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So, now you can see that, I can recast this definition of the density of states into more

usable representation. So, what I am going to do here is rewrite this density of states, as a

you can take S the spin of electrons to be half and that will make the 2 S plus 1 as 2. So, I

can write the density of states, as a V into 2 m by h cut square, raise to 3 half and a

divided by 2 pi square, into E raise to 1 half because, there is a m by h cut square also,

which I have taken inside the square root. 

So, it has become raised to 3 half ok. So, and here also I can write down the free energy

the harp the Fermi energy as. So, I am going to just write it somewhat closer and writing

down the Fermi energy as h cut square by 2 m, into 6 pi square; 6 pi square will simply

become 2 pi 3 pi square because, 2 S plus 1 is 3. 

So, let us use that and this becomes just 3 pi square, into N by V, whole to the power, 2

by 3 all right. So, it looks like more usable to me at least and one more trick here, we can

substitute for, what we will do is a from the energy Fermi energy expression, I can write

for 2 m by h cut square, as 1 upon EF into 3 pi square N by V, to the power of two third. 



And if I raise this to the power 3 by 2 then, I can say that this is nothing but, 1 upon

Fermi energy raised to 3 by 2, into 3 by pi and 3 pi square N by V. Now, you can simply

plug this; you can simply plug this value of 2 m by h cut square raise to 3 by 2 here, in

the density of states. So, let us call the density of states expression as a equation 3 and let

us call this as equation 4. 
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And substituting 4 in 3 gives us, I can write down my density of states, as V upon 2 pi

square and into 1 upon EF to the power 3 half, into 3 pi square N by V, into E raise to

half. So, you can see a lot of terms can be knocked off, you can knock off the 2 volumes,

you can knock off the pi square and what you have with the at the end of the day is just 3

by 2, N over EF to the power 3 half, into square root of E and I think this is a more

convenient use expression for the density of states right. 

So, you can easily say this is the right expression because, if I integrate this rho E over

the entire you know, you know at T equal to 0, if I integrate this density of states, I will

just get N. So, it is very easy, you can just check, this will give me nothing but, 3 by 2

into N upon EF to the power of 3 by 2 and when square root of E is integrated, it gives

you E raise to 3 by 2 into 2 by 3. So, this is nothing but N. 

So, my expression of the density of states is correct fine. 
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So,  now I  have  my  density  of  states,  I  am going  to  compute  some very  important

quantities, thermodynamic quantities. So, this is a very important expression for me ok.

So, the first important quantity that I am going to in fact, the 2 quantities that we are

going to be computing are, we know that in the limit N tending to infinity and V tending

to infinity which is the thermodynamic limit, I am going to be computing the you know

an expression for chemical potential but, for that I will start with the expression for N.

Now, N is nothing but, a integrating 0 to infinity, the density of states, Now, I know this

is  the  energy  density  of  states,  into  my Fermi  function  d  E.  Let  us  understand  the

integrand and the limits here, this is not just arbitrary integral, it has direct consequence

from summing over discrete degrees of you know, discrete energy of states and discrete

states of energy and what I have done is that if you recall we had simply the summation

over all occupation numbers or summation over all the Fermi functions. 

So,  my  integral  has  become  basically,  this  my  summation  has  basically  become  an

integral, which is a overall density of states and whatever function that I come wanted to

compute ok.
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That is my summation over j F Ej, will simply become integral rho E, F E, d E. Now, if I

am at a T equal to 0 then, I know that all energy levels, above the Fermi level, will be not

occupied, will be vacant. So, this Fermi function is basically 0 above the Fermi energy. 

So, for the purpose of integration, the upper limit will be just the Fermi energy, if you are

doing the integration at T equal to 0 but, if you allow the temperature to become non zero

then, in principle there is no upper limit on the energy because, it can go to infinity of

course, the probability density of finding in a state of infinite energy occupied will be 0

but, the mathematical upper limit of the integral will be not a Fermi energy anymore, it

will be infinity, at a non zero temperatures. 

So, do not worry about infinity, the Fermi function will take care of it ok. So, since we

are going to be interested in temperatures, that are nonzero. So, I am going to write it as a

thermodynamic limit and non zero temperatures, I am going to be interested in integrals

of this type, for total particles and for total energy, we will write down the integral as a

our  density  of states,  into  energy, into a Fermi  function,  integrated  over  all  possible

values of energy, in this case the energies will go from 0 to infinity ok.

