
Statistical Mechanics
Prof. Ashwin Joy

Department of Physics
Indian Institute of Technology, Madras

Lecture - 26
N Non-Interacting spins in Constant Magnetic Field

(Refer Slide Time: 00:13)

Good afternoon students, today we will do a worked example of a N Non-Interacting

spins in a Constant External Magnetic Field. Now, this is going to be a demonstration of

how we  compute  a  physical  properties  of  interest  using  statistical  mechanics  and  a

working example that I have shown as spins in a magnetic field.

So,  we could think of  these spins  that  are  up and down,  in  a magnetic  field that  is

uniform and pointing allowed some direction let us say the z axis. I can choose z axis to

be anywhere, but I am just showing the magnetic field to be along this direction that is

my z axis, and this is like constant magnitude in the direction of z axis.

So, you can take N such spins and for this system we can compute the magnetization of

any given realization ok.
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As I am going to say that let us take a microstate nu and if you want to write down the

magnetization  under  constant  temperature  and constant  field,  this  is  nothing but  just

summation overall these spins, the individual magnetic moment. So, I am going to take

nu as some magnetic moment per spin into the excitation of that spin.

Now, this  is  going to  be a  system where  the values  of  excitation  can take  anything

between minus s 2 plus s. These are basically 2 s plus 1 values. So, this is not s equal to

half or spin half system where you can only take a minus 1 and plus 1 for the m i’s. Here

s could be 3 by 2 5 by 2 or any you know large number and this essentially gives your

excitation values of minus s 2 plus s ok. So, it is not restricted to spin half system I can

take it the spin to be s and so, if this is for a spin s system and I have taken n such spins

ok.

So, the m i’s that is the excitation of each spin can assume values between minus s 2 plus

s total 2 s plus 1 values and what I have written here is nothing, but the magnetization of

the  some nu  th  microstate  ok.  So,  you can  call  it  as  the  of  magnetization  of  some

microstate nu which is a label of a microstate. Now what is meant by a microstate here as

you already know microstate is nothing, but specified values of these excitations ok. For

example, you can take one microstate can be specified as m 1 equal to 4, m 2 equal to 3

and so,  on and so,  forth and m N equal  to some minus 2 whatever. So,  this  is  one

microstate you can specify another set of values.
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So, this way you can set up a large number of microstates each one of them is nothing,

but the set of particular values of m i which means I can also call  my microstate as

nothing, but a set of m i’s this is my label microstate ok. Having said that I can identify

the energy scale of the problem, which is the first  thing to do. If you want to setup

statistical mechanics you have to set up the energy scale and the energy scale is basically

the Hamiltonian or the total energy scale and since these spins are non interacting, there

is  no  internal  Hamiltonian  of  the  system  there  is  no  interaction  nearest  neighbour

interaction between the spins, all this spins have is basically a coupling to the external

magnetic field. So, the total energy scale is nothing, but the magnetic enthalpy of the

system that is my energy scale.

So, I am just going to write down the magnetic enthalpy as minus B M ok. So, if this is

the Hamiltonian of the nu th microstate then it is just minus B times M nu also called as

the  magnetic  enthalpy.  There  is  no  other  scale  in  the  problem  this  spins  are  non

interacting. I think I have already mentioned is yes spins are non interacting. So, you do

not take an I seeing like model where spins have a nearest neighbour interaction that is

given by a coupling constant j, there is no such j this spins can only talk to an external

magnetic field and can align parallel or anti parallel to the field.

So, the energy scale are the problem is nothing, but the magnetic enthalpy which is this.

If I want to write down explicitly you can say my nu is nothing, but the set of excitation.



So,  that  is  the  Hamiltonian  of this  particular  microstate  given as minus B times the

instantaneous  magnetization  which  is  nothing,  but  the  set  of  values  of  in  our  new

notation ok. And this is nothing, but minus B times I have already written what is the

magnetization which is summation overall  degrees of freedom nu times mi. So, I am

going to pull out mu because it is a constant and so, mu here is nothing, but magnetic

moment per spin ok.

So, you some over all this spins along with their excitations you get the total magnetic

moment. So, this is just summation over i going from 1 to N the total degrees of freedom

in your problem of a spin excitation this is my magnetization of the of certain microstate.

