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Grand Canonical Ensemble

So, good morning students; today we will discuss the last ensemble in this chapter which

is the Grand Canonical Ensemble.
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And this  is  a  very important  ensemble  in  the fact  because,  it  allows for  the correct

enumeration  of  states  when  you  go  and  do  the  calculation  in  quantum  statistical

mechanics. So, the natural ensemble to do calculations in quantum systems is the grand

canonical ensemble. And so why not finish this chapter on classical stat make with the

discussion of this grand canonical ensemble.

So, the ensemble is basically collection of systems or microstates all specified by the

macrostate mu some generalize variable x I have taken volume here and temperature T

ok. So, you can maintain temperature by allowing exchange of energy with the reservoir,

you  can  maintain  volume  by  keeping  fixed  walls.  So,  the  system  is  mechanically

isolated.  And you  can  maintain  chemical  potential  in  a  system by  allowing  particle

interactions  with the reservoir  ok.  So, these interactions  are non-zero which means a



system is going to exchange both energy and number of particles to maintain constant

mu and constant T ok.

So, let us draw a schematic that will help us understand what is going on. So, I am going

to draw my system here. So, this is going to be my system in contact with the reservoir

and  as  usual  the  joint  system and reservoir  is  in  microcanonical  ensemble  which  is

always the case ok. The system is not isolated the reservoir is not isolated, but system

plus reservoir is isolated. So, the system is maintained at constant volume and that is

because  I  have  taken  fixed  walls  their  walls  are  not  moving.  So,  volume  can  be

maintained constant, but now the walls between system and reservoir are porus.

So,  they  allow  for  interaction  of  you  know  chemical  interaction  or  you  allow  for

exchange of particles between system at reservoir in order to keep mu fixed. So, this

fixes mu and you allow for interaction in energy to keep the temperature constant. So,

whenever there is a fall in you know whenever the systems temperature is below the

offset below the set temperature; the reservoir will give energy and bring the system back

to the temperature T. And whenever the systems temperature is above the reservoir it will

act like a sink and withdraw energy to bring the system back to temperature T.

So, after a long time of contact with the reservoir the systems temperature is set to T and

the chemical potential is set to the chemical potential or the reservoir. So now, we have a

system which it  constant  mu V and T. So, we would be interested  in looking at  the

probability distribution function of the microstates. So, I have define the macro state here

it is the specified value of mu V and T this is my macro state. 

A microstate  here  would  basically  correspond  to  you  know  I  am  going  to  use  the

microstate with a different symbol here, because mu is already reserved to the chemical

potential.  And I  am going to  write  down the  microstate  as  collection  of  momentum

coordinates, position coordinates, and momentum coordinates. We will restart it, no it is

simple I do not want this light it will I mean this is it is going to throw so, much glare on

my screen yeah. So, let us start it again I mean I am sure of it broke the flow is this also

off, off yes.

Start from beginning.

Yeah we will start from the beginning, it is a button also. 



So, good morning students today we will talk about the last ensemble in our course ok.

There  is  already  not  going  well  alright.  So,  good  morning  students  we  will  start

discussion on the last ensemble in our course which is the Grand Canonical Ensemble.
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So, this is the ensemble where the member systems are all specified by a macro state at

constant chemical potential volume and temperature. So, you can instead of volume you

can take any other generalized variable such as magnetization for example, for spins in

constant magnetic field.

Let me also tell you that this is the most important ensemble in statistical mechanics in

the sense that it, it naturally provides for the correct enumeration of states for systems in

quantum mechanics. So, you will realize in chapter 3 that the most natural ensemble to

do calculations in quantum systems with the grand canonical ensemble. So, I am going to

spend the last part of my lecture precisely on this issue on this ensemble which is the

ensemble at constant chemical potential volume and temperature.

So, the grand canonical ensemble is maintained by fixing temperature and I know I can

fix temperature  by allowing for energy interactions  with the reservoir. And I  can fix

volume in any system by just having fixed walls. So, there is no work mechanical work.