Now, if you look at these 2 integrals, both these integrals for E and N, let us give them

some numbers equation 6 and equation 7, both the 6 and 7 are of the type you know. 
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They are of the type, an integral 0 to infinity, some function phi of E, into F of E d E, you

know for example, for in equation 6, we have taken the function phi as nothing but, the

density of states. And in 7, we have taken the function phi as, E times the density of

states. So, both the 6 and 7 are of this type. So, I am going to call this integral as integral

I and we can write down, we can compute you know before we do that, let us observe a

few things about this function phi, we know that the function phi is a function of energy. 

So, phi is a function and I am going to say it is a function that is smooth and which

means it can be written as a derivative of you know, some function. So, I can write down

phi as a derivative of some function ok.
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So, in this way, I can write down the function psi as, you know an integral of a this

function phi of E ok. So, if you look at this by this is just by the fundamental theorem of

calculus. So, now, I can do the following, I can compute phi, compute the integral I. So, I

can write down integral I as 0 to infinity, I am going to write down the Fermi function

first and then write the function phi of E. 

So, if you do it by parts, then it becomes simply the Fermi function into integration of

phi which is nothing but, my function psi and the limits here are 0 to infinity, minus

integration  of  the  derivative  of  the  Fermi  function,  into  psi.  Please  note  that  our

integration of phi, has already been taken to be psi,  that is why fine.  So, then I can

simply, I can simply write down, you just this is enough to write down. Now, this will be

a function of E prime. So, that is what I have done. 
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And you can see that, the first term here goes to 0 simply because, at infinity the we do

not know what is going on with the function psi but, I is no for sure that my Fermi

function is 0 to infinity. So, this is 0 at infinity and at the 0 the Fermi function is finite

but,  psi of 0 is 0 and that is very clean very very easy to see from the fundamental

theorem of calculus that I have written here, the way I have defined psi,  its evaluate

epsilon equal to 0 is nothing but, the integral phi, where the definite integral has the same

upper and lower limit. 

So, then psi of epsilon, at epsilon equal to 0 is 0. So, that pushes the first term to 0,

leaving me with the second term alone, which is a negative integral of F prime, psi E, d

E. So, now, we can our left hand side is basically, the integral 0 to infinity, F E phi E d E.

So, let us call this as some equation, which is equation number 8, couple of things to note

here. 

First of all the behaviour of our F prime, I want to solve this integral, this integral can be

solved for a general class of the functions phi provided we use the fact that our F prime

is a very sharply behaving, you see the Fermi function, at T equal to 0. 
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So, my T equal to 0, this chemical potential becomes E F and this is sharply falling to 0

and it is 1 everywhere, as a function of E ok. So, at E equals to EF then, I know my

Fermi function falls to 0 but, it all nonzero temperatures, I know that my Fermi function,

allows for some excitation of electrons above the Fermi surface. So, a small fraction of

electrons of the order T by T F are excited above the. So, I am going to say that, this is

my excitation. 

So, these are precisely the particles that are excited and this would be at a some energy

scale which is mu, this is not exactly at the Fermi energy because, this scale has moved

slightly, good temperature but, I know its about that is the chemical potential  for my

problem. So, I know for sure that my, if I take the derivative of Fermi energy then, it will

be very sharply peaked around this mu. 

And particularly I will take the negative derivative of the Fermi function then, I know for

all  these values where Fermi function is  constant,  there shall  be no derivative or no

variation and very close to mu, I will have a derivative nonzero, you peaking it exactly at

mu and again because it has to come down to 0, as the Fermi function it becomes 0 and

becomes remains 0 all the way to infinity. 

So, this derivative has to come to 0 and you can see this is a sharply peaked function,

where the width is of the order of twice k T, about k T over k times T F is the fraction of

electrons excited above the Fermi surface. So, the width of this is somewhat twice k T



and now using this fact and the fact that function phi of E is smooth, around my energy E

equals to mu, I can expand, psi of E in powers of the displacement around the mu. 

So, I  can expand it  in  powers of E minus mu.  So, I  can write down psi of E,  as a

summation over it is a like a Taylor series. So, summation m going from 0 to infinity, 1

upon m factorial,  this is Taylor expansion of psi around equals to mu, you can write

down E minus mu to the power m, into del psi by del E, the m th derivative at E equals to

mu, this is the Taylor expansion. 

Now, you can plug this. So, called smooth behaviour of psi, in equation 8 and try to solve

it, is the last step that is required and the smoothness of psi helps us to solve the equation

8. 
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So, you can see that plugging 9 in equation 8, gives us integral that we are chasing 0 to

infinity, F of E into phi of E, as a negative of the integral 0 to infinity, F prime E into

summation m going from 0 to infinity. 

