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Good morning students, today we will start the 3rd chapter on Quantum Statistics. 
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And I would like to highlight a few points that we are going to discuss in this particular

lecture,  that  will  pave the way for more intense and deep discussions in the coming

lectures. So, this is the first introduction to Statistical Mechanics of Quantum Systems.

Now, the first question that arises in our mind is that why do we need a different level of

statistics for quantum systems? 

Now, to understand that we must first identify what is the quantum limit of any classical

system or what is the classical  limit  of any quantum system. That being said we are

looking at the same system, the system does not change, but it may so happen that for a

combination of temperature and density, the system at our disposal may behave quantum

mechanically; meaning that it is no longer representable by a deterministic set of rules.

Which means at some sufficiently high density or sufficiently low temperature, I will

discuss in a short while what do we mean by sufficiently high or low.



So,  at  high density  on low temperature,  you would replace classical  mechanics  with

quantum mechanics and we have already seen some kind of a discussion on the onset of

quantum mechanics in classical systems. So, we will start off with a small recollection of

the fact that. So, first before we recollect anything I would like to put down the points in

some order just figuratively to basically decide what we are going to discuss ok.

So, the first thing on the cards is basically onset of quantum mechanics. So, when should

I be worrying about quantum mechanical effects that is the first thing to ask, because

otherwise after chapter 1 and chapter 2 I know exactly what to do when somebody asks

me to compute the heat capacity of a material or susceptibility of a magnetic system. All

these questions can be answered using tools of classical statistical mechanics. 

But the same system at my hand for example, electrons in a metal or spins on a lattice

will  classical  theories  suffice will  they give me the right answer. The answer to this

question relies on the parameters of the system the physical parameters of the system

which are the density on the temperature and that should decide whether I am in the

quantum regime or classical regime. We will discuss those parameters very shortly. 

The second point in this chapter would be basically a machinery or a theoretical set of

tools that appropriately handles the system of indistinguishable particles. Now you have

seen  in  classical  statistical  mechanics,  we  do  not  know  how  to  handle  these

indistinguishable particles except for the fact that. Once you complete a calculation, you

account for the fact that microstates which are only different from each other in only

permutation of identical particles are to be seen as just one entity. 

And so, you in some sense plug the n factorial pre factor after you have completed your

calculation,  there  is  no  inbuilt  machinery  in  classical  mechanics  which  handles

indistinguishability of particles. So, we will see how quantum mechanically you know

starts off with this correct formalism as if its embedded in its DNA ok. So, the n-factorial

is not going to be missed it fact in fact, it will be plugged into your calculations from the

beginning itself that is number 1.

So,  in  the  context  of  indistinguishable  particles  we will  be  discussing  two types  of

particles which are fermions and bosons. So, basically these are particles with some half

integer spins ok. So, you can take spins and so on and so forth and for bosons we will

have  you  know  integer  spins.  So,  the  fundamental  particles  are  the  fundamental



indistinguishable  particles  are  classified  into  fermions  and  bosons  in  the  quantum

mechanics.

And they are basically different from each other in the sense that one corresponds to the

parity operator having eigenvalue plus 1 and the other corresponds to the parity operator

having eigenvalue minus 1 ok. So, P here is the parity operator and I will talk into some

detail about this operator. And we will also basically see that quantum mechanics does

the correct counting or correct enumeration of states naturally ok, this correct counting of

the macro-states sorry micro-states is natural in the quantum mechanical formulation.

Basically, what is meant here is that when you have an n-particle system you do not start

your calculation by just you know doing any deterministic calculation. What you do is

write  down  an  in  particle  wave  function  and  the  properties  of  this  n-particle  wave

function by property I mean whether the wave function is symmetric under permutation

of n-particles or not decides whether it is a bosonic wave function or a fermionic wave

function. And this symmetry of the wave function in terms of permutation of particles

demands that the fermions obey exclusion principle, 
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So,  the  last  point  that  I  would  like  to  mention  here  is  that  a  consequence  of  the

symmetrization of the wave function or the anti-symmetrization of the wave function,

fermions obey Pauli’s exclusion principle and no such restriction is there on bosons ok.

