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So, Good Afternoon students. Today, we will start with the case of Classical Ideal Gas as

discrete degree of freedom example of the Gibbs Canonical Ensemble. So, like always

do in this course, I choose examples having both continuous degrees of freedom and

discrete degrees of freedom. 
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So, in the case of Gibbs canonical ensemble, I am going to take the example of classical

ideal gas, where a micro state is basically specified as the set of values of positions and

momentums of the gas particles,  in a volume which also depends on the microstates

states. So, this is a system where you allow volume to fluctuate in order to keep pressure

constant. So, volume of a microstate is also a variable that keeps fluctuating in addition

to the energy of the system.

So,  I  just  recall  that  the  fluctuating  quantity  in  these  systems  are  basically  the

Hamiltonian. So, if you fix the volume, then you allow you have to allow for energy

exchange in order to keep the total temperature constant ok. So, T is constant, so have to

fluctuate allow for fluctuations in the Hamiltonian. But, if Hamiltonian is fluctuating, I



will have a fluctuation in the enthalpy of the system. So, the enthalpy is basically the

energy of that microstate plus the pressure volume work that the system does in order to

maintain constant pressure. So, this is one fluctuating quantity, which is the enthalpy I

call it has the enthalpy of the microstate ok.

And the second quantity is as I have said is the volume ok. So, I have to change the letter

here,  this  is  the microstate  here is  specified  as mu.  So,  I  am going to  call  it  as  the

enthalpy of the mu state. And similarly we are denoting V mu as the volume of the mu th

microstate. So, both the enthalpy and the volume are fluctuating quantities ok.
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So,  you  can  you  can  include  the  in  this  discussion  the  write  down  the  fluctuating

quantities  are  energy  and  volume.  And  we  have  written  down  the  relevant

thermodynamic  variables  whose average is  that  we have calculated  ok.  So,  we have

calculated the average of the enthalpy, and the average the volume. So, this is nothing

but the enthalpy of the microstate, and this is nothing but that volume of the microstate,

and also call them as the instantaneous volume or the instantaneous enthalpy ok. 
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Now, the  ideal  gas  is  in  the  canonical  ensemble  Gibbs  canonical  ensemble  can  be

specified by a probability density function, which has to give the probability of finding a

microstate in the vicinity of from mu. And that can be that is given as a p of mu, and you

can write down this PDF has 1 upon. So, we can just write it down as a the Boltzmann

factor into H to the power into in a Boltzmann factor, which is e to the power minus beta

into the energy of the microstate  ok. And to normalize this  I have to divided by the

partition function. 

Now, this is not yet probability density function, because it is not the dimensions of the

phase space volume. So, I am going to divided by N factorial that takes case into account

the fact that the particles are indistinguishable. So, there are roughly exactly N factorial

permutations that you can do on N particles. And if I do not divide by N factorial,  I

would be over estimating the number of state we precisely that factor. So, taking into

account the in distinguishability, I have divided by N factorial. 

And as I was saying that I have to non-dimensionalist in order to not I have to make the

dimensions one upon phase space volume. So, so I am going to divided by few more

factors. So, one factor is the self-factor that is the smallest volume you can have in the

phase space with N particles that is called to the cell factor. And in addition to this, I am

also going to divided by some volume scale. So, we not here is some volume scale, and



this is because my phase space now has the additional degree of freedom, which is the

volume of a microstate ok.

So, as you can see my phase space is not just you know, it is not just composed of

particle  coordinates  and  moment.  The  phase  space  now involves  information  of  the

volume microstate also the physical volume of the box ok. So, I am going to say that my

phase space here. So, the overall degree of freedom is movement in phase space, which

is due to the microstate and volume of the box for given value of mu ok, so that is why I

have to divide by a volume scale to not demonize my partition function.
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So, now I can write down the partition function looking at this equation 1, I can directly

write down my partition function as Z N P T ok. So, it  to understand the preceding

argument that my phase space and volume of the box together constitutes the overall you

know scenario is to visualize the our system. 

So, at some instant the system is in a microstate mu. So, mu here is basically the set of

coordinates that has specified here ok, so that is my mu. And corresponding volume of

the system is view of mu. And the system is constantly exchanging energy in order to

keep my temperature constant, it is also exchanging volume.

So, there is a constant amount of constant interaction of the system with the reservoir

mechanically. So, it is continuous mechanical interaction, which is manufactured in the



exchange of volume, and that keep my pressure constant ok. So, thermal interaction is

necessary to keep temperature constant and mechanical interactions necessary to keep

pressure constant.