1 upon m prime m factorial, E minus mu to the power m and since psi is just a function

of E, I am going to write down the partial as the ordinary derivative, psi is not a function

of any other variable. So, purely respecting that, I am going to write it as, m th ordinary

derivative, of psi at E equals to mu and this point I would like to remind here, this mu is



the chemical potential,  the distinction of chemical potential  from the Fermi energy is

only at nonzero temperatures.

Like I have already showed, E is our energy, that can take values between 0 to infinity,

mu is our chemical potential, which sets the scale of the energy, in some sense. So, at T

equal to 0, the chemical potential becomes the Fermi surface energy or the value of the

Fermi energy. So, the scale of the problem, which is mu becomes the Fermi energy at T

equal to 0, that is the only distinction. So, at any non 0 temperatures, this scale remains

the chemical potential, as reflected in our Fermi Dirac statistics. 

If you go back, as you can see here, this is a scale of the energy ok, which is the chemical

potential. Now, let us get down to what you are evaluating right. So, now, you can see

that, there are a couple of things I can do with my integral, I can take out the terms which

do not depend on epsilon outside the integral, in that in doing so, I can take out the entire

summation. So, I can write down negative summation of m going from 0 to infinity, 1

upon m factorial. 

And I can also take out, the m th derivative of psi, with respect to epsilon because, keep

in mind that the m th derivative of psi that is a function of epsilon, at E equals to mu is

independent of E ok, this derivative is independent of E and what I am left over with is

just the now, the integral, 0 to infinity, F prime E into, let us move all this description on

the right hand side because, I need some space here, F prime E into E minus mu the

power m d E. I think I am not missing any terms here fine. So, now, let us try to solve

this by some substitution. 
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Well I can easily make 2 substitutions here; the first is I can substitute for the Fermi

function. So, substituting for the Fermi function, which is the basically my, the Fermi

Dirac statistics, 1 over e raise to beta my energy minus the energy scale the chemical

potential plus 1 or F D statistics. 

If I take this and perform a first derivative. So, the first derivative with respect to epsilon

would simply be which simply give me e to the power beta, E minus mu, into beta,

divided by e to the power beta E minus mu, plus 1, the entire thing is squared and the

entire thing has to be taken with a negative sign because, that is what comes when you

square the denominator fine. So, if you plug this in the previous expression. 
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You will get the integral 0 to infinity, F E into the function phi E d E, as there is already a

negative sign, that becomes positive now, with the summation m going from 0 to infinity,

1 upon m factorial, dm by d epsilon factorial of a psi, at E equals to mu, into an integral 0

to infinity and what we have here is, F prime which is nothing but, the beta e raise to beta

E minus  mu,  over  e  raise  to  beta  E minus  mu,  plus  1  whole  square  and have  beta

accorded E minus mu raise to the m, into d E fine right.

So, now just make a small substitution, to solve this integral, for a E minus mu, into beta

as sum x. So, we can write down for beta times, d epsilon as d x. So, that will make my

integral very simple in terms of x, I can write down my integral as a and I can write

down this integral as.

So, limits will well, the lower limit, when epsilon goes to 0 becomes minus mu beta ok.

So, the lower limit will transform to minus mu beta because, of the substitution I have

made and when epsilon goes to infinity, the upper limit remains infinity and with the

substitution E minus mu into beta, my integral becomes e to the power x, into x to the

power m, into beta to the power minus m, into d x over e raise to x plus 1 the whole

square fine. So, since beta is a function that is independent of x, I am going to write

down this outside ok.
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And remove it  from here,  it  is  only a  function of m ok. So, now we can solve this

integral, let us put a label on it, we are at 9. So, let us put the label 10. So, I am going to

solve this integral at very low temperatures now, but low temperatures means what? I

need a scale, at the beginning of the discussion I said low temperature, by that time if I

had introduced to a temperature scale, it would have been meaningless because, I have

not discussed the problem in general but, now I have a temperature scale here, which is

mu.

So, I can say that very low temperatures means my, beta times mu should go to infinity

ok. So, mu over k T should go to infinity, that is the meaning of low temperature. So, I

have an energy scale, which is mu, now makes sense and that means, my minus beta mu

will be minus infinity, that is a meaning of low temperature right.

Because, low temperature means, T going to 0 or beta going to infinity, you can also say

absolutely low temperature but, here I have given a scale argument, any case they both

imply the same, this is more beautiful in the sense that, you do not have to take the

absolute limit, that T goes to 0 or beta goes to 0.

 You can say that at finite T but, as long as mu times beta goes to infinity, I will take this

as a low temperature limit fine, that is a more intuitive way of saying low temperature,

that you compare 2 scales. 



So, now, in this low temperature limit,  my integral becomes, the summation m going

from 0 to infinity, beta to the power, minus m over factorial m, d raise to m over d E to

the power m, please do not be bogged down by this  nasty expression, this is a very

straightforward calculation.

