a fixed volume I simply

remove the walls.

So, the particles will in occupy a larger volume and they will keep on occupying larger

volume,  until  the  volume  becomes  infinity  which  is  something  that  we  expect  by

intuition. If you want to show that this is what happens in reality and you want to give a

rigorous argument you want to provide a rigorous argument, you would want to show

that the infinite volume state is a stable thermodynamic state, either you show that or you

show that infinite volume state is the maximum of entropy.

So, this is the disorder argument the first argument was basically to show that the infinite

volume state is a minimum of free energy. So, either you show its a minimum of free

energy or the maximum of entropy both arguments would show that the infinite volume

state is a stable state. So, for that you know we must first obtain the free energy and then

comment on stability of gas.

So, if you recall a canonical ensemble, so this is like a working material or a or an ideal

gas. Let us say for example, this is basically a system under contact with the reservoir

and the joint system is isolated. So, the system plus reservoir is under micro canonical

ensemble it is isolated from the surroundings ok. So, the this is the insulation complete

both mechanical isolation and thermal isolation is indicated here.

So, the system is maintained at constant temperature by allowing energy interactions and

it  is maintained at  constant volume by simply keeping fixed walls  and maintained at

constant number of particles by not allowing particles to escape, so, the walls are not



poorest. So, now, under such a setting we have already computed the partition function

of the gas right.  So,  this  partition function is  nothing, but as discussed already its  a

function  of  the  microstate.  So,  this  is  your  microstate  and  the  partition  function  is

nothing, but the norm of your probability distribution.

So,  the  probability  to  find  my system in  some microstate  nu,  if  I  sum over  all  the

probabilities  then  basically  I  get  my  partition  function.  So,  for  the  ideal  gas  the

probability of finding a microstate nu is e raised to simply the Boltzmann factor beta H

nu where, H nu is simply you know the Hamiltonian of a microstate and for an ideal gas

it is purely kinetic right, which means I must compute the partition function by using

integral.
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Here summation over microstates is not possible because the variables of the microstate

are  the  momentum  particle  momentous  which  are  continuous  random variables.  So,

when you are dealing with continuous random variables you have to basically remove

exchange the summation with an integral over the entire phase space. So, if I refer the

phase space to be something like gamma and basically p of gamma is basically, now the

probability density at the face point face space point gamma and g of gamma is nothing,

but the density of space phase space density.

So, then I have to compute the partition function by a continuous representation and

under such a setting, the phase space integral that I am just talking about here is basically



this  quantity  d gamma which is  the  phase  space volume.  So,  I  will  write  down my

probability density which is e to the power minus beta summation I going from 1 to N p i

square by 2 m and this has to be integrated over the entire phase space volume ok.

And what I am going to do is basically write down, this phase space volume element in 6

N dimensions as the product of these d cube r i and p is so, it is a 6 dimensional phase

space volume. And I am going to integrate it over the entire coordinate. So, basically

here each position belongs to my volume v and the momentous are basically going from

minus infinity to plus infinity ok.

So, this is both volume and position integration and to account for in distinguish ability I

will use the N factorial which is basically to account for the fact that I do not want to

over compute my microstates these are the N factorial projections in the phase space that

result into a degenerate Hamiltonian.

So, they have to be sort of removed and that removal is basically the division by this N

factorial  my density of space states g of gamma is also coming here in the fact of a

normalization constant which is h to the power 3, this also exists to non dimensionalized

my partition function.

And finally, if I compute this partition function, then I will observe that I get this very

simple expression. So, basically each momentum coordinate when integrated will give

me 2 pi m over beta to the power half and since, I have 3 N of them I should get a factor

of I should get another power of 3 N ok.

So, this p square by 2 m so if you want to compute over so basically this means that, this

you write it as beta p x square by 2 m, the p x p x going from minus infinity to plus

infinity this will give you square root of 2 pi m by beta ok. So, since you have a triple

integral it raised 2 it gives you a power of 2 pi m over beta to the power 3 half and there

are N such integrals so, you get 3 N by 2.
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So, then what you have is basically a simple integral here which is, I can rewrite it as 1

upon you are also missing a factor of V to the power, because that is the integral and so,

if there are N such integrals it will give you V raise to, so, that is why we have V raise to

N.

