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All  right.  So,  good afternoon students,  today we will  talk  about  the  correspondence

between quantum statistical mechanics and the classical statistical mechanics in the limit

of high temperatures and low densities. This is the last subject of our discussion and an

important discussion in the sense that, it tells you how to seamlessly connect quantum

world with the classical world. 

And of course, the only way to connect is when you start from quantum mechanics, you

can take  this  high temperature  low density  limit  and go to  classical  mechanics.  You

cannot do it vice versa and because quantum mechanics was constructed when classical

mechanics failed to describe certain experimental phenomena. 

So, it was a theory that was set up with certain principles and certain rules, axiomatic

rules. And this makes this correspondence unidirectional in the sense that, there is no

way you can start with the classical calculation and show a by some limit that quantum

effects arise that is impossible; you can only start from quantum mechanics and take a

classical limit and show a classical results. And I will explain this by starting with our is

quantum  statistics  for  both  Fermi  systems  and  Bose  systems  and  take  the  high

temperature low density limit especially when the system is very large because, this is

where a natural classical to quantum correspondence occurs ok.
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So,  today  I  am going  to  talk  about  correspondence  between  quantum statistics  and

classical  statistics  or  can  also  be  called  as  quantum  to  classical  correspondence  or

classical statistics as a limit of quantum statistics whichever way you want to call it.

Now, I  would  like  to  start  from a recollection  that  we have  made in  the  context  of

partition  functions  of  real  particles.  So,  if  you  recall  we  had  constructed  the  grand

canonical  partition  function  ok.  So,  I  am  writing  down  the  logarithm  of  the  grand

canonical partition function, we can consult your notes for this particular expression, it

was given as this expression where we summed over all possible energy states ok. 

The plus minus sign here corresponds to the case where the system of particles  is  a

Fermionic  system or  a  Bosonic  system ok.  So,  this  is  basically  summation  over  all

energy levels, lon of 1 plus or minus e raise to beta mu minus E j, where the plus is for

the Fermi statistics and the negative is for Bose statistics ok.
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Let us label this equation as 1. If you do not recall this then its not a problem because

you can derive this expression very quickly. If you want to derive it from first principles

then we should know that a correct enumeration of states or enumeration of the partition

function is very difficult if you want to; if you want to do this in canonical ensemble that

is the ensemble of fixed n b and t.  And then we said that this enumeration of states

becomes very simple, if you allow the number of particles in a system to fluctuate. 

Meaning that you do the calculation in grand canonical ensemble, which is the ensemble

of constant chemical potential volume and temperature and then we had shown that the

restricted  sum becomes easier  to  compute  because you allow in the total  number of

particles to fluctuate from zero to infinity, there by taking each term in the summation

independently and you can construct this expression one very easily.

This was the subject matter of last lecture, I am just bringing it up as a recap. Anyway we

will note our last lectures outcome which is the equation 1 our grand canonical partition

function and proceed from here. Now how do we take classical limit? Classical limit is

the limit as I keep saying, is the limit of high temperature in low density. Meaning if you

take the number density, now this has the dimensions of 1 upon length cube, I want to

construct a dimensionless number. So, which means I must multiplied by cube of some

length now this is a dimensionless number ok. So, this dimensionless number if it  is

much much smaller than 1 then I am in the classical limit ok.



Now, how can I reach this? See either I can take n to be very small meaning I have

blown the volume to be very large such that my density is become very small and this De

Broglie wavelength here the De Broglie thermal wavelength has to be very very small.

So, if both n and lambda become very small and lambda cube is much much smaller,

then the product of these two small numbers will definitely be much smaller than 1. I

know that De Broglie wavelength is given as some h over square root of 2 m 2 pi m kT. 