So, a couple of things that we should; so, this is basically our menu of topics that we



would be covering and if you are doing quantum statistics I believe there should be a

nice understanding of; first of all why we need quantum mechanics, where is it that we

are lacking in terms of you know a classical understanding of the system. 

Then once we present the case for quantum mechanics, we must allow for you know

discussion on various types of particles  which are the fermions and bosons.  We will

discover that these two types of particles are nothing but you know the consequences of

your wave function over all wave function being symmetric or anti symmetric in terms

of a  parity  operator  ok.  That  is  why we call  them fermions and bosons;  it  is  just  a

definition ok.

Then after introducing this definition we will show how it does the correct counting of

microstates which is natural or in some sense I keep saying that quantum can axis. Sort

of on the start on the word go does the correct counting of microstates, I will explain

why is it so. 

And as a by-product of this correct counting it also basically shows why fermions will

obey Pauli’s exclusion principle, that is know to fermions can exist in the same single

particle quantum state ok. Because, if you try to force two fermions in the same single

particle quantum state then the entire wave function of n-particle system will collapse to

0. When you say that the wave function is collapsed to 0, you mean to; you are saying

that explicitly that microstate has 0 probability. So, you will never see this. So, that is the

sort of a sketch or the bird’s eye view of what I am going to present in today’s lecture. 

So, let us start with the first point on the menu which is the onset of quantum mechanics.

Now, we have seen in the second chapter that we had a length scale which was called as

the thermal De Broglie length scale. 
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So, recall that there was a thermal De Broglie length scale, now I call it as a length scale

and I am calling it as a thermal length scale because it is associated with the temperature

of the system and depending upon how large or how low the temperature is the length

scale  will  vary.  We can  call  it  De  Broglie  wavelength  or  De  Broglie  length  scale

whatever comes to your mind that is not necessary. But its form was we had discovered

that this length scale is the Planck’s constant h over 2 pi m k B T, where k B is the

Boltzmann constant and T is the temperature of h system; h being the Planck’s constant

ok.

Now, I  had said that  every system that  you study, let  us say n-particles  in a box or

electrons in a metal or gas in this room, you have a certain container or you have a

certain box where your particles are you know they exist. So, I know that my system has

a density, I call it  as small n number density which is the number of particles in the

system over the systems volume ok.

So, now you can see that this density has the units of you know it has the units of just l to

the power minus 3 because of volume. Now, like I said in the beginning few lectures ago

that  if  you  want  to  see  the  nature  of  the  system,  we  can  always  construct  a  few

interesting dimensionless numbers that will tell us how my system will behave. So, with

one length scale lambda, I am going to construct another length scale for my density and

compare these two length scales by constructing a dimensionless number.



So,  straightforwardly  I  can  construct  one  dimensionless  number  construct  a

dimensionless number ok, you are free to construct other numbers also by the way you

can also construct another. So, you can take lambda as one length scale our De Broglie

length  scale,  you  divided  by  some  density  dependent  length  scale  this  is  another

dimensionless number. Now, how do I construct this lambda n? This lambda n is you

know it can be taken as sum n to the power minus 1 by 3, but since we normally work

with density which is known to us.

For example for copper, I know that the number of electrons in the metal free electrons is

of the order of 10 to the power 28 per meter cube; I know the densities, I know the

density of hydrogen in this room. So, I would like to work with this combination of you

know this dimensionless number where I know n I know from handbook of materials or

by previous laboratory experience or whatever and I know to very good extent what is

my De Broglie wavelength.

So, I can choose to work with this dimensionless number ok; purely for convenience

sake. So, let us pick up this dimensionless number and see whether we can distinguish

the two world’s quantum and classical. So, clearly I know that the limit of high density

and low temperature is the quantum mechanical world. Because this is where when you

take when you look at the expression for the De Broglie wavelength, this wavelength

will be very large at very low temperatures as the temperature goes to 0 lambda goes to

infinity. So, the wave nature of the particles becomes to dominate, it becomes essentially

more and more delocalized.