So,  walls  do not  move and there  is  no mechanical  work and I  can fix  the chemical

potential  by  allowing  exchange  of  particles  with  the  reservoir.  So,  this  is  called  as



thermal  interaction  with  the  reservoir  and  this  is  called  as  you  know  exchange  of

particles with the reservoir.

So, if you allow for energy interaction it keeps temperature constant, if you allow for

exchange  of  interactions  exchange  of  particles  with  the  reservoir  you  can  keep  the

chemical potential constant. Now the keep fixed walls do not allow them to move then at

would just fix your volume there by saying that there is no mechanical work done on the

system. So, I can draw a schematic here to show what is going on by drawing my system

and connecting it with the reservoir ok.

So, you can say that the system is in constant volume because the walls are fixed ok. So,

the walls are fixed and you allow for interaction of energy. So, there is exchange of

energy with the reservoir, that keeps my temperature constant ok. And you also allow for

particles to be exchanged because the walls can be made to be porous. So, that would

keep my chemical potential constant ok. So, now let us look at the typical microstate that

the system can rest in.
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So, a microstate here is basically specified by a label nu I am going to use a label nu

because mu is already reserved for chemical potential. So, a microstate here is nothing,

but the set of position and momentum coordinates; it belonging to a certain instant when

the number of particles is N nu because the number of particles are also changing. So, i

here belongs to you know the one of the N nu particles in that particular nu at microstate



ok. So, our microstate is not just a q i and p i for a fixed N and itself is varying from

microstate to microstate ok.

So,  that  is  the  definition  of  a  microstate  here  which  been  which  tells  me  that  the

probability of finding my system in a microstate nu such that the number of particles are

N nu ok; is nothing, but the Boltzmann factor e to the power minus beta into the energy

scale which in this problem is the Hamiltonian for the nuth microstate; where you have N

nu particles minus an energy scale which is due to the constant chemical potential which

is nu times N nu that is the energy scale for the problem ok. 

So,  the  energy  scale  for  the  problem  is  not  the  Hamiltonian  alone,  it  is  H  nu  the

Hamiltonian for the nuth microstate minus the chemical work that you are allowing to be

done on the system and N here is the number of particle in the nuth microstate ok. Well

naturally this PDF is not normalized we have to normalize it. And so, the factor the norm

is the grand canonical partition function and I am going to give it a different label with

the double horizontal strikes. So, this is the partition function of the system in the grand

canonical ensemble ok. So, let us call this as equation 1. Now you can easily see what

should be the expression for the partition function.
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So, the grand canonical partition function that provides the link with thermodynamics

can be very easily obtained as simply summation over all microstates of this Boltzmann

factor ok. So, let us do that so we will take summation overall the microstates. Now



microstates is the doublet of nu N nu ok; that is a combination with specifies a single my

microstate and I am going to sum over the Boltzmann factor which is e raise to minus

beta the energy scale ok.

Now this is a double summation so it is in some sense unrestricted sum. So, all possible

values of N N nu are taken, but I can convert  this into a restricted sum and do this

calculation easily. So, what I am going to say is that let me first compute the sum over all

possible number of particles ok. So, that would be saying that I am going to take the

summation over N nu ok. So, here the N nu will go from 0 to infinity all possible number

of particles. The extreme values of N nu who would have a probability that is very very

small as can be seen ok. So, once you have fixed your N nu you can compute the inner

sum overall micro set such that it takes the value N nu from the previous sum ok.

And for each N nu that is set in the outer sum you compute all possible microstates. And

so I  have  to  take  e  to  the  power  beta  outside  because  that  does  not  depend on the

microstate nu ok. So, this will be acting only our e to the power beta mu N nu because

this is just the variable here is just the number of particles in the microstate. And the

inner sum would now be on the microstates such that the number of particles is fixed to

N nu by the outer sum summation over e raise to minus beta H nu is it ok. So, now is like

changing from unrestricted sum to restricted sum.

