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Ideal Gas (Grand Canonical Ensemble)

Good morning  students.  Today we will  discuss  an  example  of  the  Grand  Canonical

Ensemble and I am taking the example of an Ideal Gas which is basically a system with

continuous degrees of freedom.
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So, in the last lecture we had done the theoretical formulation of this very important

ensemble that is going to be used in quantum statistics.  And, this is the ensemble of

constant chemical potential volume and temperature.

And just to recall the important results this temperature T was controlled by allowing

exchange of energy with the reservoir and volume was kept fixed by using fixed walls.

And the chemical potential was kept fixed by allowing number of particles, you know

allowing for exchange in the number of particles between the system and the reservoir.

So, delta N and delta a represent here exchange of the thermodynamic variable. 

So, we have drawn schematic in the last lecture which applies in the present case as well.

So, this is our system and this is in contact with reservoir whose purpose is to key power



system at a constant temperature and chemical potential. So, let us indicate the exchange

of  energy  between  the  reservoir  in  the  system that  maintains  by  temperature  T and

indicate the number of particles that are exchanged between the system and the reservoir

and that maintains my chemical potential.

And I have fixed walls. So, that maintains constant V ok. So, there are 3 variables mu, V

and T that are maintained using this technique or using this reservoir, this using this

ensemble ok. So, now I am going to take a system which is an ideal gas. So, ideal gas as

a working I would say as a working example.

(Refer Slide Time: 03:03)

Now, you know an ideal gas is basically system whose microstate is represented at any

instant as nothing but the set of positions and momentum where the positions are all

inside the box of volume V that is not you know move. And all  the momentous are

basically  allow to  take a  values  between minus infinity  to  plus  infinity, the  extreme

values that are excluded. Now, one has to keep in mind that this is a system where N is

constantly varying. So, the microstate is now jointly represented by the set of q i’s and p

i’s such that my i, the index to the particle is between 1 and N nu.

Precisely meaning that the number of particles in the mu th microstate is also a number

that  fluctuates  ok. So, you cannot just  use nu as your microstate,  you have to use a

doublet of microstate that is a set of q and p, but with number of particles being N nu.



So, this is the this doublet here jointly represents a microstate ok. So now, I am going to

write down the probability density function.
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So, the probability density function like we saw in the last class which written for a

discrete system, but here we have to make sure that the PDF has the dimensions of 1

upon phase space volume. So, I am going to write the probability of finding the system is

now microstate nu probability density with number of particles N nu is basically 1 upon

N nu factorial. This is to accommodate the fact that for each microstate which has N nu

particles there are precisely N nu factorial permutations which are absolutely identical

because, the particles are indistinguishable.

So,  one  has  to  divide  this  by  N  nu  factorial  so,  as  to  avoid  over  counting  of  the

microstates ok. So, there is a factorial N reminds this of this over counting that we have

to avoid. Now, I am also going to take the cell factor h to the power 3 N nu where h is

the  our  familiar  action  having the  dimensions  of  angular  momentum and this  solely

exists here to enable us to count the number of microstate. So, I have some sort of a

volume that I am going to very soon take and in that volume the resolution the highest

resolution on the smallest cell factor that I can accommodate is h to the power 3 N and

hence I can do accounting of the microstates.

So, this cell factor is basically it is has 2 purpose. One is that it enables us to count;

second it makes our partition function dimensionless. So, then I have to take the our



Boltzmann factor e to the power minus beta and the relevant energy scale of the problem.

The relevant  energy scale of the problem with the Hamiltonian  corresponding to the

micro state that we are focusing minus the chemical work which is the chemical potential

that is held constant by reservoir in to the number of particles in that microstate.

So, our total energy scale is not the internal Hamiltonian alone which would have been

the case if  this  was a just  canonical  ensemble,  but  here over and above the internal

Hamiltonian you have a chemical work that is done by the reservoir to keep the chemical

potential constant. Now this is the Boltzmann factor; obviously, this is not normalized.

So, I have to divide by the norm which is our partition function and that is nothing but

the grand canonical partition function.

