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Free Electrons (Fermi Gas) in a Metal

So, good morning students, today we will talk about the Free Electron Fermi gas and the

discussion here  is  basically  to  complete  the  topic  of  heat  capacity  of  a  solid  at  low

temperature.
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So, the motivations are to get an ultimate expression of heat capacity at low temperature

and what I mean by my statement is that. So, we know that the heat capacity of a solid is

due to lattice vibrations which is due to vibration of ions about their mean position. So,

these vibrations are quantized in terms of phonons. So, we had used the boson theory of

solids and we had derived an expression due to d by which said that at low temperatures

the behaviour is T cube.

So, let us say that the proportionality constant is alpha. Today we will discuss another

contribution to the overall heat capacity of solids at low temperature, and that comes

from the free electrons in a metal. So, naturally our discussion is contextually valid only

for metals, which have three electrons to contribute to the overall heat capacity. So, here

at the end of our discussion, we will see that this is proportional to temperature at very



low values of temperature. So, both the lattice vibrations and free electron contributions

saturate to 3 by 2 or saturate to 3 kT in terms of energy at high temperatures.

So,  the  heat  capacity  at  very  high  temperatures  when  neither  the  lattice  vibrations

contribute  nor the electrons  contribute,  we see that the heat  capacity  becomes 3 n k

which is the Dulong Petits law. The exciting stuff only happens at low temperature where

both lattice vibrations and electrons pitch in contribute to the overall heat capacity ok.

So, we need to keep this in mind that we have only completed in the first 2 lectures.

The first half of the heat capacity which is due to lattice vibrations; today we will extend

the  discussion  and include  the  free  electrons  that  are  there  in  any  metal  copper  for

example, iron for example, we shall see how the heat capacity is affected in due to free

electrons  as  well.  So,  that  being  the  introduction,  I  can  start  from  the  statistics  of

electrons which are fermions.
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So, for fermions I  have already discussed that is statistics  is  due to the Fermi Dirac

statistics.  And we can write down these statistics  in terms of the occupation number

average occupation number of any j th level as 1 over e to the power beta E j minus mu

plus 1 and just to keep in mind that this is a Fermi Dirac statistics, I am going to call this

as a function of just the energy and you can construct the Fermi function especially at 0

temperature, which is basically the limit of infinite beta.



As if  you look at  the  Fermi  function  for  all  energy values  which  are  less  than  this

chemical potential mu as beta goes to infinity, the exponential turns to 0 because its e

raise to minus infinity. So, for all energy values below the chemical potential which is

called as the Fermi energy at T equal to 0, we have the occupation exactly 1 and it is 0

for all energy values above the Fermi level.

So, I am going to call this as the Fermi function or the average occupation number. At T

equal to 0 or infinite beta, all energy levels are fully occupied. So, there is no sense of an

average occupation whether it is exactly 1 because anyway you have taken an extreme

case of T equal to 0. So, what is also indicated in this figure is that I have conveniently

taken the chemical potential at T equal to 0 as the Fermi energy ok. We can also call this

as E F if you can call it as E F Fermi F they are the same.
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So, just to continue the discussion I can write down the total number of particles in our

system as a simply sum over all the average occupation numbers in our Fermi system.

So, that will sum up to the total number of particles in the system, I can also compute the

total energy by simply sampling the energy of each level.

Let us say E j and sampling in the distribution which is the Fermi Dirac distribution ok.

So, naturally at T equal to 0 this would simply be sum over all the energies from 0 to

Fermi level and the excitation of each level is just 1 it would be nothing, but number of

fermions that are there in the system times their energies. So, these definitions that I have



written is precisely you know validate all T. So, which means they are it applicable at all

temperatures not just at T equal to 0 because if you take temperature T equal to 0 then n j

is strictly becomes 1 and it comes outside the summation you simply sum over all E j’s to

get the total energy of the system ok. As you can see from this figure; that our Fermi

Dirac statistics is exactly 1 for a T equal to 0 for all energy values below the Fermi

surface.

Now we are looking in general systems where the number of particles usually is a very

large  number.  For  example,  we  are  dealing  with  you  know  metal  objects  in  our

laboratory experiments or we are dealing with solids where N is of the order of 10 to the

power  23  it  is  a  very  large  number.  And of  course,  the  volumes  are  very  large  the

volumes are millimeter cube or centimeter cube compared to the volume occupied by an

atom or a molecule this is a very large volume.