So, then the partition function of the system can be written as you know including all

those pre factors needed for non-dimensionalist in my partition function upon N factorial

for in distinguishability raise to the power 3 N is to as for the phase space volume, in I

am going to divided further by a volume scale, because this going to be a integral over

all the possible volumes system can take. So, my system can take volumes from 0 to

infinity ok. Do not be surprised with these limits, because both these volumes have very

lower very low probability of occurrence as shall be seen in a write down the Boltzmann

factor. 

And so this will be a volume integral. And then we have a phase space integral, where I

will have six n dimensional phase space integral over all the momentum and positions.

So, I have removed the vector inside, because I have taken some over 3 N ok. As you see

now their components already, each particle has three components of momentum, and

three components of position. So, my summation is not over 1 to N, it is now directly

return from 1 to 3 N ok. So, I will  not write down d cube q and d cube p into the

Boltzmann factor, which is e raise to minus beta the Hamiltonian of the microstate. 

Now, the Hamiltonian of the microstate is nothing but summation overall momentous,

because that is the only energy system can have, it is an ideal gas. So, I am going to use

some new symbol. Let me use alpha goes from 1 to 3 N p alpha square by 2 m plus P V

ok. This V is the volume integral that we are going to perform ok.



(Refer Slide Time: 14:23)

So, now you can where this as 1 upon h to the power 3 N into 1 upon N factorial into 1

upon some volume scale integral V going from 0 to infinity d v, well you can straight

away see that the position integrals will give me V raise to N ok. So, position integrals

are giving me V to the power N. 

And all the momentum integrals can be written as just integral d sum you know p 1

momentum degree of freedom of first particle into a raise to minus beta p 1 square by 2

m, where p 1 will take the values from minus infinity to plus infinity. And the entire

thing will be raised to the power 3 N. These V raise to N has come because of the fact

that I have written V raise to N as integral d q 1 d q 2 d q so I will go I am going to write

it as. So, it is better that I write it as just integral d cube q, where q belongs to the box

whole to the power N ok.

So, a single particles volume integral over d cube q 1, d cube q 2, and d cube q 3, which

is integral over d cube q is just volume V, there are N such integrals, so this is just V raise

to N ok. 

Student: (Refer Time: 16:57).

Right. So, so there is one factor that I have is there let me just write down that factor, I

am going to write it here and instance specific so, let me just move everything on one

side. And I am going to write it as e to the power minus beta P V that is it fine. 



So, you can write this as 1 upon h to the power 3 N into 1 upon N factorial into 1 upon V

0 integral V goes from 0 to infinity d v V raise to N. And this Gaussian integral will

simply give me square root of pi by a, so it is given a pi by a. a is already beta by 2 m,

and so it will give me in 3 N by 2 into e raise to minus beta P V. So, I can bring out the

constant outside. So, what I will have is basically just 1 upon h to the power 3 N V 0 N

factorial into 2 pi m upon beta is to 3 N by 2 into volume integral V raised to N e raise to

minus beta P V. 
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So, the pre factor here can now be written as 1 upon h to the power 3 N. So, I am going

to take h inside the parentheses, I am going to write it as 1 upon N factorial into V 0, I

am going to write as 2 pi m K B T upon h square to the power 3 N by 2 ok. And if you

noticed that, this is nothing but there is nothing but a Laplace transform of V to the

power N except that the fact that I have taken the SCR of the transformers beta P. 

So, this is called as the Laplace transform of V to the power N that we already know is

the result of Laplace transform as N factorial over a to the power N plus 1 or a here is

beta P ok. So, the variable a or s that you take in the Laplace transform is actually you

know this is a function of beta P is already beta P here.
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So, if you do not remember Laplace transforms, you can recall that if there is a function f

of x, then its Laplace transform is nothing but integral 0 to infinity e raise to minus s x f

of x dx, and because a different integral x, it is only a function of s ok. 

Now, our function was V raise to N, so Laplace transformer of V raise N is we can define

it as e raise to minus beta P into beta P V into V raise to N d of v so fine. So, if you want

to find out its  answer it  is  nothing but you take V raise to N has the first  function,

because it is success of derivatives will reduce the order.

So, if I take V raise to N is the first function, you can I am just going to write down two

steps, and then it will be clear to you how to do it. So, it is V raise to N e raise to minus

beta P V dived by minus beta P, the limits 0 to infinity minus integral derivative of the

first into integration of second ok.
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So, you can see their limits will give this 0 here, because at infinity e raise to minus beta

P V will dominate, and it 0 V raise to N will dominate. So, this goes to 0, what you have

is just N upon beta P into Laplace transform of V raise to N minus 1. So, if you continue

like this, until you get Laplace transform of one which is s, so that would be just N

factorial. So, next term would be N into N minus 1, and so this can be written as beta P

the whole raise to N plus 1 ok, when you end. The last term here would be a Laplace

transform of 1; it is 1 upon beta P or 1 upon s. Anyway, so there is a short discussion of

how you do a Laplace transform. 