So, now I have 1 over N factorial into V raise to N into 2 pi m k B T over h square to the

power 3 N by 2 and this,  if  I  define the de Broglie  wavelength as lambda becomes

nothing. But where I have defined the De Broglie wavelength thermal wavelength or De

Broglie thermal length scale, as h over square root of 2 pi m k B T ok. So, then we can

write this as a it is lambda 2 power 3 alright.

So, this is my partition function and now the idea was to show the free energy is negative

and the infinite volume state is a minimum of free energy. So, let us compute a free

energy.
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So, we know from the connection to stat mech has already been discussed or connection

to thermodynamics, you are already in stat mech. So, we need to go to thermodynamics

is provided by this beautiful law or beautiful relationship that the energy scale is related

to minus k B T ln of Z. And so, since we have these Z in front of us we can simply

compute the free energy as minus k B T into ln Z.

So, this  would be simply N and ln V and if  you use a sterling from formula for N

factorial we get, using sterling approximation where plus basically, if you use the good

studying approximation they have an ln of 2 pi N, but since ln N is much smaller than N

ln in and N we are going to drop this ok. Because ln N is much smaller than, also N log

N; so, then if you rearrange all the terms by pulling N out what do we get we get ln of V

over ok.
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And then I can write it as minus N k B T ln of e over small n lambda cube; where this

small  n  is  nothing,  but  number  density  ok.  And  so,  in  the  classical  limit,  which  is

basically the limit where we work the classical gas is in the classical limit the classical

limit is when you have high temperature and low density.

So, the De Broglie  wavelength  which goes as proportional  to  inverse square root of

temperature  is  also  very  very  small.  So,  these  are  basically  the  limit  of  quantum

mechanics where the wave function of a particle is very is highly deal is highly localized

its highly localized. So, which means you do not need a wave picture for a particle, you

need particles are treated as distinct objects with deterministic dynamics.

So, the classical limit is when you have density very low or de Broglie wavelength has

very  large  very  very  low.  So,  n  lambda  cube  which  is  a  beautiful  dimensions

dimensionless number it tells it is basically much much smaller than 1. So, as we have

already seen in quantum statistics when this dimensionless number is of the order of one

that is the onset of quantum mechanics and when it is much larger than one you are

definitely quantum mechanical.

But  here n lambda cube is  much smaller  than 1,  because our n is  very low and the

temperature  is  high ok. So,  if  temperature  is  high they were De Broglie  wavelength

which goes as 1 upon square root of T is also very low ok. So, the product of 2 low

numbers is much lower than 1 right.
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So, then if this is the case then I can always say that e over n lambda T cube is much

much greater than e if that is the case, I can say that ln of this is much much greater than

ln of e, but at least greater than ln of e. I know that ln e is positive, so which means my

free energy which is negative NKBT into ln of e over n lambda cube must be negative so

that shows my free energy should be negative.
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So, we will now talk about the grand canonical ensemble. This is the ensemble where

you maintain a system at constant volume constant chemical potential constant volume

and constant temperature.

So, we are looking at for instance an ideal gas, in the grand canonical ensemble. So, this

is like if you draw small schematic then this is my system and I have kept it in contact

with  the  reservoir,  which  has  a  twofold  task  of  constraining  the  temperature  at

temperature T by allowing energy exchange and keeping a chemical  potential  mu by

allowing for particle exchange and we keep the volume to the constant by imposing fixed

walls.

So,  this  is  my  system  and  that  is  my  reservoir  and  the  joint  system  now  is  both

mechanically and thermally shielded from the universe. So, the joint system exists in

micro canonical ensemble, in the sense that there cannot be any exchange of particles,

energy with the universe.