So, it is not difficult to see why at high temperatures I will get a classical limit. So, if I

temp if my temperature is very large, the De Broglie wavelength will basically be much

much smaller  it  will  go as  1 upon square root  T. So,  at  high  temperatures  your  De

Broglie wavelength is much smaller lambda q becomes even smaller and I have also

taken volume to be large. So, density to be less. So, high density low high temperature I

am sorry low density high temperature limit naturally corresponds to the classical limit.
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So,  you  can  reach  the  classical  limit  by  low density  and  high  temperature  ok.  The

quantum limit is naturally the limit where we are doing our calculations and this is the

limit where we expect n lambda cube to be much much larger than 1 and this limit can be

raised reached by taking high density and low temperatures ok. So, this is like saying that

at any temperature I can see quantum effects, if I go and increase my density. Similarly at

any temperature I can see a classical effects if I keep my density sufficiently lower ok.
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So, you can take the classical limit here which is the subject matter of our interest and

show that the partition function reduces to our well known canonical partition function.

So, using classical limit or I would say applying classical limit ok, which is basically the

limit n lambda cube being much much smaller than 1. 

We will basically show that our grand canonical partition function reduces to our familiar

partition function for an ideal gas which is if you recall it is nothing, but volume to the

power N over let me use a different color here. If you remember the expression it is

volume to the power N over N factorial divided by h to the power 3 N to 2 pi m over beta

raised to 3 N by 2 this is our canonical partition function ok. 

So, I am going to derive this from our quantum partition function in the classical limit.

And in doing so, we will discover that the correct enumeration states which is this N

factorial here which avoids over counting the microstates and hence gives you the correct

definition of entropy is naturally embedded in your calculation, also the cell factor h also

appears as a remnant of this quantum to classical correspondence.

So, both these factors which were sort of ad substitute in an adhoc fashion in classical

mechanics  are  no  longer  you  know substituted  as  adhoc  they  are  embedded  in  the

calculation and now you know why this h was called as Planck’s constant because here h

is  Planck’s constant and its  high temperature low density limit  reduces to a classical



partition function where you had taken an edge keeping just the notion that I want to

keep Z dimensionless and I want to have a some sort of a scale of the phase space. 

So, I have taken an h which has a dimension is equal to action angular momentum is now

realized as the Planck’s constant. So, we will now say that h is Planck’s constant, we

could not have said Planck’s constant earlier  because this  was a calculation done by

Boltzmann and Gibbs, which predates all quantum mechanical work ok.

So, let us proceed from here. So, I am going to basically write down the occupation

number or basically the average occupation number. So, this is nothing, but the ensemble

average value of particles in some jth quantum level and we know that this is nothing,

but 1 over e raised to beta e j minus mu plus or minus 1, where again these two signs

correspond to whether the statistics is Fermi Dirac or Bose-Einstein ok.
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Now, we are taking a high temperature limit which means I am going to take. In fact, we

are going to take both high temperature low density limit which is a classical limit. So,

under high T and low density, I can safely say that most energy levels are unoccupied

and the reason is the following at low density I have high volume, which means that the

spacing between the energy levels will be almost negligible, these discrete states from a

continuum now right. 



Because your energy levels are proportional to 1 upon l square h cut square k square

upon 2 m, k itself is 2 n pi by l. So, k square is 1 upon l square. So, if you calculate the

difference between energy levels it will go as 1 upon l square or 1 upon l not 1 upon l

square 1 upon it will go as 1 upon l. 

So, you can think of the manifestation of large volume as the energy levels forming a

continuum ok. So, now you have energy levels that are you know basically forming a

continuum  and  there  are  large  number  of  infinite  number  of  them  and  now  your

temperatures are also very high. So, there is no in principle the particles can be anywhere

and you have a large number of energy levels, which essentially gives you a picture that

the average occupation number for any level would be a small number.

Because most levels are now empty; it is like you have one level here, another level here

and the third level here you had some particles here and then you had some particles

here. Now as I increase the volume of the system, I get more and more energy levels in

between eventually what happens is as these particles can at the expense of very little

energy difference and hop from one level to the other ok. So, you will now get a picture

which is more or less like this. 

Because the number of levels are now very large number they are very close to each

other and because the temperature is very very high and these particles can practically go

and sit  at  any level  and they are infinite  number of  these levels  with the separation

between them almost negligible, you would expect that the average occupancy number

would be a very small number ok.

So, a consequence of high temperature and low density is that, most states become empty

this is the consequence. Suppose you had only lower density, but temperature was not

high. So, you would have the right hand side picture where the states are very close ok,

but since you kept the temperature low most particles would go and sit at the lowest

possible states. 