So, the numbers themselves are very large and, but we have a finite density. So, this limit

of the extensive variables N and V being very large such there is the intensive variable

density  becomes  finite  is  called  as  a  thermodynamic  limit.  So,  we  are  working  in

thermodynamic limit where these two extensive quantities N and V are so, large that the

energy levels become almost a continuum and the spacing betweens and that is because

you are stacking too many modes in the energy spectrum, that the separation between

modes essentially goes to 0 as number of particles in volume go to infinity.
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For example if you look at a typical electron in a box, we are having many electrons in

the box. So, let us look at just one electron in a box, the meaning of thermodynamic limit

becomes very clear here. So, this is a standard electron in a box problem that you have

seen in your quantum mechanics introductions, if you have not, but then I am going to

assume that you already know a little bit about particle in a box. So, I have taken a box

of length L. So, I am going to take it as the box lengths to be the walls at 0 and L.

And this is going to be my x axis and this is basically infinite well in the sense that my

potential energy outside the box is infinite and it is 0 inside 0 or any constant value after

all it is the gradient or the change in potential energy that translates into a force, the ref

the reference values of the potentials into themselves do not really you know it is just an

additive constant in the overall energy of the system.

So, the infinity potential here only implies that the particle is never allowed to escape

from the box. It is like a if you take imagine a conductor of length L, I would never

respect the electrons and they conducted to leave the conductor most of the conductors

length here is the L here ok. Now you can think of the electron as a as a wave that is in

some sense  solution  of  a  Schrodinger  equation.  So,  you can  think  of  the  wave  like

solutions as psi of x as some normalization constant into sin of n pi x by L. You will do it

you will do it for many electrons right now I am showing it for just one electron.

And so, on naturally this would be the case for n equals to 1 you  can  consider  higher

ends for n equal to 2 you can consider another case such as right.
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So, now if  I  write down the wave function like this,  it  is immediately clear that the

allowed wave vectors that I can I have assumed are basically well this was a 1D case. So,

in three dimension it would be a product of three sin functions and I can write down my

wave vector as a triplet of kx ky and kz which essentially means that I can write down

this as a triplet of the excitation numbers nx ny and nz times pi by L. So, that would be

my k in three dimensions.

Now, these values of k kx ky and kz which are due to the excitations nx ny and nz they

actually are always positive. The simple reason being that if I take negative values of

these excitations, it does nothing to my wave function except for an except that it incurs

an overall negative sign in my wave function, which does not pose any problem because

at the end of the day I will be looking only at the expectation value which is required the

for which the probability density is required and that is mod psi star and so, the negative

values of the wave functions oppose no bearing on the expectation value of observables

in quantum mechanics.

So, I am going to take only positive values of these excitations, negative values affect the

system in no way except that the overall a wave function becomes negative and we are

not interested in negative eigen negative excitations precisely for that matter. Now so, I

can now write down if you can see now as the system size which is L goes to infinity that

is my volume goes to infinity, these become very closely stacked right because as L goes



to infinity the spacing between them which goes as you know 1 upon L in some sense

becomes  very very  small  and so,  the  energy spectrum becomes  almost  a  continuous

spectrum.

Which means that my summation over all the modes have to now be replaced as N and

volume both go to infinity by an integral over modes. And naturally when I replace the

summation by an integral, I need to account for a certain density of states which I am

which in some sense is a number of states per unit mode number because dimensionally

gk has to have dimensions of 1 upon k so, that the integral becomes dimensionless.

So, that is the effect of increasing a system size to infinity that you naturally get the

concept of a density of states.
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Now, to compute density of states, you can imagine your k space as basically an octant

where kx ky and kz are positive for the reason that we have just mentioned that we are

interested only in positive values of the excitations the negative values have no bearing

on the overall observables. So, I can think of you know one octant in my in my k space,

this so, called the octant where all values of my components of the wave vector k are

positive.

So, I can take one on this surface I can take some value of my k which is given as the set

of three components, all greater than 0 and now I can just compute the number of states



inside this octant ok. So, if I was going to compute the number of states in an entire

sphere of radius k, I would get precisely 8 times the number of modes that I need for my

calculation ok,  but I do not want that. Which means when I write down for the number

of modes, let us say dN in some arbitrary volume element this would be nothing but the

volume of this  volume element  that  is  d cube k over the minimum volume one can

imagine inside this k space.
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The minimum volume is  due  to  the  minimum k values  and naturally  this  has  to  be

multiplied to the degeneracy of the fermions because each fermion has a spin half and

that gives it in some sense 2 polarizations for any value of k. So, it can means you know

in 2 states s being half. So, 2 s plus 1 is the degeneracy. So, it can be a plus 1 or minus 1

states and you have to also account for the fact that we are only interested in the octant

where kx ky and kz are positive. If you do not take into consideration: that you would be

over counting the number of states by a factor of 8.