And certainly under such a setting the microstate label, so this is the macro state label a

typical  microstate  in  the  grand  canonical  ensemble  will  have  the  label  of  particle

coordinates  both  momentum  and  position  coordinates  and  also  the  volume  of  the

microstate.

Because volume is also sorry, I am so sorry I should have mentioned the number of

particles. So, the number of particles is also variable of the microstate which means, if I

want to identify the probability  of finding my system in a microstate  nu then this  is

nothing, but e to the minus beta some energy scale which is the enthalpy scale divided by

summing over all the microstates e to the power minus beta H nu; where H nu is an

enthalpy of the microstate keep in mind that in the grand canonical ensemble the energy

scale  is  not the internal,  energy because the internal  energy along with the chemical

energy which is nu N is the random variable of the problem.

So, the enthalpy is basically the internal energy or I will call this internal energy as the

internal Hamiltonian of the microstate minus this chemical energy mu N nu ok, so this is

the energy scale of the problem. So, then one can write down this thing as the partition

function ok.
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So, now one can write down the grand partition function which was discussed in the

class. So, the grand partition function is the norm of your probability distribution, so I

will write down as a double you know vertical crosses on the Z just to distinguish from

the  canonical  partition  function.  So,  the  grand  partition  function  now  this  simply

becomes the norm of my probability density, which is nothing, but e to the power minus

beta into the internal Hamiltonian minus mu and nu ok.

And so this is basically nothing, but I can write it as summation nu and now I can sort of

compute this sum easily by interchanging, you know here this is the unrestricted sum;

since the microstate label is set up by joint variables which is the particle coordinates and

the number of particles.

So, we can decouple them and form a restricted sum in the sense that I can first sum over

the number of particles that will go from 0 to infinity and for this, that is set outside in

the outside some; I can set up the internal constraints summation and compute the second

Boltzmann factor so this is like now the constrained sum.
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This is easy to perform and this was computed in the class to be e to the power beta mu

N and the canonical partition function. So, this is the left hand side is the grand partition

function  with  a  double  strike  off  and  the  right  hand  side  is  the  canonical  partition

function, but suppose we give you in the exam we sort of we will not ask you to do all

these derivations in detail.

It will provide you with let us say we provide you with this expression; this was just a

recap of the grand canonical ensemble. Suppose you have given the partition functions

form and we asked you to  prove  for  instance  get  an  expression  for  pressure  get  an

expression for pressure P, given this form of partition function ok.

So, you know already by now that between statistics and thermodynamics there always

exist a symmetric relationship ok, that comes from partition function so we need that

expression here ok. So, for instance I can think of if you know the relationship which is

basically the grand potential is minus k B T ln the grand partition function.
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Then you can straight away do your problems and this grand potential is nothing, but e

minus TS minus mu N this may also be provided to you ok. So, if you want to establish

this relationship that is also very simple, but suppose this expression is provided to you

ok.

Then how do you compute pressure? If you recall I will just be just before we compute

the pressure, I just want to establish in your minds that this beautiful bridge that connect

stat mech thermodynamics it is very easy to derive you simply measure some observable

in both the approaches. So, you measure for instance mean number of particles using stat

mech this is an observable mean number of particles N observation. So, using stat mech

if you measure and this is nothing, but summation N going from 0 to infinity N sampled

in this distribution that is the mean number of.

So, this  if  you look at  the form of your PDF ok. So, somewhere I  have written the

partition function yeah here the grand partition function.  So, you can write down the

form of your of your PDF yeah here. So, you can write down the form of your PDF for N

as nothing, but e to the power beta mu N into canonical partition function divided by this

is a PDF like this.

So,  this  was  the  probability  to  find  microstate  nu,  but  if  you  want  to  convert  into

probability of finding number of particles N this is the PDF. So, then you simply measure

this and this comes out to be if you want to pull out a beta mu. So, you put out pull out



an N. So, you take a derivative with respect to beta mu of your of your ok. So, if you

look at the form for the yeah here look at this expression to bring out N you have to take

a derivative with respect to beta mu that is what I have done here.