So, they would be more occupied. Then I cannot say that most states are empty, because

the lower levels  are  now occupied.  The fact  that  you made a  large  number of them

closely start and you made the temperature very high which means now you are making

most levels unoccupied, they will all go and sit at levels in such a way that you have only



one particle per level at max on an average. So, you can see that I have a large number of

states now on the right hand side which are unoccupied ok.

In the previous figure you can see that, I can you know at low temperatures I can at least

see most particles and I would say high density. So, because I have taken high density

the energy levels are not forming a continuum. So, volume is low ok. So, you can say

that and the temperature is also low, so, most particles are taking the lower states. But as

I go to low density and high temperature, I have a continuum of states and I give these

particles you know a liberty to go and sit anywhere in this continuum. As a consequence

of that most states are now unoccupied.
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Which means that my average occupation number is which is given as 1 upon e to the

power beta E j minus mu plus or minus 1 is much smaller than 1 as a consequence of this

right.  Now, what  this  means  is  that,  the  denominator  should  be  dominating  for  this

fraction to be much less than 1 my denominator should be dominating.
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So, I can say that e to the power beta E j minus mu plus or minus 1 should be much

much larger than 1 that is my denominator which only means that e to the power beta E j

minus mu is much larger than 1 because I can ignore 1; 1 is a fixed number ok. So, x plus

1 is much larger than 1 means x is much lower than 1 ok. Now you can see that two

things are here; one is that let me first plate it up. So, I will write it as you can see the left

hand  side  of  the  inequality  is  j  dependent  the  right  hand side  of  the  inequality  is  j

independent, which only means that this energy level does not matter it is arbitrary any

energy level will suffice or will satisfy this inequality.
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Which can only mean that our minus beta mu is something which is much larger than 1.

This  is  possible  because  this  is  actually  true  because  at  very  low  beta  or  high

temperature, I know that my chemical potential is negative highly negative. So, minus

beta mu has to be a number which is much larger than 1, if you recall your; if you recall

your diagram or behaviour of chemical potential, mu over mu F versus T over T F you

know that its somewhere starts from 1 T equal to 0 mu is mu F and it crosses 0. 

So, this is the 0 point and then it takes a nosedive. So, at larger and larger temperatures,

the chemical potential is more and more negative. So, minus beta mu as beta goes to 0 or

temperature goes to infinity has to be a number which is much much larger than 1 ok. So,

I am going to write down beta low or T high whichever is convenient to you ok.

So, this is our classical limit that minus beta mu is much much larger than 1. Of course,

we have taken the liberty to assume that the system is in thermodynamic limit of course,

that  was  that  is  not  a  bad  assumption  because  most  systems  that  we  deal  with  in

laboratory and already in the thermodynamic limit. So, with a large number of particles

in large volume, the energy levels are very closely state. The classical limit just adds one

more feature that I give every particle  the liberty to go and sit anywhere. So, in the

continuum is I tell anybody to sit anywhere, I can expect that most levels are unoccupied

right.

 If I keep if I do not give that liberty I will see that most of them are sitting at the lowest

levels,  and I  cannot  say that  nj  is  much larger  much much smaller  than 1 for any j

certainly for lower j s nj is not insignificant. But high temperature when I have given the

liberty to go and sit anywhere in this infinite continuum of states, I can assume to a very

good extent that average occupation number for any level would be much smaller than 1

ok.

So, this is the meaning of the classical limit in the large systems. So, now we can proceed

from here and note that the total number of particles we just find it ok. We only increase

the volume to sort of make an continuum of energy states and this is given as summation

over all the states with the average occupation number of each state ok.
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And the average occupation number of each state has already been approximated. So, I

will  say  this  is  approximated  to  you  can  look  at  the  expression  here.  Because  the

exponent in the denominator is much larger I can write down this as just I can ignore the

plus minus sign, which basically means that now it does not matter whether you have

Fermi systems or if you are dealing at a Fermionic system or a base system. In the high

temperature low density limit both the Fermi Dirac and Bose Einstein systems or both

Boson system and the Fermi on systems behave identically. 