So, I know that for low temperature is the quantum regime, I also know that if I for any

temperature  I  can  increase  my  density  thereby  making  the  inter  particle  separation

smaller and smaller. In such a way that this separation can be made smaller than the De

Broglie wavelength that is also a quantum limit for my system.
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So, one thing is clear that the dimensionless number n lambda cube being much larger

than 1 is the quantum regime. The regime where I make both n and lambda larger and

larger  ok,  because  lambda is  large  means  my wavelength  is  getting  large,  my wave

nature of the particles  becomes more and more predominant  and density  being large

means my inter particle separation is also much smaller than the De Broglie wavelength.

So, this is definitely a quantum regime and we will I show by calculating numbers this is

definitely quantum regime. 

I also know that well, just by the preceding argument we can push this limit to the other

side. So, I can say that if this dimensionless number it is much smaller than 1 then I am

in a classical regime. Of course, because I can push n lambda cube to be much less than

1 by making n very small thereby increasing the separation between particles, such that

the particle separation far exceeds the De Broglie wavelength ok. 

And lambda  is  also being very  vary  you know it  is  made  very small  which  is  like

increasing temperature because lambda is proportional to 1 upon square root T. So, both

n and lambda are increased that increases n lambda cube and both n and lambda reduced,

that reduces n lambda cube is very simple to see why one leads to a quantum effect, the

other leads to a classical behavior.

Naturally, there is a boundary that separates these two and the boundary is not sharp, the

boundary is fuzzy ok. And I will say that n lambda cube of the order 1 is the onset of



quantum mechanics ok, this is where you will sort of say that I am not very clear which

theory will work. But I am sure that the quantum effects are not ignorable and n lambda

cube is of the order 1 its tricky it is not easy. It is very safe to handle the two extreme

regimes where the regime n lambda cube being much smaller than 1 almost guarantees

that your classical calculations will work with you know they will come out with flying

colors.

 In the regime n lambda cube greater than 1, classical theories will fail miserably and this

is the regime where you have you know electrons in a metal you must invoke a quantum

calculation ok. For electrons in a metal at room temperature 300 Kelvin, you will very

soon calculate that n lambda cube is much less than 1. So, you must invoke a quantum

calculation all your d by your Dulong-Petit law will fail miserably for heat capacity of a

metal due to electrons.

And when this dimensionless number is of the order 1, you know that you have to be

careful because this is the regime when quantum mechanics begins to show its presence.

So, then you can actually construct some sort of a parameter space diagram where at

least figuratively you can say whether quantum mechanics applies or quantum mechanics

or classical mechanics applies.
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So, you can say that I will construct a Tn diagram; number density versus temperature

and so, in which you know the region of applicability of classical or quantum mechanics.

Clearly there is a line of 45 degree slope which is the T equal to n curve. 

And my curve n lambda cube equals to 1 would be somewhere like this. So, this is my

curve ok; so, deep inside this phase so, this curve that I have computed the solid line is

the line of n lambda cube is equal to 1 ok. And the deep inside this phase you will say

that your system has quantum effects because that is their region when you have high

density and low temperature and deep above this solid line you will say that I have a

classical regime. 

And somewhere close to the n lambda cube equal to 1 line, you have a you know onset

of quantum mechanics. So, I will say I am going to remove the T equal to n line because

its making the figure very busy just maybe very faintly I will show. So, this is where I

have the one set of quantum mechanics near the solid line is to give you a feeling in

terms of numbers.
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So, if I compute the I will say that; so, at what temperatures do I see quantum mechanics,

if that is the question at what temperature is the quantum mechanics begins to take over

well you have this relationship. So, that is your question, you can answer this by saying

this is the fuzzy boundary n lambda cube equals to 1 this will give me the temperature

when quantum effects will begin to you know take effects and I know this is nothing but



n times h cube over 2 pi m k B T to the power three half because that is the definition of

lambda. 