So, the mis that I take here in the summation are the mis that are fixed by the microstate

like I have shown here fine.
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Once the energy scale has been specified in this case it is the magnetic enthalpy I can ask

meaningful questions, I can ask questions as to what would be the partition function of

the  system.  The  first  important  object  that  you construct  on  any  physical  system in

statistical  mechanics  is  the  partition  function  because  once  you  have  the  partition

function your hand, you can ask you can do a lot of things.

For example,  if  you have the partition function,  I  will  call  it  as the Gibbs canonical

partition function at constant temperature in magnetic field, you can also called constant

number of spins.



Now, with this  if  you compute the partition function,  you can compute for example,

Gibbs free energy of the system. So, this is now development of thermodynamics. So,

you can compute Gibbs free energy of the system as a function of B and T now then with

the Gibbs free energy, you can compute very interesting properties you can for example,

compute what is the magnetic susceptibility of the system. This is a quantity that will

depend on the system whether it is close to a phase transition or not, and near to the

phase  transition  there  will  be  large  values  of  magnetic  susceptibility,  it  will  sort  of

diverge indicating a second order phase transition.

So,  magnetic  susceptibility  is  in  important  in  quantity  that  one  often  constructs  for

magnetic systems. So, chi which is defined as the rate of change of magnetization as a

function of applied field for very small values of field. This should be like if you want to

expand magnetization and powers of the field, then the leading term of that expansion

will be the susceptibility the Taylor expansion of magnetization.

So, to linear order the rate of change of magnetization as applied field for very small

values of field gives you the susceptibility of the system. And you can show that this

susceptibility is of measure of fluctuations in magnetization. See we are not controlling

magnetization in the system we are controlling magnetic field temperature in number of

spins. Now the only way you can do it is to allow for magnetization to fluctuate. So, you

can also you know connect this susceptibility to fluctuations in magnetization.

It is like saying that in a canonical ensemble when you had a gas in contact with the

thermal reservoir you kept number of particles volume and temperature to be fixed. You

could only kept,  you could only keep temperature  fixed by allowing in exchange of

energy with the reservoir. So, the fluctuations of energy with the reservoir was a direct

was directly shown to be related to the heat capacity at constant volume. So, the in some

sense our susceptibility is also measure of you know fluctuations in the magnetic field,

and it will be nice to compute this quantity.
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Another quantity that you can compute is basically the heat capacity at constant field and

magnetization which means I would like to compute what is heat capacity at constant

magnetic  field and heat  capacity  at  constant  M right.  So,  now, we will  compute the

partition function first and then compute the remaining physical properties. So, let us

start  with  the  partition  function.  So,  the  partition  function  here  is  nothing,  but  the

summation over all degrees of freedom you can also call it as a trace and the Boltzmann

factor which is e raise to minus beta into the energy scale of the problem.

So,  I  have taken the energy scale  which depends on the  microstate  and I  know this

energy scale which is basically e to the power minus which now becomes e to the power

minus beta and energy scale itself is minus b m. So, the 2 minus multiply to a plus and

you get nothing, but summation i going from 1 to n mi. The mi is here are picked up

from the specified microstate in the summation ok. You have to sum over all microstates

and  for  each  microstate  whatever  m  i’s  you  pick  up  you  have  to  use  that  in  that

summation ok.

And then add up to a next exponent and so, on and so, forth sum it over all microstates

you have the partition function ready ok.



(Refer Slide Time: 14:57)

So, I can also write this as just summation over all microstates e to the power beta B into

magnetization  of the microstate  and this  is  because the magnetization  of a particular

microstate is nothing, but summation over all degrees of freedom mu times mi ok. So,

the preceding equation which is this allows us to write down the average magnetization.
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I can or write down the average magnetization which is nothing, but M or you can just

call it as M we or with an angular brackets up to you it is nothing, but summation over

all the microstates magnetization of the microstate that is being summed over e to the



power minus beta into the energy scale and I know this energy scale is already been

written as beta B into mu magnetization of the mu th microstate which is set of m i’s

divided by our partition function ok.

Because this is the normalization of the probability that is all the denominator is nothing,

but our Gibbs canonical partition function ok.
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So, I can write this as you know just to extract the magnetization here in the numerator I

can write down the average magnetization as nothing, but d over d beta B of the partition

function divided by the partition function z which is my denominator and this is nothing,

but d over d beta B of the logarithm of the natural logarithm of the partition function ok.

So, just keep this result handy. So, I am just going to sort of call this as equation 1. Once

we have the partition function with us we can compute magnetization also which is not

on the cuts by then it is a by product you can use it ok. So, let us continue with our

partition function. So, our partition function at constant field in temperature was already

computed  up to  this  step ok.  So,  I  am just  going to  copy this  here,  we had already

computed pre computed. So, let us just bring it down here ok.