So, I am going to write it as just 1 upon beta E j minus mu ok. The nearly equality sign

should remind you that we are looking at the high T low density or classical limit. We

have taken the classical limit of Bose Einstein and Fermi Dirac statistics ok. So, this can

be simply written as summation over e to the power minus beta E j minus mu ok. 

So, I can clearly take a couple of things outside here. So, I can say that this is e to the

power beta mu into the summation j e raise to minus beta E j because this is a pre factor

that does not depend on the index j and write down for e raise to beta mu as N over

summation j e raise to minus beta E j ok.
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Also implying that I can take. So, I can also take a log on both sides and this will give

me natural log ok. So, let us call this as a sum equation we have label datas equation 1.

So, I am going to label this as an equation 2. So, equation 2 has two out as one is the left

hand side which is basically this, the other is this both are the same equations. Now we

can write down in some sense the partition function. So, if you recall your results from

classical statistical mechanics.

 So, we had a relationship between statistical mechanics and thermodynamics essentially

the bridge that we constructed for every problem and this result was that the logarithm of

the canonical partition function was related to the free energy by this expression ok. And

I am going to write down this as minus beta and the free energy is the Helmholtz free

energy. So, this is just a internal energy minus Ts ok.

Since  our  goal  is  to  derive  classical  statistical  mechanics  from  quantum  statistical

mechanics under this high temperature low density limit. It is sufficient that I derive the

classical partition function starting from the quantum partition function because partition

function is  the bridge that  connects  thermodynamics to statistical  mechanics.  So,  if  I

show that the quantum partition function reduces to the classical partition function,  I

would  have  done my job  because  from there  I  can  derive  all  properties  of  my gas,

entropy pressure so on and so forth. 
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So, a task simply reduces now to start from the quantum partition function which is the

grand  canonical  partition  function  that  is  nothing,  but  I  know  the  grand  canonical

partition functions logarithm gives me an energy scale which is the grand potential and

that is equal to E minus Ts minus mu N I know this, but here is the thing. I know that

beta times E minus Ts is also equal to lon of canonical partition function ok. So, I am

going to write this as minus beta times. So, or I can just substitute the expression from

there. So, this is the fun part. So, I can write it as a lon of the canonical partition function

plus beta times mu N ok. 

So, now you can you can see that I can write down I can just rearrange the terms and

write down for the canonical partition function as right and now we just seems substitute

for these quantities ok. So, we are just going to substitute for these quantities. So, first I

am going  to  write  down for  lon  of  the  grand  canonical  partition  function  which  is

nothing, but my equation 1 ok.
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So, go back to equation 1 which is all the way here and substitute this. The second factor

which  is  minus  beta  mu n  fine.  So,  basically  what  I  have  done is  I  have  taken  as

substituted for this term with this and I have written this term as is fine. Since we are in

the classical limit, we are interested in the classical limit I have already I can already

assume that my beta times mu or minus beta mu should be a number which is much

much larger than 1 ok. So, I can safely put the exponent here to be a very small number

turns out to be very small ok.
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So, then I can write down my right hand side. So, you will say that since minus beta mu

is much much greater than 1 which is basically the classical limit, just to remind that we

are in the classical we are interested in taking the classical limit; e to the power beta

times mu minus E j is a number which is much much smaller than 1 ok.

Therefore, I can use the expansion since you know I can write down this lon of 1 plus

minus e raise to beta mu minus E j and simply I can write it as plus minus e to the power

beta into mu minus E j roughly and I can definitely ignore terms of the order beta times

E, I can drop these terms. 

This is nothing, but if I have to show it explicitly there is nothing, but if I have lon of 1

plus x, where x is very small, but smaller than 1, then I can write approximate this as x

minus x square by 2 plus terms of the order x to the power 4 and so on like sorry right.

Now definitely if I have minus x here, then I have to say this is plus or minus x, because

the even powers of x do not suffer any sign change whether x is replaced with minus 6,

but all the order powers will suffer the sign change.

So, I can say that to linear order if x is very small, I can approximate lon of 1 plus or

minus x as simply plus  or  minus x and I  will  say that  I  am not  interested  in terms

quadratic in above fine. So, that is what I have done. So, I have replaced lon of 1 plus or

minus e raise to beta mu minus E j simply plus or minus e raise to beta times mu minus E

j.

