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So, good afternoon students, today we will take another example of a system of bosons,

which  is  vibrations  of  a  solid  at  low  temperatures  and  I  am  going  to  take  low

temperatures. So, how is this is system of phonons this is because we can think of solid

at low temperature as a network of ions and this is basically to simplify the whole picture

I am showing ions in one dimension. 

So, let us say the interaction is modeled in terms of a hooking spring and whose, spring

constant is given by the second derivative of the interaction energy, we will discuss all

that, but just to illustrate the point I am showing ions here in one dimension. So, at low

temperature these ions would be sitting at equilibrium mechanical equilibrium, which

would be like the potential energy minimum of their nearest neighbors.
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So, you know, they are sitting at mechanical equilibrium at T tending to 0 or T equal to 0.

Now suppose I lift the temperature from 0 to some non zero values. So, at low, but non

zero temperatures you know, I will take some low temperatures you expect these ions to

undergo some displacement. 

(Refer Slide Time: 02:58) 

So, there are displacements from mean positions, which means you can think of an ion

that has displaced in by some in one dimension an ion could have been displaced by

some displacement let us called as dx. 



And  in  3  dimensions  you  would  expect  this  displacement  to  be  a  vector  having  3

components ok. So, for n ions in 3dimensions, you expect that the total potential energy

is now a function of these displacement from the origin ok, because the interaction has

been taken to be sufficiently  harmonic in nature. So, I can write down the, potential

energy at non zero temperatures. 

(Refer Slide Time: 04:00) 

So, we can write down the potential energy as some potential energy that was at T equal

to 0. And now you are going to expand it in powers of the displacement. So, U 0 is the

leading term, which was the potential energy at the equilibrium and now, you can expand

it.  So,  the  leading term of  course,  would  be you have  to  take  the  derivative  of  the

potential  and keep in mind that  there are n particles  in the system and you have to,

accommodate that each particle has 3degrees of freedom. So, this derivative is gradient

of the potential energy will be running over all particles and for each particle you will

run over all components. 

So, let me just write it in the way that makes things much more clear. So, I am going to

sum over all particles. So, r i such that i belongs to N and I am going to sum over all

alpha, which belongs to 1 to 3 ok and this is nothing, but the leading term fine. So, it has

d u by dx of first particle, du by dy first particle, du by dz of second particle and so on

and so forth. 



 Let us write down 1 more term, which is due to the second order displacements or what

we have taken is nothing, but the first order displacement. So, because this is a Taylor

expansion I have to multiply it by a displacement ok. So, this completes the first order

term. Then I am going to write down the second order term and due to the limitations of

the space, I am going to write the second order term below this. So, the second order

term is summation over all, i js and alpha betas of the second derivative. 

So, by taking all combinations of i alpha and j beta, you are taking the second derivatives

of all types. So, if there will be d square u by dx square for first particles, there could be

d square u by dx 1 dx 2 and so on and so forth. So, basically all possible second or

second order derivatives have to be taken here, naturally I have to this is nothing, but the

derivative  I  have  to  take  the  order  of  the  displacement  which  is  just  quadratic  it

displacement. So, you can say that the strength of the displacement is quadratic here.
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And then naturally the high order terms are being dropped here, because they are of the

order  d  r  cube  ok,  we  are  considering  displacements  that  are  very  close  to  0  or

displacements that keepers very close to the mechanical equilibrium. So, this is basically

the low temperature approximation, that my terms of the order 3 are going to be 0.

Not  only  that  if  you  look  at  the  first  term,  first  sub  leading  term  here  which  is

proportional to the derivative of the gradient of the potential energy this will also be 0.

Because again, we are at low temperatures which means that we are close to mechanical



equilibrium and if that is the case then this term negative gradient of this term which is

gradient of potential energy has to be seen with negative of the force. So, the term that I

have taken to 0 is due to the fact that I am close to mechanical equilibrium. So, this del u

by del r i, which is the gradient of the potential energy it is nothing, but negative of the

force acting on the ith ion and the alpha component of it ok.

 So, here as you can see I have taken a gradient of the potential energy, with respect to

the ith particle I have take of the alpha component of it. So, it is the negative of the force

acting on the ith particle and the alpha component of it and that has to be 0, because we

are close to mechanical equilibrium. So, all first order derivatives would be 0 and we

have taken the higher order derivatives to 0, because they are anyway negligible.