Which we are simplifying in you know very straightforward steps, there are no very, you

know absurd mathematical formulation is a straightforward thing and every step will be

explained in detail. In fact, the integral that I am going to run into very soon, will also be

explained in the mathematical prerequisites, which is discussed as a separate lecture. 

So, that I do not take a long digression into the problem. So, then this integral at the low

temperature will have now, new limits going from minus infinity to plus infinity, e to the

power x x raise to m, over e to the power x plus 1, whole square d x. Now, it seems that

we have to  just  solve this  small  integral  to  compute our answer yes but,  it  is  not a

straightforward integral ok. So, let me call this as equation 10, 11. 
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So, this integral, minus infinity to plus infinity, can be solved for certain types of m, first

of all this integral is 0, for values of m which are odd, look at the interval of the integral,

it is from minus infinity to plus infinity. So, if the integrand here is odd then, the integral

is 0. Now, the integrand here, which is this function, can be seen as a you know, I can

write it as, minus infinity to plus infinity, I can rewrite e raise to x upon, e raise to x plus



1 the whole square as simply multiplying both the numerator and denominator with e

raise to minus x, this simply becomes, just rewriting it ok.

Now, you can see that why these evenness or oddness of this integral, depends entirely

on the value of m ok. So, I can say that this is 0, if m is odd or you can just say that the

since, these are the same integrals, this is the answer to this is nothing but ok. So, it just

have to compute for values of m, which are even now. 
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So, the integral exists, only for m equals to 0, 2, 4 etcetera. So, let us take 2 values and

stop there  and the reason being higher  orders  of  m will  be basically  proportional  to

higher powers of k T for example, m equal to 4 will a term that is proportional to k T to

the power 4. And if we are since, we are doing everything at low temperatures, higher

orders of temperature would be you know would be vanishing in nature. So, we will stop

at the first 2 orders. So, let us take for m equal to 0 and 2. 

So, for m equal to 0, my integral will simply become minus infinity to plus infinity, x

square sorry, this simply becomes, e raise to x over e raise to x plus 1, the whole square d

x ok. And this can be solved by simply substitution of you know, e raise to x plus 1 as

some variable t ok. So, you take it square it up and the numerator would just be just d t

ok.



Now, what about the limits? Limits have to be you have to be careful, I am substituting e

raise to x plus 1 as t, which means the x going to minus infinity limit, will transform to t

equal to 1 and the x going to infinity will transform to t equal to infinity. 

So, this integral would now be, you know can be straight forwardly computed, it is a

minus of 1 upon t and between the limits 1 to infinity, this would simply be 1. So, now

you can go back here and say that for m equal to 0, I have 1. 
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Let us compute for one more value, for m equal to 2. So, for m equal to 2, this integral

will give me, minus infinity to plus infinity, e raise to x into x square, upon e raise to x

plus 1 d x and this integral can be shown to be pi square by 90. I leave that as an exercise

and we will do this in the separate tutorial or you can take it up as a personal homework

problem but, I am going to say that you follow up the math prerequisites, we will discuss

this integral there. 

So, let me just confirm the value of this integral, that it is indeed pi square no, it is pi

square by 3 I am sorry, it is pi square by 3. So, either you can do it yourself or you can

refer to the math prerequisites and we will show it how to get this integral there. 

So, now, with the 2 values of m 0 and 2, we plug these values in our final expression,

which is equation number 11. So, I will say that, plugging for m equals to 0 and 2 in

equation 11.
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We get the final answer as integral 0 to infinity, as a the first term would be just m equal

to 0. So, that would just give me psi 8 equal to 0 ok, plus m equal to 2 would give me, k

T square by factorial 2, into our pi square by 3, into the second derivative with respect to

E of the functions psi, at E equals to mu ok.

So, I think that is it and since I have not gone to m equal to 4, I will say that I have

dropped terms of the order, k B T to the power 4 ok. So, that would have been the pre

factor of m equal to 4, we are not going to the fourth order because, anyway this is a

theory at low temperatures. 

So, we will stop at the quadratic term in temperature. Now, what is this the function psi

of epsilon this is nothing but, the way we have defined psi, upstairs. Psi is nothing but,

the integral of function phi; if you look here the function psi here is nothing but, the

integral of our function phi, which is on the left hand side. 

So, I am just going to write down this, it is an integral over phi but, this is integral and

then it is our function psi computated E equals to mu. So, what I am going to write down

is that this is an integral going from, E 0 to mu ok.