So, I can now split up these summations because there are they are summations over the

degrees of freedom the microstates, I can write rearrange this in the form that simply the

exponents that are added up become now products ok. And for the each I that I have



taken out side I can take my m i’s to go from minus s to plus s I will sum up overall these

exponents there is a recall that our excitations are from the set minus s 2 s 2 s plus 1

values ok.

Now, we can see this summation that is inside, for each i that is fixed by the product

outside you take the same values of mi minus s to plus s and compute the sum; which

means I can simply compute it for one value of I and raise everything to the power n ok.
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So, this is now a simple task of just taking some variable m going from minus s to plus s

e raise to beta B mu m and you simply raise the entire thing to N because you do it

repetitively for each i the same task which is like doing it for one i and raising the entire

thing to power n ok. And we can for the sake of convenience I can take the factor beta B

mu as sum g because I do not want to write 3 symbols every time.

So, this is nothing, but summation m going from minus s to plus s e to the power g m the

whole thing raise to n this is my partition function that I am going to compute is that ok.

So, then I can write down my partition function as nothing, but if I expand it, I will get

terms I will write down a few terms here. So, let me write down the terms here I will be

getting e to the power g s plus e to the power g s minus 1 all the way to e to the power g

plus m equal to 0 will give me 1 plus e to the power minus g plus e to the power ok. So, I

am need some space here. So, let me write down in a you know conserving space.



So, suppose the first term I will write down from the positive side is becomes e to the

power g s plus e to the power s minus 1 all the way to e to the power g plus 1 plus e to

the power minus g plus fine and the entire thing is raise to the power n ok.
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So, you can now look at we can club this term and that term, we can club this term and

this term we can club this term and this term you will be left out with just one. So, you

can write this as 1 plus. So, I am going to write 1 first e to the power g club these 2; then

you can write down e to the power twice g 2 g all the way to that would be the last term

ok.

So, then you can call this entire thing as 1 plus twice cosine hyperbolic g plus twice

cosine hyperbolic 2 g all the way to twice cosine hyperbolic s g entire thing raise to N by

using the formula for cosine hyperbolic. And I am going to take a factor of 2 outside. So,

this  will make me 2 raise to N into 1 by 2 plus summation sum you can take some

variable let us take.
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Let us take i going from 1 to s cosine hyperbolic g i, the entire thing to the power N, this

is  my  partition  function  for  constant  field  in  temperature  ok.  We  can  do  some

simplification here itself let see if we can simplify this further.

Yes we can. So, we can write down this cosine hyperbolic hypered I have simplified it

there itself, but ok. So, I can write cosine hyperbolic gi as a e to the power gi plus e to

the power minus gi over 2 ok. What I am trying to do here is because I do not thing we

need  the  entire  summation  up to  s  ok.  So,  I  am going to  approximate  the  partition

function if you want to call it you know if you want to call this is in approximation.
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So, let us approximate this that will not entire sum of to s. So, certainly I can do this

approximation the limit of small fields which is what is required right which is what is

mentioned. So, we are taking a field which is small enough and before the small enough

fields, I want all these quantities to be computed partition function g susceptibility and

heat capacity ok. So, let us try to compute this partition function the limit of small field

otherwise I have to retain all terms in the summation by let us say if the field is small,

then we can certainly do better.

So, let us see if we can. So, this can be written as. So, e to the power gi plus e to the

power minus gi by 2 can be written as. So, I will take the 1 by 2 outside, and write down

this as 1 plus gi plus gi the whole square by factorial 2, and for the minus gi I will write

down 1 minus gi plus gi the whole square by factorial 2. So, I can easily see that all the

odd terms will cancel and the even terms will add up.

So, if I do not add terms beyond order g 4, then I get this. This is 2 do not confuse it for

anything else. So, I am going to add 1 and 1 that is going to give me 2 plus I am going to

add gi square. So, that is going to give me g square i square because there is a factorial 2

in the denominator and so, what I get here is basically the next term would be order g 4

that I am going to drop ok.
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Now, I am going to drop terms of the order g 4 and above, because g if you recall is mu

B beta and this goes to 0 I am going to write down that for small B or small values of

field g square g 4 I am going to write down that we are dropping terms of the order g 4

and above ok. Small field approximation like I said I want to do something I want to

drop the summation it is not drop the yet, but we will drop it in another step.