So, our potential energy is basically now nothing, but some reference which is arbitrary

the energy is a state function its a references arbitrary or you measure any process is the

change in energy. So, you know it does not pose any issue to me, but this is actually

added to a more meaningful and interesting term, which is the Hessian. So, I have to sum

over all i n js and alpha and beta and the better way to write this is not ri rj, but just i j

because we are summing over i and j.

So, let me just write it as i coma j and alpha beta and the same here, I am going to just

write this as a summation over i alpha. So, here i belongs to 1 to N and alpha belongs to,

1 to 3, this belongs from 1 to N ok. So, now, we know that the potential energy is now

reduced to a reference U naught plus a second derivative of potential energy with respect

to the coordinates ok and this second derivative of potential energy. If you see can be

written as some kind of a matrix element, because there are 4 indices here and you can

take each direction to be a combination of 2 indices. 

So, eventually this will be a matrix of if you take, n particles in 3 dimensions then this

turns out to be a matrix of size 3 N by 3 N. 
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So, I can write this u naught as this, I can write down this second derivative has matrix of

rank 2 or tensor of rank 2 and I can write this as, some H and H here is basically nothing,

but a Hessian matrix. So, I am going to write it as sum i, j alpha beta dr i and dr j comma

beta. 

(Refer Slide Time: 12:54) 

So, here the matrix of second derivatives, is basically it is also called as a Hessian matrix

and if you take n particles in 3 dimensions, then this matrix has a size of 3 N by 3 N ok.

So, you can write down this matrix of second derivatives in the form of a array or a 2



dimensional matrix and if you look at the form of this matrix, it does not matter if I

change the location of alpha and beta, because this matrix is symmetric in its indices.
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So, being symmetric in nature ok. I can it is diagonalizable, which means there exists a

unitary matrix U that can readily diagonalize it. So, if I construct a unitary matrix U, then

U a U transpose can diagonalize this into a matrix  of only diagonal  values.  So, this

matrix would be nothing, but a matrix of all the eigenvalues, which are nothing, but your

normal modes ok. So, here these lambda is are nothing, but normal modes of vibration.

So, this is a matrix of size 3 N by 3 N, when you diagnose it you will get 3 N eigenvalues

which are nothing, but the modes of vibration of a solid. 

So, this would be like, there are n particles in the solid and this is a 3dimensional system.

So, if you ask, the following question that how many different frequencies? One has to

consider then there are precisely 3 N frequencies one for each direction and n for each

particle  total  3  N.  So,  these  are  3  N  fundamental  I  would  say  3  N  fundamental

frequencies of the oscillator. So, I can now expect that the system has 3 N oscillators ok.
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And we can now think of the Hamiltonian, due to these 3 N oscillators. So, our system

has you know each particle has now oscillations in 3 directions. So, it is like, there are 3

oscillators for each particle and now, you have N particles being that the system can be

represented by 3 N oscillators and these oscillators can be attributed some energy, which

is our Hamiltonian ok.

So, we can write down the Hamiltonian in the form of you know, the summation over all

the oscillators where alpha will go from 1 to 3 N and we will write down the energy of

this oscillator as some excitation plus, one half h cut omega ok. So, here the half h cut

omega is the zero point energy of the oscillator and this is zero point energy of the alpha

th oscillator ok.

Now, what isn alpha here? Now each alpha each oscillator can be in a state of excitation

ok.
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So, n alpha represents the state of excitation of the alpha th oscillator, in some sense n

alpha tells us basically the occupation number of the alpha th oscillator. So, how many

phonons are there that in how many quantum of energy which is the number of phonons,

in that energy level alpha or in that oscillator.

So, n alpha represents in some sense the excitation of the alpha th oscillator and omega

alpha  in  some sense  tells  us  the  vibrational  frequency of  that  oscillator  fundamental

frequency of that oscillator. 

Student: Frequencies are not necessarily in this statement.

So, we have it for this reason we in this discussions we allow different frequencies for

each  oscillator  and  n  alpha  simply  represents  and  some  sense  the  excitation  of  an

oscillator, having a fundamental frequency omega alpha right. So, now you can the fact,

that we are dealing with the system of bosons there is no upper limit on the maximum

number of bosons I can accommodate in a level. So, n alpha here in principle can be 0 to

infinity what this means is that there could be infinite number of phonons up to sitting in

any oscillating mode ok.

So, or any oscillator which would simply make the total energy of the alpha th oscillator.