Now with that my right hand side becomes much simpler there is a plus or minus sign

outside and each term in this summation this is coming with a plus minus sign which

means I can now forget the plus minus sign, because if it is plus outside it is plus inside

its minus outside its minus inside in either case I get plus only.
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So, this is a very promising scenario. So, I am going to write down as the left hand side

as lon of my canonical partition function which is nearly equal to summation over j, each

term was a lon of 1 plus minus x which is giving me plus or minus x only. So, I am just

going to write down lon of 1 plus x as e raise to beta mu minus E j that is it, that is the

first term in the right hand side. I have got one more guy that I have to take care of,

which is minus beta times mu N. Now we make simple substitutions very easy sub once,

but before that let us give this equation a name let us call this as equation 3 all right.

So, now you have to make very simple substitutions we will use this one substitution we

will use as it is from here from equation 2. So, we are going to substitute for beta mu as

this term. So, I am going to substitute this entire expression for beta mu, is that ok? This

entire thing is for beta mu let us do that. So, I am going to write down the first term as it

is. In fact, why do not we substitute ok? So, maybe we can do it in two steps its better

that way. So, from the first term what I am going to do is basically take ok.

Let us write the first term as it is. So, it is just e raise to beta mu minus E j and I said that

I am going to substitute for beta mu ok. So, I am writing minus N and for beta mu, I am

going to substitute what I had written this term fine. Now let us try and do something

with this term what can we substitute for this. Again let us go back upstairs. 

So, if you look here this place. So, you can see that this is e to the power beta mu minus

E j and you have the same thing here e raise to beta mu minus E j we just pulled out a



minus sign and this is nothing, but N ok. So, we will substitute with N and you can refer

upstairs. So, now let us write down the right hand side.
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So, this becomes N minus N ln N, this is already looking like something plus N lon

summation j  e to the power minus beta E j.  N minus N lon N looks like a familiar

approximation this is a Stirling approximation of minus N factorial ok. So, this is the

Stirling approximation of minus lon N factorial plus the second term I am simply going

to write down as lon of summation j e to the power minus beta E j to the power N ok. 

This is because you know its simply if I have N times lon of x this is nothing, but lon of

x to the power N ok. So, this is what I have done to the second term I have taken N as an

exponent because I want to combine all the logarithms. So, I can now combine my right

hand side because both of them are log; log A plus log B is log of A times B.
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So, I can use this since I have a negative sign here. So, I am going to take log A minus

log B its  nothing,  but  log  of  A over  B ok.  So,  I  can  write  this  as  a  natural  log  of

summation e raised to minus beta E j the whole to the power N divided by factorial, what

is on the left hand side? The logarithm of the canonical partition function. 

So, I know my canonical partition function now, I can simply take anti log on both sides

and  that  will  give  me  an  expression  for  the  canonical  partition  function,  the  nearly

equality is a remanence of the fact that we have taken the classical limit here and this is

nothing, but summation of some kind of a Boltzmann factor to the power of N divided by

N factorial. 
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So, can I call this as nothing, but a single partition function raised to the power N divided

by N factorial. So, this is like already the birth of the Boltzmann statistics. So, Z 1 is a

single particle Boltzmann partition function. See its like you compute partition function

for a single particle and raise it to N power, that will give you v to the power N and 2 pi

m over beta to the power 3 N and so on so forth and there is 1 upon N factorial is the

factor  that  comes  due  to  the  indistinguishability  of  N  particles  which  you  have  to

artificially plug in classical statistical mechanics to avoid Gibbs paradox, it here you do

not have to do anything ok.

So, this N factorial was embedded in the wave function of the Fermions in the Bosons

and when you take the high temperature limit, you get the correct statistic which requires

no artificial  plugging to save you from an entropy crisis. So, this is a single particle

partition function let me complete my statement and this factorial here is because you got

in distinguishability; what do you mean by in distinguishability? Particles are identical

so, if I permute with N particles I have N factorial permutations, each one of them will

have the exactly the same Hamiltonian and the wave function does not change which

means I must not over count my microstates.