So, this thing is a restricted sum ok. So, you for example, you in the outer sum N nu

could be 50.  So, your 50 particles  in your system for these 50 particles compute all

possible microstates by arranging the particles in the box and that is your inner sum then

you change 50 to 51, and then compute all possible microstates for these 51 particles and

compute the inner sum. So, this way you take the number of particles in the outer sum

from 0 to infinity and compute the inner sum ok. Now, if you pay attention to this inner

sum it is looking very familiar ok.
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So, it already looks familiar in the sense that this is nothing, but the summation over the

Boltzmann factor for N nu particles ok. So, I am going to call it as the canonical partition

function with N nu particles. If we recall this is the canonical partition function for N nu

particles because the only thing that is. So, the inner sum is at constant temperature at

constant volume ok. And now it is at the N nu so this is a partition function for N V T or

the canonical partition function.

N is not varying for the inner sum it is constant. So, it is a partition function for the

canonical  ensemble.  So,  that  restricted  sum  is  nothing,  but  the  canonical  partition

function. But now we can also. So, I am going to write this as. So, my grand canonical

partition function is this expression summation overall N e raise to beta mu N times the

canonical partition function ok. So, I am going to call this as equation 1 ok. And now you

can  compute  averages  of  various  quantity  in  our  system.  So,  you  can  compute  for

example, average number of particles in the system because N is a fluctuating quantity to

keep chemical potential constant like I said for every fluctuating random variable we are

interested in it is moments.

So, the first moment to compute is it  is  average.  So, to compute average number of

particles which is like saying what is the expectation value of N. Now this is simple this

is  nothing,  but  summation  overall  nu N nu e  to  the probability  distribution  function

which is nothing, but fine which is like saying my PDF here is going to tell me what is



the  probability  of  finding  a  microstate  with  N nu particles  and having moment  and

position which is given by nu. So, you simply sample your N nu in that PDF and the

result would nothing be would be nothing, but your average number of particles. So,

when you do this sampling what you get you have the, you have to do the sampling.
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And this would be nothing, but N nu and your PDF is nothing, but e to the power minus

beta H nu minus mu N nu over the grand canonical partition function fine. Now you can

pull out N nu by simply taking a derivative with respect to beta mu ok. So, we can write

down that I will take a derivative with respect to beta mu of the grand canonical partition

function ok. And the denominator already has a grand canonical partition function ok.
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So, this is nothing, but you can write it as a 1 upon beta d by d mu of lon z where z is

nothing, but the grand canonical partition function. So, it is have a function of mu V and

T ok. So, this is the expression for average number of particles in your system ok. So,

look at your partition function which is nothing, but the sum over all degrees of freedom.

And the degrees of freedom here are not just the position moments, but they also the

number  of  particles  in  a  given microstate.  So,  this  is  the  number of  particles  in  the

system also called as the mean N. You can also compute fluctuations of N. So, these are

nothing, but the second cumulant of the random variable N. And that is nothing, but you

take the second moment minus the square of the first moment.

And then it is very simple to see that it is nothing, but you can you can already see that

this is d over d beta mu you have to pull out N two times. So, it is the second derivative

of  this  your  canonical  grand  canonical  partition  function  over  the  grand  canonical

partition function; minus square of the first derivative ok. So, if you see this will the

terms in bracketed term is nothing, but the mean N and a first time is nothing, but the

mean of N square ok. And you can write this as nothing, but d over d beta mu of you can

write it as 1 upon z d z over d beta mu is it. So, by chain rule it will expand to the

previous equality.
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And if you pay attention to the fact the term in the parentheses is nothing, but logarithm

of the derivative of the logarithm of z. So, this is nothing, but d over d beta mu of I can

write this as fine so, but now this term has already been computed ok. So, this term is

already been compute. So, this is over here. So, this is nothing, but your N itself. So, this

is d over d beta mu of N.

So, now, you can see that this thing scales as N because beta mu in intensive quantity N

scales is N ok. So, your variance scales as N ok. So, our variance scales as N this is my

variance  or  the  second cumulant.  That  tells  me that  the  standard  deviation  which  is

square root of my variance will scale as a square root, which is the standard deviation. 
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Now we can see that  the ratio of standard deviation over mean which is  basically  a

quantification of ensemble equivalence diminishes in the limit of large N. So, the ratio of

width  over  mean  which  will  always  signify  how  sharp  your  distribution  is  in  the

thermodynamic limit. So, this will be square root N over N which is nothing, but 1 upon

square root N and that will diminish or go to 0 in the thermodynamic limit. So, this is

called as the ensemble equivalence. That means, our grand canonical system in the limit

of N going to infinity; suppose this is a large you know room or a hall or an auditorium

which is in grand canonical ensemble would have it is number of particles fixed.