So, now you can compute the temperature from here. So, you can say that my k B T and

this is nothing but the in some sense the degeneracy temperature where this particular T

is when n lambda cube is 1; so, I am just calling it as T naught. So if I take k T on the

other side I will get k T to the power 3 half as n times h cube over 2 pi m to the power 3

half fine, just multiplied both sides with k T to the power three half. 

And this gives me k t as nothing but n to the power 2 by 3 into h square over 2 pi m ok.

And naturally, if you compute so, if you just you can write down this you can divide it by

k B on both sides. So, this is the basically the temperature that corresponds to your n

lambda cube equal to 1. So, this is the temperature at which quantum mechanics will

begin to take effect. 

Let us compute these temperatures for some of the systems that we routinely encounter

in our everyday lives. It will give you an idea you will appreciate the fact why should I

learn quantum mechanics ok.
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So, I am going to take some examples; the first example that I am going to take is that of

you know hydrogen. So, hydrogen for instance as a density and has its written it down



here has a number density of 2 into 10 to the power 19 per centimeter cube. So, this is

the number density for nitrogen so, this is the n for nitrogen.

Now, if I want to compute the degeneracy temperature; so, this gives me the degeneracy

temperature if I compute this it comes out to be around 5 into 10 to the power minus 2

Kelvin.  So,  somewhere  around 0.05 Kelvin for hydrogen,  you must  invoke quantum

mechanics or you must invoke quantum statistical mechanics. So, classical calculation is

perfectly valid at room temperature ok, only a thus this low temperature your n lambda

cube is of the order 1 that is the meaning of this calculation ok.

Let  us  take another  is  there a  question;  which tells  you what? See,  I  computed  this

temperature by equating n lambda cube as 1 which is the onset of quantum mechanics.

But  this  temperature  you  will  see  quantum  mechanical  effects,  higher  temperatures

definitely I will be classical ok. So, unless you push your temperatures down to 5 into 10

to power minus 2 Kelvin which is like 0.05 Kelvin, you can treat hydrogen in the air

classically.

Let us take another system which is helium-4 liquid helium ok. So, this has a number

density of liquid helium has a number density of 2 into 10 to the power 22 per centimeter

cube; now this is a higher density. So, I can expect that the degeneracy temperature will

be  higher,  because  now  I  should  see  quantum  mechanics  effects  with  even  higher

temperature, but this guy is already sitting at a higher density ok.

So, this is the n for it and you plug this number density in this expression like we have

you know computed, put the value of Boltzmann constant and Planck’s constant. You

will find that the degeneracy temperature for liquid helium is of the order of 2 Kelvin’s

which is in some sense 100 times higher than the previous guy; previous guy was of the

order of 0.01, this guy is if the order 1. So, already by boosting density I have actually

made quantum mechanical effects come sooner; so, I do not have to go all the way to

0.01 Kelvin now. 

Going by this logic, you can expect trouble to come if you go to electrons in a metal;

now, why these heat capacity expressions given by Dulong and Petit do not work for

metals even at room temperature. So, because of this let us do this calculation also. Now

you take typical copper for example, copper which is a perfect you know perfectly good

example of a metal and each copper donates one valence electron to the matrix. So, a



number  density  of  typical  copper  block  is  of  the  order  of  10  to  the  power  22  per

centimeter cube which is my density.

Student: (Refer Time: 30:01). 

 That is per meter cube ok. So, if you take this number density and do this calculation

you will  get  well  as  expected  because  now I  will  get  degeneracy temperature  much

higher. This degeneracy temperature comes out to be 10 to the power 4 Kelvin. Reason

why the two degeneracy temperatures for liquid helium and electrons in the metals are so

different; the electrons in the metals having such higher degeneracy temperature. In spite

of the fact that both had the same number densities because helium-4 has a much higher

mass roughly 8000 times heavier than electron because it has 4 nucleons.