So, this is precisely the factor by which you would over count your microstates and get

incorrect entropy. Well that is naturally avoided in quantum statistics because you do it in

the grand canonical ensemble and you take into account the proper symmetrization and



anti symmetrization of the wave function and so, this N factorial is already embedded in

your calculation. 

Anyway, it is relieving and it is I pleasing to see that everything falls in tact when you

take the high temperature low density element of the quantum partition function. We are

not there fully yet because we must determine Z 1 or if we determine Z 1 we will end up

determining Z, because Z 1 to the power N by N factorial is your Z. So, that is the only

agenda remaining ok.

So, let us complete this discussion and to do that all I have to do now is to basically go

from discrete  states to integration over a continuum of states.  So,  if  you look at  the

Boltzmann partition function this Z 1, this is nothing, but the partition function that is

written in for discrete degrees of freedom. 
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So,  we  can  go  from  discrete  states  to  a  continuum  of  states  I  will  call  this  as  a

thermodynamic  limit,  as  the  number  of  states  become  squeezed  so,  tightly  that  the

separation between the states disappears. So, you do not require you do not work with

summation anymore what you would work now with is density of states.

So, the summation a must be replaced by density of states that is the logical thing to do

when you have a continuum of states ok. Since we are taking a thermodynamic limit

voluming very large,  we must work with an integral  representation,  if  you recall  the



partition function for an ideal gas you did not use a summation over all states. Because

an ideal gas Hamiltonian you know is continuously is a continuous function, particles

can go in any corner of the box with any momenta since position and momentum are

continuous random variables, you would expect the Hamiltonian to be also continuously

varying. So, you had the integral version of the partition function.
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So, I can compute this g of k as we have been doing all along, this is nothing, but you

can write down this as d cube k over pi by L the whole cube and keep in mind that you

have to take one eighth of the total volume, because you do not take negative excitation

numbers  avoid  negative  quantum  numbers  and  just  to  remind  you  why  we  do  not

negative take negative quantum numbers?

Because taking a negative quantum number there is nothing spectacular to the system

except apart from giving the wave function and overall negative sign and since wave

function itself is nothing its just the probability amplitude, what is really meaningful is

the probability density which is the wave function multiplied to its complex conjugate,

and in that process a negative or a positive wave function gives you the same probability

density. So, we work with only one eighth or one octant of the case space and to respect

that observation we have taken a factor of 1 by 8th here ok.

So, now we can take this g of k and compute our partition function the last and final step.

So, this is my left hand side and the right hand side is nothing, but I have 1 upon factorial



N already with me and that integral over the Boltzmann factors to the power N has now

to be replaced with I can write down in this entire thing as an integral over I can write

down this as a let me just write down this pre factors outside. 

So, this becomes L cube and the numerator becomes just volume divided by pi cube and

I am going to write down 8 here V upon 8 pi cube and I have a triple integral ok. So, this

is like kx ky and kz going from minus infinity to plus infinity ok.

E to the power minus beta and energy is nothing, but h cut square k square over 2 m and

this is nothing, but integrated over the volume element please look at here if to refresh

your memory ok. So, this summation j over the Boltzmann factor is now my integral and

the entire thing is raised to the power N which is basically this power and there is a 1

upon factorial N outside ok.
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And just to remind ourselves we have taken the liberty to replace energy of the j th state

as h cut square kj square over 2 m ok. So, my Boltzmann factor is now e to the power

minus beta h cut square k squared upon 2 m. Now you can see that these are nothing, but

three independent Gaussian integrals I can write down one more step here. 

So, I am going to write down this as 2 pi the whole cube 8 pi cube and the triple integral

kx ky and kz all going from minus infinity to plus infinity e to the power minus beta h

cut square over 2 m into kx square plus ky square plus kz square. 
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Since, the integration variable is dummy, there is nothing, but a single integral to the

power 3 ok. So, I am going to write this as V to the power N over 2 pi to the power 3 N a

single Gaussian integral is square root of pi by a. So, I am going to write pi over a; a is

nothing, but beta h cut square into 2 m, this will give me a factor of 3. So, power of 3

because there are 3 integrals here and overall it will also be raised to an N because the

there is a big N sitting outside. Of course, it is square root so, 3 N by 2 fine, little bit of

recap.