So, precisely to account for that positiveness of the excitations in xn yn z, I have taken

the factor of 1 by 8. So, this is basically to remind us that we are taking only nx y n nz as

positive ok. So, now, we can write down dN modes in volume element d cube k as I can

write down the volume element as 4 pi k square into dk, 4 pi k square here being the

surface area of this sphere at radius k and dk is a small you know shell at the radius k.



So, the volume of the spherical shell is 4 pi k square d k multiplied by of course, our

degeneracy factor into the fact that I am going to be interested only in the positive values

of  the  excitations.  So,  hence  only  one  eighth  of  the  total  volume  is  going  to  be

constructed is going to be used and I am going to divide it by the minimum volume and

that is constructed by simply taking the minimum k. Now the minimum k here is if you

take nx ny and nz as 1 the minimum k comes out to be just pi by L ok.

So, along the x direction the minimum k is pi by L along the y direction its pi by L and

along the z direction is pi by L corresponding to nx ny and nz taken as 1. So, I am going

to take pi by L and raise it to power 3.
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So, then this will give me if I take all the pre factors in one place, I would be getting 2 s

plus 1 into k square into volume dk over 2 pi square 4 times 2 is 8 and we have a pi cube

in the denominator and a pi in the numerator.

I think I have taken care of all the factors. So, now this is my g of k into d k. So, this is

basically giving us the density of states in the k space. So, my g of k is now 2 s plus 1

into volume into k square over 2 pi square. So, then I can compute a few important

quantities. So, lets compute first N the total number of particles. So, N is nothing, but

integral density of states into k. So, basically this quantity if you recall is nothing, but

number of particles per unit k space.



So, if you integrate this density over the entire k space, then you should recover the total

number of particles as long as you take the limits on the integral from 0 to the Fermi

wave number because we are integrating it at T equal to 0. I expect all my electrons to be

within the Fermi sphere. So, the upper limit of my integral is Fermi wave vector and this

will give me the total number of particles to be as n.
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So, at T equal to 0 if I do this integration, I will recover the number of particles and that

would give me the definition of the Fermi wave vector. Let us do that integral we will

simply substitute gk from up above and that would become 2 s plus 1 over 2 pi square

into V and integration on k square will simply become kF cube by 3. So, you can recast

this equation in terms of the Fermi wave vector as simply 6 pi square over 2 s plus 1 into

N by V the whole thing raised to power one third ok. So, this is my Fermi wave vector I

can also compute now because I have the Fermi wave vector with me I can compute my

Fermi energy.

So, computing Fermi energy, I can use this expression of the energy h cut square kF

square over 2 m and this will give me the Fermi energy as nothing, but I just have to

multiply h cut square by 2 m to the above obtained expression for Fermi energy the

Fermi wave vector. So, this would be just 6 pi square over 2 s plus 1 into N by V raise to

the power two third and let us compute one more quantity which is Fermi temperature.
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Now, since we have an energy scale I can always compute a temperature commensurate

with it energy scale. So, the Fermi temperature I can compute by simply saying that this

is of the order of the Fermi energy over the Boltzmann constant ok. So, this would be

nothing, but h cut square over twice m the Boltzmann constant into 6 pi square over 2 s

plus 1 into N over V raise to two-third now let us get a feeling of these numbers. So, you

can just  to get  a feel  of these numbers which is  important  because say they are the

consequence of our system being treated quantum mechanically.

So, the consequence of treating electrons as a system of fermions which obey Pauli’s

exclusion principle,  and the fact  that  we are squeezing so,  many of them in a small

volume in a volume which is you know pushing your densities to 10 to the power 28 per

meter cube. For typical metals like copper has natural consequences on these values and

you should see the  strength of these numbers  to  sort  of have an appreciation  of  the

quantum mechanics that goes into the calculation ok. So, take for example, copper and

which is an extremely good conductor.

So, the number density of copper is roughly number density of electrons is usually 10 to

the power 28 per meter cube and just to get a feel of these numbers for typical metal

numbers will not very much. So, it will give you an order of magnitude estimate. So, let

us compute for example, the Fermi wave vectors magnitude, this would be of the order



of the density to the power one third and that is nothing, but roughly if I take 10 to the 28

and raise one third of its roughly 10 to the power 9 per meter ok.

And  so,  the  wavelength  will  typically  a  nanometer  because  k  is  inverse  of  the

wavelength. And if you want to get a feel for the Fermi energy, this would be if you look

at the expression of a Fermi energy on the left I have a Planck constant to the power 2.

So, that is giving me a 10 to the minus 68, I have an electron mass in the denominator

that is giving me 10 to the power minus 31 which when taken upstairs becomes 10 to the

power 31 and I have the density to the power two third.