And so, that is the reason why you have such different degeneracy temperatures, but the

thing to see here is that for electrons in the metal, the degeneracy temperature; that is the

temperature where quantum effects will arise is 10 to the power 4 Kelvin. This tells us

that at room temperature which is much below 10 to the power 4 Kelvin, we must invoke

quantum mechanical theory to correctly understand heat capacity of solids due to these

free electrons.

So, any theory that we invoke on electrons in metals has to be quantum mechanical,

these electrons are heavily quantum mechanical at room temperature in the solid metals

ok. So, that is the you know that is this basically gives you an filling of the numbers right

I must invoke quantum mechanics when I am dealing with electrons in metals because

that is a degeneracy temperature; 300 Kelvin is for sure much much lower than 10 to the

power 4 Kelvin ok.

So, only when temperatures are much higher than 10 to power 4 you can include you can

use a classical theory of electrons in metals, but then at those temperatures you do not

have a metal you will probably be you know making a gas out of a metal right. So, now

let us proceed with the second topic in the agenda which is if you go back the statistics of

indistinguishable particles. 
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So,  indistinguishable  particles  are  handled very carefully  in  quantum mechanics.  For

example if I take just the two particle system; one sitting at somewhere location r 1 and

another sitting at location r 2 let us take the two particle system ok. So, I am just taking a

two particle system. Then I can write down the wave function of my system as the of the

two particle system as psi of r 1 r 2 and is the system wave function; I will show how to

write  down psi  which  is  the  overall  wave function  in  terms  of  single  particle  wave

function and short while. 

But I know for sure that if I permeate these two particles that if I make you know r 2 the

second  particle  go  and  sit  on  r  1  and  the  first  part  it  will  go  and  sit  at  r  2.  The

Hamiltonian of the system does not change ok, because the Hamiltonian of the system is

a  function  of  potential  energy  and  kinetic  energy.  And  clearly  if  the  particles  are

indistinguishable I am not affecting their potential energy in any way because they are

the same particles.

So, permutation of 1 on 2 does not change the potential energy and it clearly does not

change energy ok, because I am just putting one particle having some kinetic energy

location which is different kinetic energy remains the same. So, Hamiltonian does not

change under  permutation  of  particles  ok;  meaning what?  The energy of  the system

remains the same under permutation of particles. 
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This essentially means that if I take the Hamiltonian operator and this an operates on the

particle two particle wave function, the eigenvalue which is a total energy of the system

does not change if the particles are permuted ok. That is the meaning of the Hamiltonian

operator; which means if I think of a parity operator P being the parity operator whose

action is to just permute the particles ok. Then I do not expect to see any change in

energy which means the parity  operator  when it  acts  on the system makes the wave

function basically psi of r 2 r 1 simply swaps the two particles at the effect of the parity

operator.

And I know from what I have written here that the Hamiltonian of the system must not

change which means the energy of the system should not change, which means if I apply

the Hamiltonian operator on this new wave function P of psi r 1 r 2 considering this as

my new wave function then I  must  get the same energy because the energy has not

changed ok. So, the same wave function comes back without any change in the energy,

this E is the same as this E, but I can also write this as you know I can also consider P

app operating on H psi ok.

So, this is my new function this is nothing but P H on psi simply gives me E times and

that is the eigenvalue psi r 1 r 2 hmm, but E is just a number this is the eigenvalue. So, I

can write this as E times P operating on psi r 1 r 2 which is nothing but psi r 2 r 1 ok. You

can compare the previous equation this is also E of multiply to psi of r 2 r 1. 
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So, if these two are same I can say that by looking at these two the left hand sides, that

my Hamiltonian operator commutes with the parity operator. I can say that the product of

these two operators is the same as product of P and H implying that the Hamiltonian

commutes with the parity operator for our identical particle system or indistinguishable

particles. 

And  this  has  very  important  consequences  this  is  why  quantum  mechanics  does

calculations correctly ok, this is the birth of the correct enumeration of states. In a very

logical sequence of steps I showed that the Hamiltonian of the system commuted the

parity operator, this brings us to the stage that I can write down now the effect of my

parity operation done twice.