That is the value of function psi at mu all right. So, the second term would be nothing

but, k B T square and I can write the pre factor here as pi square by 6 and this is a d

square psi by d E square. So, psi itself is a. So, I can write this as just, d phi by d E



because, our function psi is just integral.  So, you can take this as when you take the

derivative of a double derivative of psi, you will get, it is equivalent to taking a single

derivative of phi ok.

So, then you can say that, if this is for the integral. So, if you can call this as the integral

12  and  now  you  can  take  some  cases  for  example,  you  can  solve  for  some

thermodynamic properties. 
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So, now we are in a position to compute, N and. In fact, I can say N and E ok. So, let us

see what we get, if we try to compute N. So, for N, I have to take my function phi of E,

as a just the density of states because, if you see the left hand side, N would be nothing

but, integral, E going from 0 to infinity, F of E into a density of states d E. 

So, putting phi as rho E, this will give me that N, which means in the right hand side, I

have to put phi as rho E. So, if you do that, what you get integral E going from 0 to mu,

rho E d E, plus k B T, the whole square into pi square by 6, into d by d E of rho E, at E

equals to mu.

 Now, we know what is the formula for the density of states so, that formula for density

of states we are just going to copy it from upstairs, the density of states here, has I need

formula ok. So, let us I just copy paste this formula. So, since this is the density of states

ok. So, what I am going to do is just plug this value in the previous equation. 
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And this will give me the left hand side is N and if you look at the right hand side I can

take a couple of constant pre factors outside, into integral of square root of E that will

give me nothing but, E raise to 3 by 2 but, in the limits  mu and 0, this  will  simply

become mu, into 2 by 3 fine, plus I will have a k T square, into pi square by 6 and if I

take the derivative, I will again get all the same pre factors and the derivative of square

root of E is nothing but, 1 by 2 into E raise to minus 1 by 2 but, it equals to mu, it this

will be just a mu raise to minus 1 by 2. 

So, now you are easily seeing a lot of common 3 factors that, you can probably cancel.

So, what you can do straight away here is the following, you can knock off these Ns,

from on the sides and what you can also do is now a basically take. So, your right hand

side becomes 1, you can take 3 by 2, E F to the power 3 by 2 outside. 

So, what you will be left with is basically 2 by 3. In fact, you can do one more thing, you

can knock off this also and simply take 1 upon the Fermi energy to the power 3 by 2

common and what will be left is basically mu to the power 3 by 2, plus k B T square, into

pi square by 8, into mu raise to minus 2, 1 by 2 ok.
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 So, now you can use this, to derive an expression for mu as a function of T. So, we have

this equation here, which can be used to compute how the chemical potential varies with

temperature.  So, I have said for one value of temperature that the chemical potential

becomes the Fermi energy but, what happens to the chemical potential as you vary the

temperature, this is something that you would like to know. 

So, that can be computed very easily, you can multiply both sides with E to the power,

Fermi energy to the power 3 half. So, what you get is basically, just the equation in the

expression the brackets and from that also if you take out the mu raise to 3 half outside.

What you get is a just 1 plus k B T the whole square into pi square by 8, into mu raise to

minus  2  ok.  So,  now  what  you  can  do  here  is  the  following,  you  can  invert  this

expression for mu.

So, you can say that this is a but, before that you can raise the entire equation to power

two third. So, that would become make it E F, is equal to mu time mu into 1 plus k B T,

the whole square into pi square by 8, mu to the power minus 2, raise to two third, you

raise the entire equation to the power two third. And simply transpose to the opposite

side.
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So, mu becomes E F into 1 plus k B T the whole square, into pi square by 8, into mu

raise to minus 2, raise to minus 2 by 3. So, you can write down this as, you can write this

entire thing as, pi square by 8 into k B T over mu, the whole square raise to minus 2 by 3.

Now, since we are in the low temperature approximation, for low temperatures meaning

my temperatures are a much smaller than the scaled mu. So, I have a scale here. So, such

that this ratio becomes much smaller than 1, I can expand this term in powers and to

lowest order I can write it as a e to the power, the chemical potential as E F into, 1 minus

2 pi square ok. So, I can write it as a, just pi square by 12, to make things simpler, into

this dimensionless number k T over mu the whole square. Now, you can look. 
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Now, this is how basically, this tells us how mu varies with temperature ok. So, I will say

that this equation tells me, how mu varies with temperature. So, for that too tell me for

that too basically be valid, you can see that my equation requires the left hand side, in the

right hand side to be computed ok.

So, this requires basically. So, how do I circumvent this problem, I am going to find out

mu but, that requires me to compute mu for the right hand side. So, we can at least in the

sense that, when mu is very close to the Fermi energy, then to lowest order we can tell

how mu will vary. 