So,  this  completes  my  in  probability  density  function  for  the  system  in  the  grand

canonical ensemble. Now, I have to find out the partition function for the simple reason

that if you remember we had in the last lecture derive the connection between statistical

mechanics and thermodynamics as a this very beautiful relationship, in the form of an

energy scale which we called as the grand potential given as a minus k T or minus 1 over

beta logarithm of the grand canonical potential.
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Why does this provide a connection with statistical mechanics and thermodynamics is

because,  the  grand  canonical  potential  or  the  grand  potential  is  also  related  to

thermodynamic quantities by this relationship that is the definition that we have adopted



for the grand potential. So, I can connect equation 2 and equation 3 to compute various

important properties of my ideal gas and in this lecture I shall demonstrate how to do it

because this is as a this is being taken as a this task is being taken as a working example.

So, let us look at equation 1, 2 and 3. From equation 1, I can work out an expression for

the partition function because this is a norm of the probability density function. So, if

you can obtain the partition function for the classical ideal gas under grand canonical

ensemble,  you  can  then  use  equation  2  and  3  to  connect  the  statement  with

thermodynamics. So, the first task is to compute partition function ok. So, let us compute

the partition function then we shall be in the position to utilize equation 2 and 3.

So, compute the partition function and this is very simple look at the form of equation 1.

To normalize my PDF, partition function here has to be sum over all  the degrees of

freedom. The degrees of freedom here being momenta and position, there is one more

degree of freedom which is N nu; number of particles in the particular microstate. So,

you have to sum over N nu also.

So, I am going to sum over all possible so, this is if we wish to say this is some kind of a

restricted integral that is going to come inside. So, I am going to sum my N nu from 0 to

infinity and take the entire numerator inside. So, this would be like 1 upon N nu factorial

into 1 upon h to the power 3 N nu and like we did for this  discrete  case we had a

restricted some inside I will have a restricted integral. So, for each N nu that is outside I

will sum over all my degrees of freedom in that N nu k. So, let me take some more space

here to indicate what I mean by this restricted integral.

So,  now this  is  the  integral  over  my entire  face  space.  So,  I  have  integral  over  all

coordinates, position coordinates and momentum coordinates subject to the criterion that

my position coordinates are all inside the box V and my momentums are all between

minus infinity to plus infinity. So, I am allowing for all the possible momentas. So, the

integral limits on the momentum are going from minus infinity to plus infinity for each

component of the momentum.

And naturally I have all the momentum volume and you know coordinate volume. So, let

me indicate that with this product symbol. So, here the product symbol would be sum j

going from 1 to N and I will have a d cube q j and I will have a d cube p j for all N

particles.



So, this is the volume element for the N particle system into the Boltzmann factor which

is here and the Boltzmann factors chemical work has to be taken outside because that is

independent of position and momentum. So, that comes outside. So, which gives us just

e to the power beta a mu N nu that comes outside this is independent of position and

momentum. And what is leftover is just e raise to minus beta into the Hamiltonian.

Look here Hamiltonian of the mu th microstate and this is an ideal gas which means is

Hamilton is purely kinetic. So, observing that the Hamiltonian of a ideal gas is purely

kinetic energy and I will write down the Hamiltonian which is I am going to use let us

say some i going from 1 to N pi square by 2 m ok.
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Now, if you recall so, this is basically my grand canonical partition function. So, I am

going to write down the first few pre factors which is N nu going from 0 to infinity 1

upon N nu factorial e to the power beta nu N nu over h to the power 3 N nu.

And if you see the momentum integrals here can be performed independently with the

position integrals ok. Each particles momentum integral it is d cube q will simply give

me a volume ok. So, this is exactly the canonical partition function that we have already

computed ok. So, each momentum degree of freedom when integrated in 3 dimension

will  give  me  2  pi  m by beta  to  the  power  1  half  and because  there  are  3  N such

momentum coordinates it will give me the power of 3 N by 2.



So, I am going to write down first the position contribution to listen to you which is

simply I can I can either I done the result directly or I can do it into steps. So, let us do it

into steps. So, I will write down the momentum and position integrals separately. So, let

us do it for the position integral. It is nothing but integral for let us say some particle 1 in

the box V d cube q 1 and there are precisely N such integrals. So, this is to the power N

and for the momentum I can write down integral I can write it as a integral 3 integrals I

will write down.