So, you can drop the terms of the order ith and 4, and then this summation becomes 1 by

2. So, half into 2 is 1 and you are summing it s time. So, it is just s plus I will take one

half outside and call this as summation i going from 1 to s. In fact, I will take g also

outside g square also outside.

So, g square by 2 I will take outside and what I will get is basically summation i going

from 1 to s i square in the entire thing is raised to the power n fine ok. Now sum of first s

squares is already known you know that the sum of first n numbers is n into n plus 1 by 2

sum of first n squares is n into 2 s plus 1 into s plus 1 by 6.
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So, simply substituting the known result of the sum of first s squares it is nothing, but s

into s plus 1 into 2 s plus 1 over 6 ok. So, we can try and you can check suppose you take

s equal to 3. So, what you have for the sum is basically 1 plus 4 plus 9 which is 14 and

what is your right hand side? It is 3 into 4 into 7 by 6 which is also 14 ok. So, our

formula is correct just verified.

So, let us call that this is a rough work and let us come back to our partition function. So,

our partition function is now. So, we are doing all this hard work because I want to write

down approximate formula for partition function it small field; plus s plus g square by 2

into what I have just cooked s into s plus 1 into 2 s plus 1 by 6. So, 6 into 2 is 12.

So, this is g square by 12 fine entire thing raise to the power n and this is the partition

function for in this small field otherwise you have to take this full partition function

which is here ok. So, if you have to write down the partition function for any field then

this is your expression, you cannot use their approximation that I have used, but you say

my magnetic field is small then this is the approximation.

So,  now  you  can  use  this  approximation  and  compute  the  value  of  your  various

thermodynamic properties ok. So, for example, the first thing that you can compute is the

Gibbs free energy ok.
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So, the Gibbs free energy as we know will now be a function of the field and we know

from the statistical mechanics discussions, there is a bridge between microscopic world

and the macroscopic observations and that bridge gives us the bridge that gives us the

value of the Gibbs free energy is minus k T lon our partition function now we will do it

again for arbitrary field and small field.

So, for the Gibbs free energy, I can simply use this value of our general partition function

and this is the value of the partition function here yeah 2 raise to N into 1 by 2 plus

summation  cosine hyperbolic  gi.  So,  I  am just  going to  copy ok. This  is  a  partition

function; you have to take a negative k T lon of your partition function ok. So, let us do

that its very simple.
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So, what you can do here is nothing, but minus k T and you can simply take lon of A into

B as lon A plus lon B.  So, what  you get  here is  just  N lon 2 plus  N lon half  plus

summation  i  going from 1  to  s  cosine  hyperbolic  gi  fine  what  I  have  done here  is

nothing, but used the fact that lon A into B is lon A plus B. So, now, you can already do a

few things we can now use the approximation for the Gibbs free energy that we have

worked out of the approximation the partition function that we have worked out ok. So,

for small b; so, this was for any field ok.
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So, in this small b approximation so we can write down; however, for small B we have a

readymade approximation for the partition function. So, we can use that approximation

and compute the Gibbs free energy. So, I can write down my g as negative k BT of the

and the logarithm of the partition function that is already precomputed here for the small

field approximation which is I am just going to since I am lazy I am going to copy this

entire expression, and simply paste it here minus k T lon of my z.

So,. So, this bracket here is corresponding to this bracket and this bracket here is for this

bracket ok. So, let us do this calculation and. So, what you can do here is the following.

So, we can take minus k BT and logarithm of this 2 will give you a common pre factor of

outside because both these terms that are multiplying r raise to n. So, I can write down

this is and now I can write down inside the bracket as a lon 2 plus lon of half plus s plus

g square s into s plus 1 into 2 s plus 1 over 12 is it.
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And now what I am going to do is yeah let us combine these 2 logs see what we can do ?

So, I can get log of and then. So, I have just multiplied 2 throughout and what I am going

to do is basically take 2 s plus 1 also common. So, these becomes minus k BT N and

write it as a; so, just 2 s plus 1 if I take out.

So, what I get is basically lon of 2 s plus 1 plus lon of g square s into s plus 1 over 6, and

this will be yeah there will be a factor of 1 that I have missed. So, this will be ok. So, let



us see if I multiply this I am getting that second term first and then I am getting the first

term also all right.