So, at very low temperatures, again the idea is that my temperature is very close to 0,

tending to 0, I can say that my mu is nothing but the, Fermi energy only on the right hand

side ok.
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So, then I can write down my chemical potential as a, mu that goes as E F minus pi

square by 12, into k B T over E F, this is like saying that if I was it at 0 temperature then,

how would the right hand side behave, the right hand side would behave like that, as T

goes to 0, the right hand side would behave like this.  It  is not exactly  0, because if

exactly 0 is it when, mu becomes T F. So, this is how typically one expects the chemical

potential to behave with respect to temperature. So, if I plot the chemical potential over

the value at T equal to 0, as a function of T over T F. 

Because, I can take my k B T over E F as, T over T F then, I can start from 1 because,

that is what it equation would predict at T equal to 0 and eventually somewhere along the

lines where, this is of the order of 1, you would be hitting the 0 of the chemical potential

and from that point onwards, your chemical potential will turn negative. So, this is the

area of negative chemical potential. 

But, you already know that this is a temperature which is very high, only of temperatures

comparable to Fermi temperatures your chemical potential turns negative. So, you need

to really climb up in temperatures that much for the chemical potential to turn negative,

another quantity that we can quickly compute, is the total energy. 
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And that is the quantity that will tell us, how heat capacity behaves at low temperature,

due to these Fermi electrons ok. So, the missing component of the overall heat capacity

that is due to Fermi electrons will now be addressed. So, we are not the final leg of our

discussion. So, the energy as we know is given by an integral, 0 to infinity, of E times the

density of states, into the Fermi function, this is what we know in the continuum limit ok,

in the thermodynamic limit. 

That we already know, our sum has become an integral, the density of states is rho E and

this is our Fermi function and that is the value of energy ok. So, the total  energy is

nothing but, this integral. Now, we already know an integral of this sort. So, here I have a

formula. So, if you look at equation 12, in the left hand side, if I replace phi of E as E

times the density of states then, it is nothing but, the expression for total energy, in the

right hand side I simply plug phi as rho times E. 

So, what I am going to do is basically plug phi as rho into E ok. So, I am going to. So,

just plug phi as rho E into E in equation I believe 12. So, what I get is the left hand side

is the energy. 
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So, this would be 0 to infinity  because,  we are at  finite  temperature all  energies are

possible now, energy times the density of states into the Fermi function and at the right

hand side was nothing but, integral 0 to mu, rho E times E d E. So, this was our function

phi of E ok, plus pi square by 6, if I am not wrong, pi square by 6 into k T square into d

phi by d E, into d phi by d E now, my phi is again as I said, rho E into E, at E equals to

mu. 

So, this is nothing but, my phi of E but, I already know that my rho of E the density of

states, which was written here, this expression ok. So, you can, I know the density of

states  is  this.  So,  I  can compute  what  is  my the  integral.  So,  it  is  very simple  now

because, I can write down this integral as keep all the constants outside. So, my entire

energy E, what nothing would be nothing but, I can take a 3 by 2, into N over E F to the

power 3 half and I believe the same will come out from the second term also. 

So, I am going to keep it outside, a big bracket and this would be an integral of E raise to

3 by 2 because, there is already an E outside. So, E times rho would be E raise to 3 by 2.

So, that will be nothing but, E to the power of 5 by 2, into 2 by 5 and the limits would be

0 to mu, plus pi square by 6, into k B T the whole square and again I have taken all the

constants outside. So, I will be taking derivative of varies to 3 by 2. So, that would be 3

by, 2 into e raise to half, at equals to mu fine.
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So, now you can see that, this becomes a nice expression. So, I can write it as 2 by 5, mu

to the power of 5 by 2, plus pi square by 4 k B T the whole square, into mu to the power

half right. So, what you are now looking at, is an expression of the internal energy of the

Fermi  gas,  as  a  function  of  temperature.  So,  one  final  hurdle,  before  we derive  the

expression for heat capacity, is to simplify this expression. So, what I am going to do

now, is just rearrange the terms a little bit here.

So, what I will do is I will pull out a factor of 2 by 5 also, from the bracket and that will

make the pre factor outside as 3 by 5, into N to the power. So, please cut it tell me. 

Student: (Refer Time: 71:25).

All right. So, what we can do here with this expression is to rearrange the terms a little

bit here and I can pull out a factor of 2 by 5, that will make it 3 by 5 inside, I am sorry

outside and this will be E in the denominator, E to the power of 3 by 2, Fermi energy to

the power 3 by 2 and what I will have inside is mu to the power 5 by 2, plus 5 pi square

by 8 ok.