So, I can write down as p 1 some momentum belonging to the range minus infinity to

plus infinity d cube p 1 e to the power minus p 1 square by 2 m and again there are N

such integrals.

Student: Sir into beta.

Into beta of course, ok. Now, this can be written as summation N nu going from 0 to

infinity 1 upon N nu factorial into 1 upon h to the power of 3 N nu into e raise to beta nu

N nu, the volume integrals will simply give me V to the power N.

Student: (Refer Time: 17:54) N nu.

e to the power N nu of course, and the similarly either summation here goes from 1 to N

nu and the product also goes from 1 to N nu absolutely yes. And so, this is V to the

power N nu.
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Because, this is the number of particles in the nu th microstate which is summed over

outside and the momentum integrals will simply give me 2 pi m over beta to the power 3

by 2. And there is so, this is the momentum integral that is written inside the bracket and

there is an N nu outside. So, I am going to write it as 3 by 2 N nu.

Each degree of freedom will give me 2 pi m by beta half raised to the power half there

are 3 degrees of freedom. So, it gives me 2 pi m by beta raise to 3 half and there are N nu

such integrals. So, the overall result is 3N nu by 2 ok. You could also say that this part is

purely remnant from the canonical partition function and I will agree to it ok, let remind

this is the canonical partition function. Nevertheless, we can proceed from here and the

compute write down the final form of it.

So, I am going to club a few things here and there. So, why do not we write it as N nu

going from 0 to infinity V to the power N nu divided by N factorial. And, I am going to

write down e to the power beta mu N nu and h I am going to take inside and write it as 2

pi m over h square to the power 2 pi m upon beta h square to the power 3 N nu by 2 ok. 

(Refer Slide Time: 20:33)

And realizing that our 2 pi m by beta h square to the power half is nothing but the 1 upon

De Broglie wavelength which means 2 pi m. If I raise it to the power 3 this become just a

De Broglie wavelength to the power 3 ok. So, then I can rewrite my previous expression

as the I can just take the common power N and multiply all these factors. So, what I will



get is basically V into e raise to beta mu divided by lambda T to the power 3 and the

entire thing raise to the power N nu into 1 upon N nu factorial, fine.

(Refer Slide Time: 22:15)

So, you know that this summation x raise to n divided by n factorial ok. So, if you recall

that this is nothing but an expression for e to the power x ok. So, I can write down my

partition function or I can write down my grand canonical partition function. So, I can

write down my grand canonical partition function as nothing but e to the power V e raise

to beta mu over lambda T to the power 3.

So now, I have the partition function for the classical ideal gas under grand canonical

ensemble. So, now, I can develop all thermodynamic quantities very easily because look

at z is already with me now. If you go back and look at the expressions 2 and 3 the

equation 2 will allow me to construct the grand potential and grand potential is related to

all the quantities S, mu and pressure through the equation number 3 ok. So, let us first

compute the grand potential ok.
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So, the grand potential here is nothing but so, the grand potential is nothing but minus 1

upon beta logarithm of our grand canonical partition function. So, this would be nothing

but minus K B T into lan of this is nothing but V e raise to beta mu over lambda T to the

power 3 ok; natural log of the exponent is nothing but 1. So, now, let us call this is

equation 1, 2, 3, 4. So, this is our grand potential.

So, if you look at equation 3 here ok, so, I am just going to write down the equation 3,

but we know that x i is equal to E minus T S minus mu N. So, I am going to take a small

differential and that is how I develop all connections fine and then you can substitute for

d E minus TdS minus mu dN from first law. You can substitute for this as minus PdV

because, from the first law we know that the way we have been writing our first law is

that the heat supply to the system is always taken as the increase in the internal energy.
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Suppose, we give heat to the system it will lead to increase in the internal energy. System

may also do some work. So, both that both of them are taken as positive; work done by

the system and internal energy is raise plus there is some contribution that comes from

chemical interaction. If you allow particles to leave the system or enter the system then

you have nu dN, otherwise you just have d and PdV. So, our this is the grand canonical

on symbol.

So, we allow for 3 different ways in which heat given to a system can manifest. It can

increase the internal energy which is Te, heat up the particles. The system may you know

expand or contract and the system may actually allow for some exchange of particles so,

that is mu dN.

Now, we can we can now compute all these quantities. So, I can compute the pressure.