So,  it  would  actually  be  a  system looking very  similar  to  a  canonical  ensemble,  its

number of particles are fixed, no longer fluctuating. Well, you can argue that the there is

a  fluctuation  and  as  you  increase  a  system  size  the  width  also  increases  of  the

distribution. But I am going to ask: what is the proportion of your width to mean and that

proportion would be diminishing value in thermodynamic limit.  So, essentially  it has

features of a microcanonical ensemble as N goes to infinity ok.

So, it is the equivalent not equal to it is equivalent to addition using is equivalent to

micro canonical ensemble, the ensemble where N is fixed. In your ensemble the N is not

fixed, but it is the relative width over mean is the diminishing value. So, essentially it is

features are like that of a micro canonical ensemble as N goes to infinity. Now we can

develop connections with thermodynamics as usual, in all  ensembles we can develop



connections  with  thermodynamics  and  this  connections  these  connection  are  always

established through the partition function. So, I am going to bring down my partition

function  which is  a  very important  derivation.  So, let  us  export  our canonical  grand

canonical partition function downstairs and build a connection with thermodynamics ok.

So, let us export it here fantastic.
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So, we now have a our and just to remind you that this is the canonical partition function

ok. Now, I need an approximation of this partition function because again computing the

summation over infinity is difficult. So, can I approximate it now you can approximate

using a technique called as saddle point approximation since N is very large. So, this is

approximation technique that is discussed in our appendix so you can refer to it. Since N

is very large we can take a large number of particles in the system and distribution is

sharp by sharp distribution. I mean I have already shown that the ratio of width over

mean has gone to 0 as N goes to infinity is the meaning of sharp distribution ok.

I can approximate the summation in the above expression we can approximate this grand

canonical partition function by largest summand. So, grand canonical partition function

is already a sum over so many terms ok. If you look at the right hand side of the grand

canonical partition function it is a sum over. So, many terms the idea here is to not take

the entire sum the idea here is to use the saddle point approximation ok. So, this is called

as the saddle point approximation. So, the sum will now be replaced by the maximum of



the summand this technique has been discussed in detail in the appendix. So, you can

now write down the partition function.
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The grand canonical  partition  function  approximated  by the  maximum summand ok.

Now it is not an exact equality it is an approximation. So, the maximum summand here

the first  term would be e to the power beta mu N star here N star is the value that

maximizes the exponential and I have to also take it is a product of two values. So, I

have to take maxima of both of them. So, I am going to take the maxima of z itself the

canonical partition function also ok.

So, I will say that the N star here maximizes the grand canonical partition function ok.

So, it has to maximize both the exponent e raise to beta mu N and the canonical partition

function z. And this is nothing, but if you look at our derivations the canonical partition

function. If you recall was already approximated the maxima of this was e to the power

minus beta into free energy. If you recall where f is free energy of system ok;so, here e

star is the free energy that minimizes the e star is the energy that minimizes free energy.

And hence, we take that free energy here and so then you can write it as basically drop

all the stars because now they are all the thermodynamic variables. So, we have dropped

all the subscript and you can write it as e to the power minus beta into the free energy

minus mu N. So, now all the quantities are stress wise. So, we have dropped the asterisk



symbol for convenience ok because, these quantities are thermodynamic in nature. So, N

star here the thermodynamic N that maximizes it e star is also thermodynamic.

So, I am going to drop the symbols for convenience because otherwise we will have a

star on each symbol inside; so, dropping symbol star  with the understanding that all

energies and all number of particles are already in the thermodynamic limit. So, N here

in  the  final  expression  is  the  thermodynamic  N e  star  is  a  thermodynamic  e  f  is  a

thermodynamic f free energy and so on.
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So, I can write down this final equality as e to the power minus beta the thermodynamic

free energy or the Helmholtz free energy. I am going to write it as Helmholtz free energy

is nothing, but the sum of internal energy minus temperature entropy work minus mu N.