So, minus infinity to plus infinity e raised to minus a x square dx is equal to square root

of pi over a, I have a product of 3 of them. So, I will call this as pi by a to the power

three half and if I have 3 N I will say that this is entire thing is nothing, but 3 N by 2 that

is all. Let us rearrange the terms so, that it becomes familiar to our eyes. So, I am going

to take 2 pi raise to 3 N inside this bracket which means I have to raise it to the power 2.

So, I am going to write down 2 pi m in the numerator as it is and take this guy inside. So,

if this should become 2 pi to the power 2 because there is a half also outside into beta h

cut square raise to 3 N by 2 there is a square root sign.

So, I had to raise it to the power of 2 it was already raised to 3N. So, that does not get

affected. So, this becomes now I can knock off a few things. So, h cut is nothing, but h

upon 2 pi. So, 2 pi square h cut square is nothing, but just h square. So, this is nothing,

but 2 pi m over beta h to the power 3 N by 2 square.
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And let us take this h square also outside. So, what I get is 1 upon N factorial into 1 upon

h to the power 3N into 2 pi m over beta to the power 3N by 2. This is my canonical

partition function for an ideal gas classical ideal  gas did I miss something? V to the

power  N  what  we  started  was  for  the  system  of  Fermions  and  Bosons  at  low

temperature?

So,  we  started  from  Fermi  Dirac  statistics  and  we  systematically  took  the  high

temperature low density limit in the limit of large volume and what we ended up getting

is  a  statistics  where  does  not  care  whether  you  are  looking  at  Bosons  or  Fermions

particles are behaving ideally, their point size particles and everything is neat and intact. 

This tells you that no matter whether you start from Bose Einstein statistics or Fermi

Dirac statistics,  the high temperature low density limit  will  take you to the ideal gas

behaviour which is a beautiful correspondence. That I do not see any difference between

the Fermi Dirac statistics or Bose Einstein statistics, they both behave like an ideal gas of

non interacting particles. 

So,  I  know for sure that  this  partition  function  is  related  to  the thermodynamic  free

energy as e to the power minus beta F and so, this partition function will give me the

correct values of you know the equation of state, the pressure, the entropy without any

you know problems  that  we encountered  in  classical  statistics  mechanics,  where  we

could not take the N factorial  you know without an ad hoc substitution. So, here the



expression that you get by this systematic process is the current expression, where the N

factorial  is  a  natural  you  know  factor  of  indistinguishability,  it  did  not  have  to  be

artificially plugged in this factor h is Planck’s constant. 

Again I did not have to take a Planck’s constant and plug it artificially like I did in the

classical stat mech, because I had to non dimensionalize a partition function in as an

attribute  some  kind  of  a  cell  factor,  the  resolution  of  my  phase  space  it  had  the

dimensions of a action. Here h is the Planck’s constant that came from the Bose Einstein

or Max Fermi Dirac statistics. 

So, the remnant h is the Planck’s constant. So, we must call this h is Planck’s constant

because it came from quantum mechanics you do not get Planck constant in classical

mechanics because Boltzmann and Gibbs would not have known this Planck’s constant,

because this was done only in the dawn of 20th century, when quantum mechanics was

actually developed. Well as classical star trek predates quantum mechanics, it was done

before quantum mechanics was developed.

So, the edge that is there in the Boltzmann and Gibbsian (Refer Time: 61:52) is not

Planck’s constant  at  least  they did not know. They used a cell  factor, they used non

dimensionalizing factor something that has dimensions of angular momentum for action. 

Now we know that this h is the Planck’s constant, because we started from the quantum

statistics and systematically derived classical statistical mechanics, which gives us the

correct  enumeration  of  states  there  is  a  factorial  N  sitting  here  which  avoids  over

counting  microstates  and  gives  us  the  correct  expression  of  entropy  and  so,  is  the

expression dimensionless because of the h factor sitting in the expression.  So, I  will

conclude  this  discussion of the quantum to classical  correspondence.  When we meet

again we will discuss some working examples and that is the end of the course. So, we

will stop it here.