Now, we can sort of give some name to these terms ok. So, what I can what I can call

here is basically. So, this is my G at some magnetic field ok. So, the first term here has

no magnetic field dependence.  So, I am going to call this as a g at 0 magnetic field

without magnetic field plus or minus NK BT lon of I am going to write it as 1 plus g

square s into s plus 1 over 6 is it ok.
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Where I have just use this nomenclature that the free energy at 0 field would be just

minus n k BT lon of 2 s plus 1. I am allowed to do this because just that is the first term

is field dependence. So, I am just calling it as g 0 some arbitrary reference of the free

energy its a state function. So, its references arbitrary, I am calling this as the arbitrary

reference. The next term which depends on field through this factor called g is called as

the field dependent part ok. So, if you take the difference of G B and G 0 that would be

the field dependent part of the free energy.

Let us call this as the some equation number let us call this as 1 and noting that you

know for small x by small x I mean when x is much much smaller than 1, I can always

write down lon of 1 plus x has just x actually the correct expansion here of lon 1 plus x

is.
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For small x I know that the leading term will be definitely lon 1 which is 0 because your

expanding around 1. So, f x is 0 lon 1 plus x is lon 1 plus x times the derivative of lon x

which is 1 upon x at x equals to 1 plus x square by 2 factorial 2 into derivative of 1 by x

which is minus 1 by x square at  x equals to 1 and so, on. So, what you get here is

nothing, but x minus x square by 2 and so, on.

Now, I have taken the limit x to be much less than 1. So, I am going to drop this to 0 and

simply say that lon 1 plus x is very close to x not a bad approximation. So, this term here

can be just written as g square into s into s plus 1 by 6 ok.
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So, I am going to rewriting 1. So, rewriting 1 with the approximation that g square into s

into s plus 1 by 6 is much much smaller than 1 because have a g is already you know

which is the magnetic field if you take square of that it is much much smaller than 1 ok.

So, definitely g square into s by 6 into s plus 1 is also much smaller than 1 .

So, I can write down this entire equation has nothing, but g at field is equal to g is 0

minus N K T into g square into s into s plus 1 over 6 is that and definitely here I have

dropped terms of the order b to the power 4 and above. So, this is my approximate Gibbs

free energy in the limit of small fields. Of course, this approximation is valid only valid

field is small if you take fields to be large then you have to take the entire series. So, this

is the Gibbs free energy that we have computed.

Now, we can compute important object such as magnetization. So, let me see what is of

the agenda. So, we have to compute the next topic is to compute magnetic susceptibility

chi.
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So, the magnetic susceptibility can now be computed by looking at this expression a very

important expression that I have derived ok. So, I am going to call this as a equation 2

ok.  So,  this  is  the  value  of  the  Gibbs  free  energy  and  the  magnetization  the

thermodynamic  magnetization  this  is  thermodynamic  in  nature,  this  is  not  the

instantaneous magnetization.

So, you can compute this from appropriate derivatives of the Gibbs free energy and we

have already shown that this average magnetization is nothing, but d over d beta B of lon

partition function ok. You can go upstairs and refer to the discussion yeah look at the

equation 1 here ok.
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So, it can be very easily computed I know that my logarithm of the partition function is

already related to the Gibbs free energy ok. So, this is already equal to minus beta into

the  Gibbs  free  energy  because  of  that  bridge  between  microscopic  world  and  the

macroscopic  observations.  So,  I  know  already  that  minus  1  over  beta  lon  partition

function is related to the Gibbs free energy.

So, I have simply substituted that here, I can knock off beta. So, this is just minus d G

over d B this is my magnetization and we have use the value of the Gibbs free energy

that is just computed for small fields ok. So, I just computed for the small field like in the

substitute for reading term is no dependence on the magnetic field dependence comes

only from g square.
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So, I will substitute that here for g and remind all of you that we are using this we can

only use this for small B as B goes to 0 our approximation of g is applicable only in the

small B which means the magnetization that I am going to construct is also for small B

because I have use that value of g here. So, we can knock off these 2 minus signs and put

sorry yes of course, I think I were supposed to copy it, but left it upstairs.

So, a lot of things can come out NK BT into s into s plus 1 divided by 6 and of course,

our g is a mu B beta. So, mu square beta square will also come out and B square is

differentiated to twice B. So, you can knock this off with the 3 here in fact, you can write

down just as a B by 3 is a factor.