I already know that P simply swaps the positions; so, P operation on psi r 1 r 2 simply

gives me the same wave function now, but the particles permuted. If I do not know what

is this new psi, I can compute this new psi by operating P again which is nothing but P

square operating on psi r 1 r 2 ok, but I already know what is P operating on psi which is

my psi r 2 r 1. So, one more operation of P on this will give me back the old function it

will bring the system back to the old state. You made to go and sit in 1, do one more

permutation you get back the same old wave function.

So, definitely my P square as an eigenvalue which is 1 and the fact that permutation you

know you have seen the here that the Hamiltonian permutes with the parity operator.



Tells me that a permuted wave function has the same energy and hence it is the same

state as the previous state if there is no degeneracies ok.
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Then there are this is the same state because it has the same energy same Hamiltonian,

which means P psi and psi differ only by some constant pre factor ok. It is just the same

because if I take P psi and psi they should be differing only by a constant pre factor.

So, the eigenvalue equation is not moved you have the same pre-factor on both sides H

operating on P psi will giving me some E operated on P psi. They are the same you know

if psi differs from psi by just a factor, you are looking at nothing but h psi equals to E psi

ok. You can knock off the constantly factor both sides which tells me that my operator P

should have the eigenvalues plus or minus 1, there that is the only way I can make P

square 1 ok.

Now, this basically leads to two definitions; so, if you have you can define particles or

system of particles which have the property of the action of parity operator on the whole

system giving an overall  positive  sign which means is  not affecting the system as a

system of bosons. And define the other type of there is only two possibility plus and

minus 1 as system of fermions. And this is only a definition by the way you can slap the

definition you can call P plus 1 as fermions and P minus 1 as bosons.



And everywhere your fermions will obey the Bose statistics and bosons will obey the

Fermi statistics. So, what is in a name what is basically to be realized that these types of

particles in the due course will be shown to obey a statistics of average number density

going as 1 upon e to the power beta some j th level is e j minus mu minus 1 and these

guys will be shown to have statistics which is 1 upon e raised to beta e j minus mu plus

1. 

What is essentially it is that this should match with this and this should match with this,

you can call bosons and fermions either way I do not care. But guys that commute with

the  parity  operator  the  wave  function  of  the  guys  which  commute  with  the  parity

operator and for which the parity operator has an eigenvalue plus 1, I will call them as

bosons for historical reasons. 

And they will be shown to have statistics which go like this and the other guys will have

statistics written below you can call whichever what you want, but historically we call

them the first class as bosons and the second class as fermions. So, it is important that

this map is between the values of the parity operator and the current statistics. 
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Now, we can write down the wave function of the system this two particle system as

some kind of a linear combination of a single particle states so, I will take; now what do I

mean by single particle states is the following. So, let me first write down the single

particle so, draw a figure. So, to write a psi we consider two single particle states. So, I



have 1 particle  at  location r 1 and another particle  at  location r 2 meaning of single

particle state is that I can consider two localized wave functions at the location of r 1 and

r 2. So, maybe you have another wave function which is localized r 2 call the first one as

phi 1 call the second one has phi 2. 

Classically,  you  have  a  particle  there  at  r  1  and  r  2,  quantum  mechanically  it  is

represented by a wave function which is localized around r 1 and r 2 ok. So, it is on non-

deterministic quantum mechanics so, I must if there are n particles in this room, I have n

single particle wave functions each one of them localized around the particle physical

location of that particle.

 So, you can write down psi in terms of this phi so, these phi is are basically the single

particle wave functions. As simply some normalization constant into you know the only

linear combinations that you can construct basically our products of phi 1 and phi 2. So, I

will take phi 1 r 1 this is like first particle sitting at location r 1 into phi 2 because this is

the joint probability.

So, the fact that my system has two particles at r 1 and r 2 is the given by the joint

product of phi localized at r 1 and phi 2 localized at r 2 is that it. For two particles I have

one more possibility, that the second particle can sit at r 1 and the first particle can sit at r

2 so, that is given as phi 1 r 2 into phi 2 r 1. See phi 1 and phi 2 are localized wave

functions one localized at r 1 the other localized at r 2, we have simply swap the particles

ok.