So, this is multiplied to k T square, into mu raise to half. Now, what I can do now is just

take mu, you know I not dimensionalized this mu, by simply saying that I am going to

keep a factor of Fermi energy outside and what I will do is a take a Fermi energy inside

to the power 3 half. 



So, that becomes mu over E F to the power 5 by 2 and I will do the second term, as a I

just want to start from the beginning, I am not getting the right words, not getting the

right words. 

Student: (Refer Time: 73:35) right.

So, what I can do now is basically simplify this expression, by pulling out a few factors.

So, I am going to pull out a factor of 2 by 5, that makes my pre factor outside as 3 by 5,

into I am going to write down this as N times the Fermi energy and I will write the first

term inside the bracket as mu over the Fermi energy, to the power 5 halfs and the second

term inside the bracket I am going to write it as a, 5 pi square by 8 ok.

Because, I pulled out a factor of 2 by 5 ok, into k T over the Fermi energy to the power 2

and the last term I am going to write as mu over a Fermi energy, to the power 1 half ok.

So, I can see the terms inside the parentheses have become dimensionless, each energy

scale  is  divided  by  another  energy  scale,  what  has  happened  is  that,  outside  the

parentheses now, the energy scale has come, that is free energy that is the Fermi energy,

which is which sets the scale for my total energy ok. 

So, then I can now utilize the I can say that this is my expression for energy, this can be

simplified further, using my already derived expression for the chemical potential.
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So, I am going to use this definition of the chemical potential ok. So, this nice definition

of the chemical potential, comes to our use. So, you can see that, I can write mu over E F

as 1 minus pi square by 12 into k T upon F, E F raise to 2 ok. So, I can write down my

energy, as E equals to 3 by 5, into N times the Fermi energy, this was the pre factor

outside, mu over E F to the power phi half is just 1 minus pi square by 12, into k T over

Fermi energy to the power 2, raise to 5 half.

Now, in the limit of small temperatures, when k T or E F is very small, I can expand this

power to just a linear orders and say that this is nothing but, 5 by 2, into k T square over

E F square and the second term is of 5 pi square by 8, if you look here, into k T square

over E F square and then it is multiplied to mu over E F the power 2. Which again I can

just to linear order, write as 1 minus pi square by 24, into k T over E F the whole square

ok. So, what I have done here, we have made some simple approximations. 
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So, whatever we have done here is basically, we have used the fact that k T over E F is a

number that is much much smaller than 1 and 2 linear order, the fractional power of 1

minus pi square by 12 into k T by E F square simply, reduces to the approximations that

we have taken. So, I am going to write down just 1 of them that, 1 minus pi square by 12

into k T over E F, the whole square raise to the power n is simply, 1 minus pi square into

n over 12, into k T by E F to the power 2, that is the approximation I had used ok.



So,  let  us  see  what  finally  I  have  now,  easily  you  can  see  since,  were  in  the

approximation k T over F much smaller than 1, I am going to drop a terms that are higher

than quadratic in nature. So, dropping definitely the fourth order term ok, I am going to

drop this term, in comparison to the quadratic term, my expression reduces further and I

get the expression for the energy as 3 by 5, N times E F, into just the 2 terms which are

quadratic in temperature and you can see it is basically 5 by 8 minus 5 by 24, which I

have to do. So, that would be just 1 plus 5, I am going to write it as, 5 pi square by 8, into

k B T over E F, a whole square into 1 minus 1 by 3 ok.

And this is nothing but, I can write it as a 2 by 3 and so, this is nothing but, 5 by 12, just

a simplifications, that I have used here. So, now you can see that the leading term, as a T

goes to 0, that is an absolute 0 temperature.
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The energy of my system is not 0. In fact, it is given as, the energy of my Fermi electron

gas at absolute 0 is not 0, it is given as 3 over 5, N times E F ok. But, this is not a thermal

energy, this energy is not thermal in the sense that, at T equal to 0, if I touch a metal,

which has these electrons having a total internal energy of 3 by 5 N times E F and the E

F is of the order of 1 electron volt, its a very high amount of energy, I still you know feel

as cold as you know, as cold as hell because, there is absolutely no room for electrons to

conduct, at T equal to 0, the electrons have occupied all the energy levels up to the Fermi

level.



And hence  in  spite  of  the  fact  that  this  energy is  very large,  these  electrons  cannot

conduct heat to my palm or my hand, which is touching them and so, I feel nothing but,

very cold as T tends to 0, this energy is not thermal in nature, it cannot give rise to any

conduction  and  this  energy  purely  is  the  our  consequence  of  the  Pauli’s  exclusion

principle, that drives electrons to sit at different energy levels in a quantum system ok.