So, this is the value of the magnetization thermodynamic magnetization. So, we can see

the  larger  the  field  larger  is  the  magnetization.  In  the  prefactor  which  is  which  is

essentially constant and also another thing you see here is that magnetization has to be an

extensive property and it is because it has an n inside it.

So,  it  is a both extensive as well  as it  scales with the magnetic  field that is  applied

externally. So, the next object that we can determine is the susceptibility I believe which

was on the cards lets go up and check yes. So, next object is a susceptibility and as I said

susceptibility is basically 2 first order it is the derivative of magnetization with respect to

the external field as the field is taken to very small values ok.
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So, the third object is the magnetic susceptibility of our n spin system. So, it is defined as

the  derivative  of  the  magnetization  over  field  at  small  values  of  field.  So,  we  can

compute this, since we have already have m over here I can simply take its derivative at

small values of field and get the value of susceptibility ok. So, or what I can do here is

take the not take this approximated value of m, and compute m from the Gibbs free

energy.

So, I can write this as d over d B and m itself is minus d G over d B at B equals to 0. So,

basically what I am going to do is nothing, but minus second derivative of free energy

with respect to field at B equals to 0 ok.
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Either way you will get the same result. So, you take the derivative here. So, that is the

value of the susceptibility as the field goes to 0 and finally, we can compute what is

called as the heat capacity at constant field ok. So, you can compute the heat capacity at

constant field magnetic field by simply taking the temperature derivative with respect to

since we are taking a constant field derivative, it has to be a partial derivative of the

energy scale in the problem at constant field ok.

So, the energy scale in the problem we just the magnetic enthalpy which is minus BM

ok. So, it is straight forward you can take the field outside because it is held a constant

and this is just the temperature derivative of the magnetization which has already been

computed for your ease over here ok. So, if you look at this temperature derivative what

you get here is nothing, but ok.
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So, if you take the temperature derivative here I am going to just write as minus B d over

d T of. So, the quantity notice that there is a beta square here ok. So, what you are going

to do here is, either you can convert temperature derivative into beta or we can do it with

respect to temperature both are fine. So, what I am going to do here is see that I have a 1

upon k T here ok. So, this simply becomes minus B, I will take all the terms that are

constants N I will take out all the constants first N into s into s plus 1 mu square this

becomes B square over 3 and d by d T of 1 upon k BT is it.

B becomes B square k T into beta square is just 1 upon k T and s into s plus 1 comes

outside.
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So, what I will get now is basically B square N s into s plus 1 mu square over 3 k BT

square ok. So, I can now sort of call all this things a some kind of a constant which does

not depend on temperature or the magnetic field it is a constant which is only extensive

with nature, it scales with only system size or n. So, I will say that my heat capacity at

constant  magnetic  field is  basically  some constant  which is  a system size dependent

constant into B square by T square or it is proportional to B square by T square ok.

So, it is an extensive constant, but it is proportional to B square divided by T square. And

how about heat capacity at constant magnetic field? 
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Again we can do the same logic, we can take the partial derivative of the energy scale

there  is  only  1  energy  scale  in  a  problem that  is  the  magnetic  enthalpy  at  constant

magnetization ok. Now this is interesting. If you do this derivative you can you know of

course, the magnetic field is held constant. So, when you do the chain rule, you can write

it  as  minus  B into  d  M by  d  T and that  is  0  because  we cannot  change  magnetic

magnetization you want to do this derivative at constant M.

And plus M into d of minus B by d T which is also 0 because B is held constant ok. So,

because M is constant, the first term goes to 0 and B is the constant applied magnetic

field. So, this is 0. So, you cannot you cannot hold magnetization constant in the system

and hence the heat capacity at constant temperature is 0, that would mean what is the

energy required to change the temperature of the system keep in magnetization constant.

 You  will  say  that  this  is  0  because  it  is  slightest  amount  of  energy  is  applied

magnetization changes. So, I can now write down that heat capacity difference in the

same where as the C B minus C V of ideal gas we now have C B minus C M which is

nothing, but C B which is just some constant system size dependent into b square by t

square ok.

So, this is where we end our discussion, we have computed the partition function then we

forget  it  to  Gibbs free energy and from the Gibbs free energy we computed various

thermodynamic properties such as susceptibility which I have already told is related to



the  fluctuations  of  magnetization,  I  leave  that  as  an  exercise  how  to  compute

susceptibility from fluctuations please do that. And heat capacities at both constant field

constant  magnetization  for  our  target  system  which  is  N  non-interacting  spins  in  a

constant magnetic field.