This is for bosons, if I were to write down this wave function for fermions I have to take

a negative sign here. Why? Because if I take a positive sign then that would mean that

under permutation of the particle, the wave function is not incurring any overall negative

sign  which  means  plus  sign  has  to  be  for  the  bosons  and if  these  two particles  are

fermions where under permutation of the two particles. The overall wave function should

incur a negative sign and that is only possible if I write down the second product with a

negative sign.
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So, now you can see the fermions if I swap r 2 with r 1 so, for fermions; so if I apply the

parity operator on r 1 r 2 this will give me A times phi 1 r 2 phi 2 r 1. And I have to take

the minus sign minus phi 1 r 1 into phi 2 r 2, but this is nothing, but minus of my original

fermionic wave function. So, this is what I expect. 

Similarly, for bosons if I apply the parity operator then I get back the same function phi 1

r 2 phi 2 r 1 plus because I have a plus sign for bosons already given here, hmm plus phi

1 r 1 into phi 2 r 2, but this is nothing but the old wave function. So, that is why for

fermions I had to take a negative sign.

Now, it you can generalize this for three particle system, four particle system, n particle

system. So, you can always write down the n-particle wave function by choosing one

product and simply doing permutations of these products. And this way you can write

down it in the determinant form which is called as the stator determinant form. For the

two particles I can thus write down what I have written for the fermions only, for bosons

you do not need you cannot write using the determinant form. So, bosons you just have

to use a plus sign throat.
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So, for two fermions that we have just discussed you can write down these this wave

function  also in  the  determinant  form what  I  have  written  here?  This  particular  this

equation A times phi 1 r 1 into phi 2 r 2 minus phi 1 r 2 into phi 2 r 1 in the determinant

form, you can write it as a times a determinant phi 1 r 1 ok.

And similarly for three fermions for I would say for N fermions, let us write down for N

fermions directly. You can write this N-particle wave function as some normalization

constant ok, I will call this as A 2 for two particles normalization. And this I will call for

N particle normalization as phi 1 r 1, the last row being phi N. It is called as a stator

determinant of form for historical reasons. 

Couple of things to be you know sort of kept clear here is what is this normalization

constant ok? So, we can work out the normalization constant by and this will give us the

N factorial you know logic. You see for two particles, how many combinations could you

construct? 2, 1 2 and 2 1 with three particles you had 6 because that is three factorial. So,

the N particles I can construct N factorial permutations.
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So, this normalization constant is fixed so, this A s are fixed by the normalization that

your integration over the entire volume ok. So, I will take volume I going from 1 to N d

cube r i size now N particle wave function ok, psi psi psi star is equal to 1 this is my

normalization so, volume integral of psi psi psi star is 1 ok.

 So, for example, in 2d I can think of A 2 as just 1 upon factorial 2 to the power half,

because when you do a psi star this will become 1 upon factorial 2. And precisely you

know  the;  so,  the  normalization  on  single  particle  wave  functions  also  need  to  be

specified here and I am going to write down. With this single particle normalizations

given  as  and  that  is  very  simple  to  see  why  you  have  you  know  the  sort  of  a

orthogonality of these single particle wave functions. So, this is the orthogonal scalar

product ok. 

So, the orthogonality of the functions are basically represented as this integral phi with

its complex conjugate given as the Kronecker delta function alright; that is the meaning

of this orthogonality. 
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You can check so far for the simple two particle case, two fermion case you had your psi

r 1 r 2 given as phi 1 r 1 phi 2 r 2 minus phi 1 r 2 phi 2 r 1. And I have to take the

normalization as 1 upon square root of 2, 2 factorial is 2. It becomes very clear, why?

Because of this norm so, I have these orthogonality of the single particle wave function

that gives the norm as 1 upon square root n factorial. 