Now there are 3 N oscillators. So, you simply take, what is the energy of each oscillator?

And submit over all oscillators that will give you the total Hamilton in the system. So,



now, I can write down the I can imagine or a microstate of my system. now this is where

the question of what is n alpha becomes more clear. 

So, the microstate here is nothing, but the set of these excitations you know, where these

i belongs to. So, what is the suppose you take the i th oscillator you know to be an

excitation n 1, j th oscillator to be an excitation nj, these are numbers. So, different set of

numbers for each oscillator is nothing, but the microstate of a system. So, if you specify

1 microstate as n 1, n 2, all the way to n N some specified values. 

This is one microstate you can take another microstate as n 1 bar, n 2 bar all the way to n

N bar, this is another microstate, the set of excitations of each oscillator is 1 microstate

for you. 
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This way you can construct a large number of microstates for your system. 

Student: Some of the small n is should be total n.

No that is not n, n is cannot sum up to a conserved quantity, because you can have any

number of bosons you have only 3 N oscillators. So, here I think I should take the last

object to 3 N or dn, here the particle number is not conserved we do not have as k these

are not real particles, there is no restriction here that my there is no restriction here, if

your question is that if I sum over all is going from 1 to 3 N n is this will be 3 N. 



There is no such restriction like this first of all n is are excitations of i th oscillator, it

could be in any state. In fact, I will take n is in the following this discussion from 0 to

infinity it could be in any excited state ok. So, we do not have to conserve the number of

these virtual bosons in this case the phonons to something their number is not conserved

and so, this number does not is not fixed ok.
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So, how would we write down the partition function? So, the partition function can be

written  as,  summation  over  all  microstates.  So,  I  am going to sum over  all  possible

excitations. 

So,  the  first  oscillator  may  have  an  excitation  n  1,  second  oscillator  may  have  an

excitation n 2 ,third oscillator may have an excitation n 3 ,n 1 n 2 n threes are some

values, some of these n is not conserved you do not have the conservation here. So, then

we can simply say that our partition function here is a summation over all the microstates

of the Boltzmann factor that is written as e raise to minus beta and the Hamiltonian. 

Now, our Hamiltonian itself is function of all the excitations, but the way in which it

depends on the excitations is nice. So, it is written as, summation over all the excitations

e to the power minus beta and our Hamiltonian is nothing, but we have to now add up the

energy of all oscillators. So, the energy of each oscillator Hamiltonian is the total energy

of 3 N oscillator. So, the energy each of oscillator is n alpha plus 1 by 2 h cut, omega

alpha this is one oscillator. 



You sum over all alphas there are 3 N oscillators. Now the n alphas that you take here in

the Hamiltonian correspond to the microstate that you have taken here ok. So, you keep

changing that microstate compute the total energy and compute the Boltzmann factor that

is how you will compute this sum ok.
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So, then this would simply become if you think of it this way it is nothing, but I can write

it as summation over all possible microstates, e to the power minus beta I can take it as n

1 plus half h cut omega 1 into e raise to minus beta n 2 plus half h cut omega 1, 2 all the

way to e raised to minus beta in 3 N plus 1 half, into h cut omega 3 N. 

Fine. So, this is like I can take this as a product and I will take this product outside. So,

this would be a product of j going from 1 to 3 n. So, I am going to write it as since I have

taken this product on over all the exponents outside. So, the inside is just summation

over 1 nj, that will go from 0 to infinity e raised to minus beta n j plus half h cut omega j

ok.

So, the 3 N products are outside, for each product you take n j going from 0 to infinity. 
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And then you can think of it this way that the I can do it this way, that the submission

does not operate on omega j it only operates on n j. So, what I will do is, I will take the

omega j is operated on only by the product. So, I can take e to the power minus beta, h

cut  omega  j  outside  and  I  will  say  that  the  summation  operates  only  on  n  js,  the

summation variable is nj only and this is e to the power minus beta n j h cut omega j ok.

So, the for the summation the omega j is a constant here.

Student: That e power minus beta h plus omega j by 2.