So, at temperatures that are nonzero, I can write down my energy with this expression,

let us call this as the final result and I know that the heat capacity, which is a C v a heat

capacity at constant volume, is given as the derivative temperature derivative of the total

energy. 

So, if I use the above expression, that I have derived for energy then, the first term the

Fermi energy component provides no component and that is it clear why it provides no

component  to  the  heat  capacity  because,  it  is  not  thermal  in  origin.  The  second

component provides contribution and that is 3 by 5 N E F, constant pre factor into 5 by

12 pi square, k B square over E F square and 2 times T. And you can already knock off a

lot of terms here.
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So, you can knock off this and you can knock off 1 E F and this becomes 6 and that

becomes just 2. So, what you have in the end is just, pi square by 2, into N times k B

square, T over E F ok. It should have the units of N times k B, heat capacity is a natural

units because, k T is energy scale. Now, I can do something with this, I can say that my



Fermi energy is you know, in order to express in terms of a temperature scale, I am going

to write down this as k B T F.
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So, my heat capacity is now, due to thermal energy is pi square by 2, into N times k B

into T over T F and I am going to rearrange this basically in some way. I am going to

write it as pi square by 2, into N into T by T F, the entire thing times T entire thing, times

k B ok. So, this factor here, is an extensive factor. So, I can call my C v now as, pi square

by 2, into some N prime, into k B. 

(Refer Slide Time: 86:55)



And I am going to call this N prime here, as the number of electrons, that contribute to

heat  capacity  ok.  Because,  heat  capacity  is  an  extensive  quantity  and  this  number

smoothly tends to the total number of particles, as the temperature becomes much higher

and becomes the Fermi temperature, if you see here the N prime here, is N into T by T F

ok.

So, I am going to write this here just to remind all of you, that this N prime is N into, T

by T F. So, the number of electrons that contribute to the heat capacity and that tends to

N as T goes to T F, which means at very very high temperatures of the order of I know

that Fermi temperature is of the order of 10 to the power 4 Kelvin for most metals, at

such  high  temperatures,  it  is  expected  at  all  the  electrons  in  the  system  will  be

contributing to the heat capacity because, all of them will be thermal, you do not have a

quantum picture at that you know, at that temperature, you are in your strongly in the

classical limit.

So,  this  then  also  tells  us,  what  is  the  fraction  of  electrons  close  to  0  Kelvin,  that

participate in the heat capacity well, you can now say that the fraction of electrons that,

participate in conduction and hence heat capacity in conduction and hence heat capacity. 
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If they do not conduct,  they do not contribute to heat capacity and heat capacity are

basically. You know, you can you have already written that these are the number of guys

participating in conduction and I am asking you, what is the fraction of electrons that



participate  in  conduction  or  heat  capacity,  a  fraction  is  basically  the  guys  who  are

participating over the total number of guys and this is nothing but, T over T F. 

And at room temperature you can think of this number, you can now see that this is a

very very small you know fraction. So, this fraction of electrons that, participate in heat

capacity ok, at room temperature this fraction is usually, you know 1 upon of the type of

the order 1 upon 100 because, your room temperature is 300 Kelvin. So, it is like of the

order 100 whereas, the Fermi temperature is of the order of 10000. So, I am going to say

that this is a fraction of the order of 1 percent ok.

So, this is like 1 percent, 0.01 is like 1 percent, 100 times this would be 100 you know 1.

So, this is the you know, this now brings us to the final picture that we were chasing

from the beginning, that I am now in a position to write down the overall heat capacity of

a solid at low temperatures. So, I know that there is a term which comes from the lattice

vibrations and that is proportional to T cube. 
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So, this was the Debye contribution. So, I will say, the lattice contribution, vibration of

ions,  that  is  meant  by  lattice  contribution  and  this  is  basically  I  would  say  the

contribution coming from bosons, the vibrations are quantized in a terms of phonons,

that are bosons and we have today seen a contribution coming from, the free electrons

and that is linear in temperature ok.



So, this is due to the free electrons and these are fermions. So, both bosons and fermions

together constitute the heat capacity at low temperatures and you can see that very very

low temperatures the heat capacity would be dominated by only free electrons because,

the T cubed term would get much much smaller.

So,  it  becomes  linear  at  very  low temperatures  then,  become dominated  by  T cube,

eventuate high temperatures none of these contribute, it becomes the Dulong-Petit 3 N k

at high temperature. So, this is given as a thrice N K, at high temperatures well, I am

going to assume that high temperature would mean this T becomes a much much larger

than the Fermi temperature or even before that.  So, this ends the discussion of the 3

electrons  in  a  metal  and  we  will  discuss  the  correspondence  from  correspondence

between the classical statistical mechanism. 