Density is about one third is already 10 to the power 9 if I raise it to the power 2, it

becomes 80 and this would be in Joules. So, if you sum up all the terms this becomes

roughly 10 to the power minus 19 Joules which is like an electron volt. So, the Fermi

energy comes out to be of the order of an electron volt, I just to give an exam just to give

you a  feel  in  electron  volt  is  a  very  high  energy scale  because  if  you compute  the

temperature corresponding to an electron volt it will come out to be a very large number

ok.

So, the Fermi temperature which corresponds to an energy of the order of an electron

volt, comes out to be you know I will take electron volt which is a 10 to the power minus

19 Joules and divided by the Boltzmann constant which is roughly I am going to just

take the Boltzmann constant upstairs. So, this would just give me in 10 to the power 23

and so, that is in Kelvin and we will come out to be around 10 to the power 4 Kelvin. So,

about 10000 Kelvin is the temperature of the Fermi surface you know whose energy is

around electron volt.
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So,  this  immediately  tells  me something that  at  room temperature.  The ratio  of  you

know; if I take the room temperature with 300 Kelvin which is not a which is an decent

approximation the ratio of T over T F is going to be a very small number, and it tells me

that for most purposes room temperature is considered to be a classical regime because

the corrections that are going to be you know done over and above the Dulong Petits law

out of the order of T by T F. So, they are become very very small as temperatures are

equal or above the room temperature, where you know you where you always see the

heat capacity becoming an independent of temperature become just 3 kB.

3 times n kB; so, this ratio of n T over T F will be will be shown that it is related to the

fraction  of  you  know  the  fermions  excited  at  room  temperature  fraction  of  excited

electrons at any temperature which is taken to be the room temperature in this case. So,

roughly T over T F fraction of the total number of electrons will contribute to the heat

capacity. Now this is a very small number so, it is enough to have a very small fraction

of the electrons of that the total 10 10 to the power 28 in your form if you take a meter

cube sample.

Then out of these 10 to the power 28 only about T over T F which is a number that is

very  small  that  is  just  1  upon  100  if  at  if  you  are  taking  temperature  to  be  room

temperature  contributing  to  your  overall  heat  capacity.  So,  let  us  now  compute  the

density of states in terms of energy. So, what we have computed so, far is the g of k and



this was computed to be 2 s plus 1 VK square upon 2 pi square into d of k and if you to

get the density of states in terms of energy ok.

So, I am going to call this as let me use a different symbol for density of states a in terms

of energy. So, let me call density of states for energy as rho in terms of energy; that

means, I am looking for density of states which will give me a number of states per unit

energy interval ok.
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So, I can compute this by equating it to rho E dE because after all whether I compute the

density in k space or energy space, the conservation of the number of particles says that I

must  get  the same number of particles  whether  I  integrate  the density in k space or

density in energy space ok. I am going to use symbol rho E ok. So, then if I look at the

expression here, I am going to call is at equation 2 call this as equation 1.
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So, I can use equation 2 and write down for my g of k which is basically g of k d k as

simply 2 s plus 1 into VK square over 2 pi square d k and simply using the fact that the

energy is related to the wave vector as h cut square k square by 2 m. So, this gives me K

square as nothing, but twice m E over h cut square and it can give me dk as 1 upon k m E

over h cut square ok.
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So, I can write for dk as h cut square over 2 m E to the power half into m E by h cut

square fine. Of course, there has to be this will be m times dE fine because if I take a



derivative with respect to k, I get 2 k dk equals to 2 m dE by h cot square the factor of 2

cancels from both sides and now I can write this as.

So, therefore, I can write down my density of states as g of k dk as 2 s plus 1 into V

times k square which is a twice m E over h cut square and dk has already been written as

h cut square over twice m E raised to half into m by h cut square dE fine. So, then I can

write down the density of states as 2 s plus 1 into V into V m over 2 pi square h cut

square into twice m E over h cut square to the power half d E.
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You can take the e raise to half outside to show that the density of states and this is

nothing, but your density of states in terms of energy ok. So, our density of states now in

terms of energy is 2 s plus 1 into V m by 2 pi square h cut square into 2 m by h cut

square raise to half into E raise to half de yeah. So, then let us check if everything is fine.

So, our E was defined as h cut square k square by 2 m and now you have defined it like

this. So, I have substitute for k square and so, I see me by h cut square and substitute for

dk as 1 upon k.
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I can also simplify this expression let us call this as the equation 3. So, if you use this

expression of the Fermi energy, we can actually write down a simpler expression. So, we

can use this expression of Fermi energy. So, you recall that your Fermi energy was given

by this expression. So, I can compute for.