Correct. So, there should be omega j by 2 fine ok. So, this summation is only on the n j

not on omega j, for which is constant inside the summation. So, I can write it as product

over all 3 N modes e to the power of minus beta h cut omega j by 2 and this would be

nothing, but if you do the summation write down the first few terms. So, for n j equal to

0 you get 1 then, for n j equal to 1 you get minus you got e to the power minus beta h cut

omega j, plus e to the power minus 2 beta h cut omega j and so on. You have been finite

terms. 
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So, if you look at this, this is a geometric series and it converges for a common ratio

which is e to the power e to the power minus beta h cut omega j, that is a common ratio

and I know as you know the summation goes towards larger and larger end this with

common ratio will go to 0. So, this series is uniformly convergent for this common ratio

and so, I can write down this as, product over j going from 1 to 3 N e raised to minus

beta h cut omega j by 2 and the product has been the geometric series has been has been

reduced to this sum, which is 1 upon 1 minus the common ratio which is e raise to minus

beta h cut omega j. 

So, this is equal to the sum 1 upon 1 minus ok. So, this is common ratio fine. So, now,

you  can  see  that  I  can  reduce  it  further  by  just  multiplying  the  numerator  and

denominator with e to the power beta h cut omega j. So, this will give me 1 upon e to the

power beta, h cut omega j by 2 minus e to the power minus beta h cut omega j by 2 ok.
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And this can be visualized to be as nothing, but product of 3 N I can write it as, 1 upon I

can write it as twice sin hyperbolic of beta h cut omega j by 2 fine. So, this is nothing,

but our partition function. So, I can write down my logarithm of the partition function,

that sort of builds connection with thermodynamics. 

So,  I  can  write  down  my  ln  Z  as  nothing,  but  the  logarithm  of  products  becomes

summation of logarithms and the fact that you have inverse for each term, it simply gives

me a  negative  sign outside  and it  becomes  a  summation  over  all  3  N oscillators  of

logarithm twice sin hyperbolic beta h cut, omega j by 2 that is the expression for your

partition function for our 3 N dimensional solid ok.
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So, now you can build thermodynamics from here. So, what you want to do from it is

onwards is we know that. So, I am just going to as you take the your system to be very

large. So, as N goes to infinity and your volume goes to infinity such that, your number

of particles becomes finite and you have a well defined homogenous density, in this limit

you can think of your wave vectors to be tightly spaced in the box.

(Refer Slide Time: 34:00) 

In the sense that, any wave vector k that you take for your system would be nothing, but

a collection of these components of the wave vector and I can call these components of



the wave vector as 2 pi n x over l, 2 pi n x n y over y l, assuming you have a cubic box

and now, what are these n x n y n zs?

N x n y n z nothing, but the excitation of each oscillator that you have taken. So, each

isolator  that  you  said  is  an  excitation  of  ni  I  can  actually  write  down that  ni,  as  a

combination of you know n i x n i y and n i z. So, the n x n y n z are basically, the

components of the excitation of any oscillator in the system. So, if you take this L to be

very large, then you can think of your wave vectors k to be very closely spaced because

the minimum wave vector that you can have is basically 2 pi by L into n x.

2 pi by L into n y n 2 pi by L into n z. So, if L goes to very large the delta k that is the

separation between your wave vectors goes to 0 ok, since you can write down the k

minimum is nothing, but in some sense the you can take n x n y n z to be 1, that is the

minimum value of. So, this k minimum would be nothing, but 2 pi by L of the order of 2

pi by L. So, it is basically 2 pi by L square plus 2 pi by L square, plus 2 pi by L square

and the whole thing. 

So, this would be the minimum from k minimum you can construct the magnitude of k

minimum. So, you know its would be of the order 2 pi by L ok, because some of these

threes the same order.
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If we take the square root is of the order 1 by L. So, as L goes to infinity our separation

between the modes goes to 0. So, you can think of the summation here, in 1 it will turn

into an integral ok.

Now, we are as modes are coming close since omega is proportional to k,  omega is

actually c times k the actually relationship is. So, if ks are coming very close to each

other, we expect omegas to be also very closely. In fact, the c is not the velocity of light

this is a acoustic speed ok, please make the distinction here my c is the acoustic speed.

We are talking about vibrations of in a solid. So, basically we are talking about the speed

of sound in the solid. 

So, c here corresponds to the acoustic speed and is as k becomes tighter and tighter in the

system as we have just seen, we expect the omega is also to be very close and close to

each other. Now if you have large number of these omegas and they are all very close to

each other and it makes no sense to continue with this summation that is very painful ok.

So, you what you will have in this in instead of this is that as N goes to infinity, the our

upper limit of summation also go to infinity and your omegas are very close tight now.