So, you can write down the normalization condition as now you have two particles, so,

you do a double integral. So, you do 1 integral on r 1 second 1 r 2 you can a d cube r 1 d

cube r 2 psi psi psi star ok. So, you take 1 psi from the right hand side and the star of it

will give you another 1 by 2 factorial so, there is a 1 upon 2 that comes out side. And

what  you have  is  basically  phi  1  r  1  into  phi  2  r  2  multiplied  to  its  own complex

conjugate ok.

So, I am going to write down phi 1 star r 1 into phi 2 star r 2 is multiply to its own

complex conjugate. And the second term also multiplied to its own complex conjugate.

So, that will come with a plus sign now because minus minus plus so, this will be a phi 1

r 2. The cross terms by virtue of this orthogonality will disappear. So, whenever you have

a cross multiplication say you have a phi 1 r 1 into phi 2 r 2 multiplied to phi 1 star r 2

and phi 1 star r 1 that will go to 0, because on 1 integration coordinate if the phi i and phi

j are not the same in this K delta function will be 0 ok.



So, you have only two terms that will basically contribute and I can write this as now 1

upon 2. The first term can be written as integral on r 1 d cube r 1 phi 1 r 1 into phi 1 star r

1 into integral r 2. I can simply write down this as a square of this because these are

independent integrals plus integral on r 1 I can do this integral on r 2 if you want. If I

want to do it in r 1 then I have to choose phi 2 here ok.
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And the other integral is basically a definite integral the same type so, there is nothing

but the square of this integral is it ok. Because r 1 and r 2 are independent I can write a

square  of  that  which  is  nothing  but  1  because  each  one  of  them  is  1  from  the

orthogonality. So, this is how I am going to write down the normalization pre-factors; so,

for these A n I am going to write down 1 upon N factorial square root and for A 2 I am

going to write down 1 upon 2 square root 2 factorial ok.

So, now you can see if I just use this N particle wave function, I can see how Pauli’s

exclusion principle naturally arises, can you see why; can you see why? So, suppose. So,

from this N particle wave function which is written in the form of determinant I can

simply use a property of determinant. If 2 rows of a determinant becomes same then the

determinant collapses, which means if some random i th row becomes the same as the j

th row. Let us say phi 2 row becomes the same as the phi 3 row then the determinant will

collapse. 
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So, the N particle wave function will collapse to 0 which actually is the mathematical

statement of the Pauli’s exclusion principle for fermions ok. Now I must not write down

N particle  wave function,  I  must  be  very  specific  that  this  later  determinant  is  a  N

fermionic wave function ok. So, that is the region of Pauli’s exclusion principle that you

cannot force 2 fermions to occupy two identical single particle states.

So, if 2 single particle states i and j; phi i and phi j become the same then the entire wave

function the system will collapse and that microstate has 0 weight in your microstate ok.

Two fermions cannot occupy the same single particle state because that would simply

make two rows of my stator determinant identical ok.

And for example, for a 3 part two particle system its very simple psi psi r 1 r 2 its very

simple to see why; it would simply make I have got a 1 upon factorial two outside right

which is 1 by 2 and I am going to write down phi r 1 phi 1 r 2 and I made phi 2 as phi 1

so, this becomes phi 1 r 1 and it becomes phi 1 r 2 this is 0 determinant. 

So, this is the fact that your system had an odd parity you could write it as a slicker

determinant and because you wrote it as a determinant and the fact that you cannot write

to you know rows and determinant which are you know identical without making me

determinant  itself  0  gives  this  Pauli’s  exclusion  principle  that  is  seen  in  qunatum

mechanics.  So,  it  is  an algebraic  linear  algebraic  consequence  of  you know doing a

quantum mechanics on these industry (Refer Time: 05:20) particles. 



So, that is the end of our lecture, in the next class we will carry over from here and

provide two different statistics for these. So, called different types of identical particles

the  fermions  and  the  bosons  will  show  how  are  these  statistics  derived  from  first

principles in these two systems. In this class we have only discussed why we have two

different types of statistics because of the. 