So, I am going to write down the result here, which is 1 upon N factorial V 0. And look

at this pre factor, it already looking like length scale to the power 3 N. So, I am going to

write it has 1 upon our De Broglie wave length temperature dependent wavelength to the

power 3 N into N factorial divided by beta P to the power N plus 1 ok.

And you can knock off these two N’s here now N factorials. So, what you have is just 1

upon lambda to the power 3 and into 1 upon beta P to the power N plus 1. And this is

your Gibbs canonical partition function ok.

So, notice that we have defined our De Broglie length as upon square root of 2 pi m K B

T,  which  as  we  discussed  in  the  few  lectures  ago  indicates  the  onset  of  quantum

mechanical effects, provided you have references skill that comes from density. So, if



you have one length scale, I will call it is a density dependent length scale, which is some

kind of n to the power minus 1 by 3.

Then when you have the De Broglie wavelength for exceeding this density dependent

length scale, then you basically have a quantum mechanical effects, which is basically a

fact that you are density is so large that your density dependent length scale becomes

very small.  A large density would mean the density dependent scale for inter-particle

separation is very small, particles are very close to each other, which means our lambda n

will be very very small.

And if  you have  low temperature,  then  our  de  by  wavelength  would  be very  large,

because  it  behaves  as  1  upon  square  root  T,  it  increases  as  inverse  square  root

temperature.  So,  the quantum efforts  will  arise  in  the limit  of  high density, and low

temperature. Low temperature will make my numerator large, and height high density

will make my denominated small, which means the ratio will be much larger than 1, let

us called as the quantum limit. 
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And similarly, when you have this ratio was smaller than 1, you have classical effects or

you have a classical limit. So, here you are talking about high temperature that will make

your De Broglie wavelength very small, because it will go as 1 upon square root T. And

you will talk about low density, so in the low density limit my denominator will be very

large,  because  the particles  are  will  be there separation would be much larger, there



would be inter-particle separation would be very large. So, the ratio becomes smaller and

smaller and becomes negligible, let us the onset of classical mechanics. 

So, the de by De Broglie wavelength that have taken here is a very important length scale

in that sense ok. So, I am going to call this as a lambda n or the density scale. And let us

proceed with our calculation, so we will stop that the expression of the partition function.

See if I look at the partition function, it has basically all the information available to

connect  statistical  mechanics  to  thermodynamics,  which  is  actually  the  goal  of  this

lecture. And we can start off by computing the Gibbs free energy ok. So, I for the sake of

convenience,  I  am  going  to  copy  this  expression,  because  I  am  going  to  use  it

immediately here.
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So, so I can so which gives me degree which gives me the Gibbs free energy that is

minus  1  upon  beta  logarithm  of  the  Gibbs  canonical  partition  function,  and  that  is

nothing but minus K B T and if you take the log of this, what you basically get here is.

So, I am going to take the logarithm of this minus 3 N ln of lambda T minus N plus 1 ln

of beta P ok, fine.

Now, I already know that my Gibbs free energy. So, let me call this as equation 2. From

thermodynamics I know that my Gibbs free energy is written as H minus T S, where H is

the thermodynamic enthalpy ok.
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So, you can write down the differential form of this as the H minus T d S minus S d T.

And this can be written as if I know, if I write down H S E plus P V, so this is d E plus P

d V plus V d P this is nothing but my d of H ok, minus T d S minus S d T ok. So, you can

now write down from the first law of thermodynamics, you write down for d E plus P d

V minus T d S ok.

So, you can now write it as just mu d N plus V d P minus S d T, because I have use the

first law as T d S equals to P d V plus d E minus mu d N. So, then I can write down each

of this quantity is mu V and S by invoking the appropriate derivative. So, by invoking

the appropriate derivatives I can compute chemical potential as d G over d N at constant

value of pressure and temperature.
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I can also invoke the derivative with respect to pressure to compute volume, but then I

have to fix number of particles and temperature.  And I can also compute entropy by

invoking derivative  with respect  to temperature,  but holding number of particles  and

pressure is constant. So, you can compute these three thermodynamic variables easily. I

am going to compute only one and leave the others as homework ok.

So, I am going to demonstrate how to compute one of them. So, let us compute volume

ok. So, so volume is derivative of free energy with respect to pressure holding N and T

tight.  So,  let  us  look  at  the  expression  for  the  Gibbs  free  energy.  So,  if  you  hold

temperature and pressure temperature and number of particles constant, then I can see

that the first term in the Gibbs free energy does not contribute to volume, because it

depends  only  on number  of  particles  and temperature,  the  de  Broglie  wavelength  is

purely a function of temperature.