So, I am going to convert this summation into an integral in the thermodynamic limit. 
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So, in the thermodynamic limit as modes are more and more and they are tightly spaced,

because of the arguments that just preceded it makes a good it makes good sense if I



write down my ln Z as an integral. So, I am going to write down my ln Z as an integral.

So, this would be like 0 to omega we will go from 0 to infinity. 

And I will have to integrate ln of twice, sin hyperbolic into beta h cut omega 0 by 2,

correct and there shall not be any. In fact, just omega the subscript on omega will not

disappear because, we are integrating over all omega d omega. Now as you can see this

integration is not correct unless I take into account certain density of states,  because

otherwise this integration is not dimensionally consistent. 

You see this quantity g of omega should have the dimensions of 1 over omega, only then

this integration is dimensionless and becomes our ln Z, but what should be this g of

omega and why should we have g of omega? Well the simple reason is we have g 1 from

summation over all omegas to integral over all omegas. 
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Now this integration only makes sense, if you are multiplying your integrand with the

density of states. So, in some sense the density of states is required to basically, say that

your if you have number of states in some frequency interval ok. Then if you integrate

over the entire frequency interval, then the summation of overall g of omega is simply

unity or number of modes, if you have not normalized your density of states. 



So, this should simply give me all the number of modes in the system ok, all the modes

in the system. Because number of modes per unit energy range, if you integrate over all

the range should give you the total number of modes. 

So, depending upon what density of states we choose we can get different answers and in

this, the first case that I am going to take here today, is the case proposed by Einstein

who said that all 3 N oscillators are oscillating with the same frequency. So, that was the

most simple quantum mechanical description given by Einstein we said that, let us not

worry about let us say question asked in the beginning was are all omega j is the same.

So, I said that let us start with all the marriages different.

But now here, here we are with a nice expression in the continuum limit the first solution

was given by Einstein who said that instead of taking all omegas to be different why not

take them all to be the same. So, Einstein proposed. So, Einstein’s proposal was to take

all oscillators with the same frequency. So, in some sense Einstein was saying that the

density of states here, is like a Dirac delta distribution what does this mean? He was

saying that all isolators having the same frequencies.

Now, if you ask question, what is the number of oscillators per frequency? This has to be

infinity, because his frequency width is 0 everything is in 1 frequency and you have got

N or 3 N oscillators all of them oscillating with omega 0 which means, if you considered

d n by d omega its got to be infinity because number of oscillators in your unit frequency

width the width is 0 everything is in 1 oscillator, everything is on 1 frequency. So, this is

got to be a Dirac delta distribution.
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So, you can think of these omega here as the Einstein’s frequency, no omega 0 is the

frequency of all the oscillators, it is like saying that you know. So, if each oscillators

frequency is same and you ask me, what is the density of states? Its got to be a delta

function ok, because if you integrate this over all the frequency space then there is got to

be simply 1 its got to be simply you know, if you take it as N times 3 N times delta. So,

then this simply gives me the number of oscillators ok.

So, we are going to take this example of the Einstein’s oscillator of Einstein’s model and

proceed with the calculation. 
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So, I am going to take the example of the Einstein’s model and compute the partition

function. So, the question is what is the heat capacity in this model ok? So, let us first

compute the partition function, because from there we compute all the quantities. So,

what partition function is basically ln Z or logarithm of the partition function has been

already computed to be negative of the derivative of g omega, which is 3 N times this

there are delta distribution into the logarithm of 2 sin hyperbolic beta h cut omega 0 by 2,

just omega of course, d omega correct.
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 Now you can see that the by the property of delta function delta distribution, the entire

integral  picks  up the contribution  from the function where the delta  function  has its

source. So, the source is at omega 0. So, in the entire integrant comes from that source.

So, it is becoming ln of twice sin hyperbolic beta h cut omega 0 by 2 ok.

Now, which means that I can compute the thermodynamic quantities, because this is my

bridge that can I start my to thermodynamics. So, computing total internal energy which

is nothing, but the expectation value of the Hamiltonian is now cakewalk. So, this is

nothing, but what we have seen in the last chapter is negative derivative of logarithm Z

ok. If you recall the results of the canonical ensemble and this is the ensemble in constant

N vt conditions.