So, E minus T S is F.

So now, we what we have is basically all these are approximations. So now, if you look

at this is my grand canonical partition function, and it is basically e to the power minus

beta into some energy scale E minus T S minus mu N. So, we can label this as some

equation number, let us label it as equation number 2.
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So, if we define it is in our hands to define this energy scale. So, I am going to define it,

this energy scale just for convenience sake as some grand potential ok. So, this is the

energy scale that  will  build connections  with thermodynamics  ok. So, I am going to

define my energy scale in this Boltzmann factor as grand potential. So, I can write down

my grand canonical potential, as e to the power minus beta xi ok. And now you can see

that  the  connections  from  thermodynamics  can  be  established  by  simply  taking  a

logarithm, so my thermodynamic energy scale is xi.
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So,  this  will  be  nothing,  but  minus  one  upon beta  ln  the  grand canonical  potential.

Compare  this  with  the  connection  that  you  established  in  the  context  of  the  Gibbs

canonical  ensemble.  So,  there  are  the  relevant  energy  potential  was  the  Gibbs  free

energy, in  the  canonical  ensemble  the  relevant  energy  scale  was  the  Helmholtz  free

energy. And, here you have the grand potential  that  sets of that connection from the

statistical mechanics to thermodynamics. So, this is the very important result. So, if you

know  how  to  compute  the  partition  function  for  a  system  then  you  can  use  this

relationship to compute various thermodynamic quantities. 

What do I mean by that? Well I mean, but if you know partition function then you can

invoke appropriate derivatives of the partition function and compute the thermodynamic

quantities.  For  instance  our  energy scale  here is  for  thermodynamic  quantities;  I  am

going to stop after this and take the example of an ideal gas in the next lecture, but just to

sort  of  end  the  discussion  I  want  to  explain  what  I  just  said  ok.  How do I  invoke

appropriate  derivative.  So, look at this energy scale that is in front of you the grand

potential. 

So, this is E minus T S minus mu N ok. So, you start with that and take the incremental

derivatives ok; so, the differentials on the thermodynamic law. So, what you have is the

following expression fine. Now, you can use the first law of thermodynamics and do

something with d E minus d S T d S minus mu d N. So, I can write this as I can substitute

for d E minus T d S minus mu d N as a simply minus P d v.
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Because, the first law allows me to write down the heat energy as that goes into the

system as the rise in internal  energy plus pressure volume work done by the system

minus the chemical work ok. So, minus P d v will simply be what I have substituted for.

So, then if I look at this if I look at this expression in front of me I can compute pressure

entropy and number of particles by invoking the appropriate derivatives of the grand

potential ok.

So, I can write down pressure as a negative derivative of the grand potential with respect

to volume ok. So, let me write this again, I can write it as negative derivative of the

grand potential at constant chemical potential and temperature.
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And, I  can compute entropy as a minus derivative of the grand potential  at  constant

temperature at with respect to temperature at constant volume and chemical potential.

And finally, I  can  compute  number  of  particles  by  taking derivative  with  respect  to

chemical potential, fine. So, you can compute so you are look into this your system is it

constant mu V and T and derivative with respect to this thermodynamic variables of the

grand potential provides the connection with thermodynamics.

So,  I  can  compute  the  pressure  of  my  system entropy  of  my  system,  a  number  of

particles of my system, using these appropriate derivatives. So, you can substitute for xi

in these derivatives from this expression and compute all these quantity. So, if you have

the knowledge of xi you can compute all this derivatives and invoke and compute the

thermodynamic quantities.

So, in the next class we will take the examples, I will take a working example in the class

and take the ideal  gas  as one system. And do this  calculation  and compute  pressure

entropy and number of particles at equilibrium. So, we break here and when we meet in

the next class I am going to discuss the ideal gas under grand canonical ensemble. And

we will compute various thermodynamic quantities that we have just discussed in this

lecture.

Thank you. 