This is what we mean by computing thermodynamic quantities. So, hence there were

thermodynamic quantities  are pressure which is  nothing but negative  d psi  by dV at

constant mu 1 T. And, I can compute entropy as negative d psi by d T at constant V 1 mu

and I can also compute number of particles as negative d psi by d mu at constant volume

and temperature ok.

So, if you have the expression with you can compute all these things. So, minus k T I am

going to write down minus k T V. So, let us just write down the expression for the grand

canonical potential is that right, yes. So, therefore, I can write down for P pressure as so,



the only thing that is basically, there is only one variable that is volume in the expression.

So, it is simply minus-minus turns into positive because there is already a minus sign in

the grand potential.

So, it is simply k T e raise to beta mu over lambda T the whole cube ok. So, as you can

see this is the pressure of our gas at constant mu e T condition. So, I am going to sort of

underline it. So, this is the first expression or pressure ok.

(Refer Slide Time: 30:45)

You  can  compute  the  entropy  which  is  basically  temperature  derivative.  So,  then

basically we have to be careful for the temperature derivative. So, what comes out is

basically just the Boltzmann constant and the volume.

So, I am going to first write down the temperature derivative of T e raise to beta mu over

lambda T into the power 3. So, k B into Boltzmann constant will come out. So, we can

we can do it in few steps. So, we will first write it as a T e raise to beta mu into so, I am

going to write it as a plus. So, this will be nothing but so, this will give me plus this is

your first product. So, e raised to beta mu when taken derivative for temperature.

I  have just  written  e raise to beta mu and mu by k B is  the factor  and 1 over T is

derivative is minus 1 over T square and our this is not yet complete. So, I will take the

second derivative as well and here noting that our lambda T is I can write it as minus 3

upon lambda T to the power 4 into d by d T of a lambda T fine.
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So, this is then so, what I will take out is basically lambda T to the power 3 outside ok. If

I can take quite a few things outside; so, what I am going to take out side is basically say

I can take e raise to beta mu outside everywhere and I can also take lambda T to the

power 3 outside. So, what I get in the first term is basically just 1 minus mu over k T ok.

And from the second term I will get minus 3 T over lambda T into derivative of lambda

T. So now, lambda T is basically h over 1 upon square root of 2 pi m k B T.

So, this would simply be h over 2 pi m k B and this would be just you can get 1 upon 2

raise to T raise to 3 by 2 ok. So, then I will have to take in a few terms here and there.

So, what I am going to do is basically knock of this T where 3 by 2 and so, this will

become I  just  T raise  to  1 half  and that  would be nothing but  just  lambda T in the

numerator. So, that will cancel of with this term and what I will have is just 3 by 2 in the

second term.

So, this is just k B V e raise to beta mu upon lambda T to the power 3 and this would be

just it will just give me 5 by 2 minus mu by k T. So, let us just check of the expression is

correct ok. So, now, let us compute the pressure we have already computed the pressure.

So, let us compute the number of particles. So, this is the entropy, but you have just

computed and to compute the number of particles.
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I have to take the derivative with respect to mu, but constant V and T and let us just look

at this expression for G which is minus k T v into so, this is I believe negative derivative

yes ok. So, this is basically a negative derivative of if you look at the expression fine. So,

if you take this derivative you get k B T into V outside no issues there.

In fact, what you will get is also lambda T to the power 3 outside and this would just give

you e to the power beta mu into beta. So, we shall cancel of with this k T. So, what you

have for number of particles is just V over V into e raise to beta mu over lambda T to the

power 3 ok. So, that is the expression for the number of particles.

So, this is just the entropy and this is the number of particles. So, with this our discussion

of the classical ideal gas under grand canonical ensemble comes to an end and this also

ends our chapter 2 on classical statistical mechanics. So, when we meet in the next class

we  will  start  to  discussion  on  quantum  statistical  mechanics.  We will  take  a  few

important cases of electrons in a gas.

We also take boson gases and also electrons in the solid. So, we will take some nice

cases in quantum statistical mechanics and you will also see how this grand canonical

ensemble becomes the natural distribution or the natural ensemble to compute properties

in quantum mechanics. So, we end it here and begin the discussion on quantum statistics

in the next lecture. 