The number of particles temperature and the volume of the solid does not change. So,

this is the canonical partition function and whose derivative in this form, gives you the

internal energy. So, negative ln Z is already given to me. So, I am just going to copy the

previous expression and write this as thrice N and the derivation of logarithm is just its

just going to give me tangent, not tangent its going to give me cot hyperbolic beta h cut

omega 0 by 2 into h cut omega 0 by 2. 
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 And I can now write it as 3 N h cut omega 0 by 2 into cot hyperbolic, beta h cut omega 0

by 2 all right, but this is my total energy I want heat capacity ok. So, the heat capacity at



constant volume, is given as the temperature derivative of the total energy at constant

number of particles and volume we are in N vt on symbol.

So, I am going to write it as 3 N h cut omega 0 by 2, into d by dT of cot hyperbolic beta

h cut omega 0 by 2, let us do it carefully it is natural to do this derivative in terms of beta

ok. So, what I am going to do here is basically note that. So, noting that d by d beta can

be transformed into a temperature derivative which means, my temperature derivative

can be written as, minus 1 upon k t square d by d beta and that would be nothing, but

minus beta square k b into d by d beta because beta itself is kt. So, one k will cancel

right.
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So, I am going to substitute this change of derivatives. So, my heat capacity at constant

volume will become 3 by 2 into N h cut omega 0 and I get a minus beta square kb, into d

by d beta  of cot hyperbolic  beta h cut omega 0 by 2.  And let  me make some more

substitution. So, I am going to write it as. So, beta squared k b can be written as 1 by k B

T and I will have a 1 kB, with a negative sign. 

Student: (Refer Time: 51:59) square.

No just a second. So, I am going to write it as. So, that would be correct. So, this will be

k BT square ok.

Student: (Refer Time: 52:50) kT.



So, beta is 1 upon kt. So, beta square is k square T square in the denominator. So, then I

should.

Student: (Refer Time: 53:00). 

So, I am going to write it as just with the minus sign here and what I am going to do next

is multiply and divided by h cut omega 0 by 2 and then write this as minus 3 by 2, into N

k B into so in fact, I am going to write it as minus 3 by 4. 

Because there is there are 2 factors of 2 there in to h cut omega 0 by k BT, the whole

square ok, into d by d of h cut omega 0 by. In fact, I can take the 2 inside here fine. 

(Refer Slide Time: 54:45) 

So, I can substitute for h cut omega 0 beta by 2 as x. So, this becomes nothing, but minus

3 N k B, into x square. So, these are substitutions which I believe will make life easy for

us del by del x square, del by del x of cot hyperbolic h cut or cot hyperbolic x. So, I think

it has already made life easy ok.
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And it is known I am just going to use the fact, that the derivative of cot hyperbolic x is

nothing, but minus 1 upon sin hyperbolic square x its known. So, you can work it out

very simple by simply saying that I will write down my cot hyperbolic x, you just use the

simple chain rule as cos hyperbolic x divided by sin hyperbolic x, which is nothing, but

do this derivative up by yourself. 

So, it would be e to the power x plus e to the power minus x, upon e to the power x

minus e to the power minus. So, this is cot hyperbolic x do this derivative you will get

minus 1 upon sin hyperbolic x square. Anyway I am not going to do that derivative here.

So, I am going to just write down my internal energy as minus 3 N k B. 

Student: This is heat capacity.

This is heat capacity, I am sorry its already taken derivative minus 3 N k B into x square

and into minus 1 by sin x square. So, minus turns into positive. Now, sin hyperbolic

square x ok. So, this is nothing, but this is 3 times N k B, into x square ok. So, you can

write it as sin hyperbolic square x would be nothing, but 1 upon e to the power x minus e

to the power minus x by 2 the whole square. So, there will be a 4 in the numerator ok.

So, this will be if I call this as this becomes 12 times N k B, into x square and I am

simply going to take 1 e raise to minus x from the denominator. 



So, this becomes e raise to x upon. So, this becomes if i. So, let me just; so, let me just.

So, I am going to write down 1 upon, I will take e raise to x by 2. So, that will be e raise

to minus x and so, I am going to take e raise to x outside. So, this becomes 1 sorry e raise

to minus x outside. So, this becomes correct all right.

So, if I write under this square root under the square, then it simply becomes e raise to x

minus e raise to minus x ok. So, if you want to understand this, you can say that I am

going to write it without the square here and then this is the overall square ok, then this

goes inside becomes e raise to x minus e raise square and the entire square is outside.