Now,  the  only  term  that  contributes  here  is  the  second  term.  And  that  constant

temperature and N number of particles, I can write it as N plus 1 into K T into d over d P

of l n beta P at constant N T fine. Now, you can see that I can take the beta outside; it

does not depend on pressure ok. So, so this can be very easily computed. So, you can

write it as N plus 1 K B T and derivative of ln beta P is just 1 upon beta P into beta, you

can knock of these betas.



And write down the final answer as just N K B T over P, this is because N is very very

large compared to 1. So, N plus 1 is the same as 1, N plus 1 is same as N ok, you can

write down since this the case. So, then this is the ideal gas law equation of state alright.

So, now we have the equations  for the chemical  potential  volume and entropy from

which you have already computed the volume. And I have left  it  computation of the

chemical  potential  and  entropy  as  an  exercise.  So,  I  will  just  finished  the  entire

calculation by computing enthalpy.
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So, the thermodynamic enthalpy. So, this is a task that can be done by saying that you

can  compute  the  average  of  the  instantaneous  enthalpy.  So,  you  some  over  all  the

microstates. So, this is a microstate mu with a volume V mu, and you take the enthalpy

of  this  microstate  which  is  the  Hamiltonian  plus  P  V and  you  to  sample  it  in  the

distribution of the microstates ok.

And this is nothing but summation over the entire microstates of so we going to sample

the enthalpy in this distribution. So, I am going to write down the distribution that we

already know for our system will be energy scale, that is the partition function the sum

over all the probabilities, and to pull out H plus P V mu, I need to just derivate it with

respect to beta just once.
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So, I am going to take a negative derivative with respect to beta of. And just minus 1

upon Z d by d beta of Z, which is nothing but minus d by d beta of ln Z. Now, we know

that the patrician function is given here. So, I am just going to copy the expression for

the partition function. So, for just a convenience.

So, what are just obtained is basically the equation for my enthalpy ok. And if I recall

that my partition function is given by this expression. So, I can compute ln of Z, as

simply minus 3 N ln of lambda T minus of N plus 1 ln of beta P, which means minus ln Z

will become plus on both the terms.

And what is required here to compute the enthalpy, I am just going to substitute for in

fact I am going to just I am going to just a substitute 4 minus ln Z. So, I can rewrite this

as d by d beta of a minus ln Z. And for this minus ln Z, I am going to substitute this

expression that you have just computed. So, I am going to substitute for this minus ln Z

this expression.
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And this will make my enthalpy as d by d beta of thrice N ln lambda plus N plus 1 ln

beta P ok. And this can be very easily computed, so 3 N comes outside, what I get is

basically 3 N by ln of lambda T into the derivative of lambda t plus N plus 1, which is a

constant divide by beta P and into P; so that completes the derivative we can straight

away knock off this these two p’s.

And since our de Broglie wavelength was given as h upon square root of 2 pi M K B T, I

can also write this as a so just to save some space here. I can also write it as h into beta

point 2 pi M the whole square root ok.

So, then the simply becomes 3 N and I am going substitute the value of lambda here,

which is h upon h into square root of beta into 2 pi M square root. And the derivative

here simply becomes h upon 2 pi M the square root, and derivative of square root be

there is just 1 upon 2 square root beta plus the second term I am going to write it as N

times 1 upon beta, because N plus 1 is equal to N as N is very large.
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So, we are doing thermodynamics, so it is all in the thermodynamic limit.  So, if you

knock off these terms that cancel you are left with nothing but 3 by 2 N k B T plus N k B

T which is nothing, but 5 by 2 N k B T. This is your thermodynamic enthalpy. Therefore,

you can compute the heat capacity at constant pressure as simply derivative of enthalpy

with respect to temperature at constant pressure and this is nothing, but 5 by 2 N k B T

and this is larger than heat capacity constant volume as it should be. 

This is because you have to understand that the energy skill in the problem is enthalpy.

So, there right derivative to take is derivative of enthalpy not the total energy and that

gives  us  the  heat  capacity  at  constant  pressure because you have  taken the pressure

constant in this ensemble. 

So, this completes the discussion on the Gibbs canonical ensemble and case study at a

particular case study of the ideal castor gas which is the system of a you know with

degrees of freedom that are continuous. In the next lecture, we will discuss system which

is  a  magnetic  system of  n  spins.  And  we  will  continue  from here,  and  look  at  the

thermodynamic properties of a magnetic system of n spins ok. So, we close the lecture

here.