So, this is nothing, but d by d beta mu of ln of Z and you can compute N from here, but

that  is  not  our  target,  we  want  to  compute  and  then  you  compute  N  from  your

thermodynamics also ok. So, you can you can get a relationship, so for instance you can

write down your enthalpy H, which is the enthalpy here is e minus mu N and so you can

write down the differential and now use ok.
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So, if you use the first law here this becomes T T ds minus P dv because the first law is T

ds as correct right. So, I am substituting for d E minus mu d N as T ds minus P dv ok. So,

then I can write down this as d H equals to T ds I will write it as d of TS minus S d T

minus P dv minus N d mu.

And then this I will write as d of H minus TS which is minus S d T minus P dv minus N

d mu ok. And the d of H minus TS is basically E minus mu N that is H and minus TN TS

which is equal to minus S d T minus P dv minus N d mu. So, it is very simple so your

conjugate variables are back here so mu vd is the ensemble which is constant.
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So, then I can write this as d of sums Xi where Xi is the grand potential; and finally, you

can compute for N as its minus d Xi by d mu at constant T comma V. But we will

provide some of these relationships you do not have to derive all that, but suppose I give

you this relationship and ask you to derive pressure.

So, you just have this connection in front of you so, pressure would be nothing, but pi Xi

by d V at constant T comma mu; this would be pressure ok. So, now, you already have

Xi in front of you so let us bring down that zai, so Xi is basically minus k B T ln Z ok.

So, we need a form for Xi so, let us get that form for Xi so, you will have to obtain your

partition function now.

So, we have one relationship with us, so let us get the partition function that is the only

step remaining now ok. So, for an ideal gas the partition function the grand partition

function, you know if you look at the expression it is nothing, but if you go if you if you

recall upstairs it is nothing, but N going from 0 to infinity e raise to beta mu N into the

canonical partition function, something that we have derived just now.
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So, why do not we use it straight away? So, this is 0 to N infinity canonical partition

function was just derived this is ok, that is the canonical partition function right. And

now you can see that this is not looking nothing, but like expansion of an exponential, so

I can take this as e to the power beta mu into V over lambda T cube, the whole to the

power N into 1 by N factorial. So, this is nothing, but e to the power e raised to be term

mu into V by lambda T the whole cube, this is my grand partition function.
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Just take a logarithm and this will give you the grand potential, so just derived grand

potential. So, just derived grand potential was minus k B T into ln of the grand partition

function, this would be these are symmetric laws there for every one symbol you have

something that is an energy scale and connects to the partition function.

So, if you take a logarithm of this is you could just get e to the power of beta mu V by

lambda T the whole cube alright. That is the final step you got the grand potential, you

have  this  symmetric  relationship  which  has  given  you  the  grand  potential  now you

simply use equation 1. So, I am just going to copy this equation here bring it down.
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So, let  us take so you have the grand potential  in front of us whose derivative with

respect to volume will give me a pressure. So, let us do this, so derivative with respect to

volume the constant T and mu will simply give me minus pressure which is minus k B T

temperature and chemical potential are constant alright. So, this is the basically develop

value of pressure, but suppose I call this as equation 2 and go back to my equation for Xi

somewhere I have computed yeah right above right.

So, I have just computed here this underlined expression, so you can clearly see that if I

take the ratio of let me call this as equation 3 and then I am actually and call this is

equation  2.  So,  from  3  and  2  you  get  the  relationship  between  pressure  chemical

potential and grand potential. So, you can see that the relationship between these 2 is

nothing, but Xi is equal to minus P V ok.



So, if I multiply the equation 3 with minus with volume I get equation 2. So, this is the

relationship between pressure and chemical potential and the grand potential ok. So, this

is one way and similarly you can compute all other quantities in this potential.
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So,  like  I  said  here  N was determined  by taking  this  derivative,  you can  determine

volume you can determine entropy by simply minus d Xi by d T at constant V comma

mu ok. And that ends the discussion on the grand canonical ensemble right.