(Refer Slide Time: 61:31) 

So, now I am saying that I want to write it as e raise to minus, if I ok. So, this simply

becomes twice N k B into x square e raise to 2 x, over e raised to 2 x minus 1 the whole

square and substituting for x, as h cut mega 0 beta by 2. I can write down my heat

capacity as thrice N k B, h cut omega 0 by k B T whole square, e raise to h cut omega 0

beta divided by e raise to h cut omega 0 beta minus 1 the whole square fine. So, this tells

you something about heat capacity and that is a very important message here.



(Refer Slide Time: 61:23) 

So, if you try to sketch the heat capacity you know, what is going on, but there is one

thing definitely that there is a high temperature limit and there is a low temperature limit.

So, at t tending to infinity that is tending to infinity your beta will go to 0 because beta is

1 over kT. 

So, the limit beta tending to infinity beta tending to 0 is very clear. So, the denominator

here becomes it can be very easily seen. So, if your beta goes to 0, then I can write down

my I will write down, let me write down everything. So, there is h cut omega 0 beta

right. 



(Refer Slide Time: 64:18) 

So, I have got an h cut omega 0 beta the whole square ok, which is this term h cut omega

0 beta the whole square, into e raised to h cut omega 0 beta and I have division by e raise

to h cut omega 0 beta minus 1 the whole square. 

So, this will if you look at the denominator this is 1 plus h cut omega 0 beta, plus order

beta square ok then minus 1. So, I am going to drop this to 0. So, this one cancels off and

what you have is just denominator is going is h cut omega beta, the whole square and

you go to numerator h cut omega 0 beta the whole square and you have got h cut omega

0 beta. So, this will knock off with this and as the beta goes to 0 or this will go as 1 ok.

Now, the prefactor here is just 3 by 2 N k B. So, the high temperature limit or beta going

to 0 limit is just 3 by 2 just 3 N kB ok. So, this is the high temperature limit also called

Dulong petit law. So, that is the high temperature limit. So, becomes constant at the high

T heat capacity becomes 3 N k B ok. Now what happens to low temperature. 
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So, this is the high temperature limit, at low temperatures where this when t going to 0 or

beta tending to infinity in this limit, if you look at this expression. So, as beta goes to

infinity you see that, the denominator here. So, I am going to just use the same thing. So,

just copy it. 

So, as beta goes to infinity. So, I can say that my denominator here becomes. So, large

that I am going to drop 1. So, it goes as h cut omega 0 beta square e raise to h cut omega

0 beta, divided by e raised to twice h cut omega 0 beta, because beta is infinity. So, I can

drop 1 and so, the square becomes twice. Now this will go as h cut omega 0 beta square,

into e raised to minus h cut omega 0 beta and this I will argue that it goes as e raise to

minus h cut omega 0 beta as T goes to 0 or beta goes to infinity. 

For the simple reason being, beta square e raised to minus h cut beta will go as e raise to

minus h cut beta by L Hopitals rule.
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So, you can see my function is basically I can drop h cut omega. So, just raise beta

square over e raise to h cut omega 0 beta. So, its low temp beta infinity limit would

simply  be  the  beta  infinity  limit  here  and this  becomes  infinity  by infinity. So,  you

invoke L Hopitals rules. 

And so, what you get here is nothing, but invoke it twice. So, it gives you just 2 by h cut

omega 0 the whole square, e raise to beta h cut omega and that will go to 0 exponentially.

So, its low temperature behavior is exponential and high temperature limit is getting to

the d along spurted law or saturation.

So, here it will go as e raised to minus beta h cut omega 0 and high temperature limit

becomes a constant. So, in reality what is basically obtained is a dk to 0 which is much

lower than the exponential dk. So, in reality heat capacity is seen to be third power of

temperature at low temperatures. So, this is called as in some sense, the t cube law which

is universally shown by most metals and while Einstein’s law is fairly accurate at overall

temperature region, it does not show t cube universality at low temperatures.

And so, in the next class, I will show why this t cube universality cannot be recovered in

Einstein’s law and what 1 has to do in how to recover the t cube universality. In this class

we stop  here  and when we meet  again  tomorrow, we will  talk  about  corrections  to

Einstein’s law which goes by the name of d bys corrections. So, d by proposed some

corrections in terms of the density of states of these lattice oscillators to recover the t



cube behavior of heat capacity at low temperatures. So, we meet again in the next class

and take it up from there. 

Thank you. 


