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Good morning  students.  Today we will  start  about  and discuss  the  grand the  Gibbs

Canonical Ensemble.
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And here three variable that I have chosen to keep constant are the number of particles in

a system to generalize force J and the temperature t ok. So, examples of such a system

are  you know an  ideal  gas  at  some constant  values  of  NP and  T. So,  of  taken  the

generalized force as pressure P ok. So, J is the generalized force, so the system as to do

work against the generalized force in some sense. You could also take magnetic systems

in some uniform magnetic field, uniform field.

So, that would be N B and T at some constant number of spins magnetic field B and

temperature T. So, in this case I have taken the generalized force to be magnetic field.

So, in contrast to the canonical ensemble where we allowed only energy to be exchanged

in order to keep temperature constant; for this ensemble I must allow for extra extensive

variable  to  x  to  fluctuate.  The  extensive  variable  that  I  am  allowing  to  fluctuate

corresponds to volume if I want to keep pressure constant. So, there is a fluctuation of



volume in the system and if I want to keep magnetic field constant then I must allow for

fluctuations  in  magnetization  ok.  So,  V  here  is  the  volume  and  M  stands  for

magnetization. 

Please note that both volume and magnetization are extensive variables which means

they scale with system size. If you increase the volume by you know if you want to keep

the density constant, and you increase number of particles by some factor lambda then

you have to increase volume by the same factor to keep the density constant the same

applies to magnetization. So, a larger system will have larger magnetization.
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So, let us draw a schematic here to take an example. So, this is going to be my system

and I have taken the case of an ideal gas let us say I am taking the case of ideal gas ok. In

contact with reservoir and let us say that this reservoir allows you know this system is

allowed to exchange energy with the reservoir. So, the system is exchanging energy with

the reservoir in order to keep the temperature T constant.

And similarly, you can allow exchange of volume to keep pressure constant and since we

are not allowing any number of particles to escape the system or reservoir N is naturally

conserved ok. So, that is the meaning of keeping N PNT constant. So, this reservoir is

basically nothing, but a combination of thermostat because it keeps temperature constant

in the system and it  is  also acting  as a  barostat  which means it  is  keeping pressure

constant.



So,  that  the  reservoir  for  us  combination  of  thermostat  plus  barostat.  Now for  such

systems you can say that a microstate. So, let us first describe our; we already know the

macrostate as NPT the specified value of the NP and T. The corresponding microstate,

then there are large number of these microstates they are specified as some mu which is

nothing but the set of values of position and momentum. So, these are nothing, but the

set of values of the position and momentum.

But now, this is also specified together with the volume of the microstate, because at any

instant  if  you come back to the system and observe it  you will  see that positions in

momentum are positions are free to take any values in the box which is the system. And

the momentum is free to take any values between 0 to infinity, but now you have to also

specify the volume of the box because that is fluctuating.

So, in the given volume all possible momentum and positions constitute one microstate

which is already a large number, then when the volume fluctuates and becomes a mu

volume you have to again allow for all the particle degrees of freedom to change and

those are the microstates in that volume. So, microstate is jointly specified for a given

volume and the set  of values of q and p ok.  So, you have one additional  degree of

freedom  which  is  the  volume  of  the  microstate  that  is  very  important  thing  to  be

remembered here.
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Now, just in the similar spirit,  if  I want to write down the probability of finding my

system in a microstate which is instantly, and that particular instant is in volume V of mu

V mu meaning volume of that microstate. Then I have to say that this is nothing, but e to

the power minus beta into some energy scale; now what is that energy scale? So, let me

write down this energy scale. So, before we write down the probability distribution let us

write down the energy scale that is relevant here.

So,  relevant  energy  scale  here  is  not  just  the  total  energy  that  comes  from  the

Hamiltonian, like in the canonical ensemble the relevant energy scale was just the energy

of the microstate mu. Now which was basically nothing, but for an ideal gas you could

write down this as 1 to N pi square by 2 m; this is not energy scale. The relevant energy

scale is the Hamiltonian for a given microstate plus the pressure volume work that the

system has done against the barostat ok.

So,  the  system is  now constantly  trying to  you know maintain  its  you know the  its

pressure see this is a PV amount of energy that one must associate with this is not a

system  it  is  mechanically  isolated.  PV  work  will  not  be  there  if  the  system  is

mechanically isolated the system is being constantly held at a pressure P. And one must

in involve the pressure volume work because the system is not mechanically isolated so,

pressure volume work has to be there. So, this is my total energy scale now ok.

So, I must write down my probability of finding the system in a given microstate mu at

volume V mu as a Boltzmann factor. Now the Boltzmann factor here is a e raise to minus

beta into the energy scale ok. The energy scale is now as we have discussed H mu that is

nothing but pi square by 2 m summed over all particles; if it is an ideal gas plus, the

pressure  volume  work  which  the  system  has  done  against  the  reservoir,  this  is  my

Boltzmann  factor.  And,  I  know that  this  is  not  a  normalized  probability  density  or

probability distribution function I must write it with a nom which is nothing, but e raise

to minus beta H mu plus P of P mu.

Now, this makes my probability distribution function properly behaved and I am going to

call this denominator as the partition function, but partition function for my NPT system.

So,  partition  function  is  specified  for  a  microstate  this  is  Gibbs  canonical  partition

function.
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So, you can think of you can write  down your Z of NPT which is  nothing,  but our

summation overall all microstates e raise to minus beta H mu plus P of V mu as the

Gibbs canonical partition function. We can of course, write down an integral version of

this that I am going to use in the next lecture, but suppose you can enumerate the number

of states this is also a representation nice representation.

Of course, before we proceed I am going to call this relevant energy scale as enthalpy ok,

because this is energy plus PV and that from thermodynamics its an enthalpy. So, in the

ensemble of Gibbs where you are controlling pressure in addition to temperature the

relevant energy scale is not the total energy itself it is the enthalpy of the system ok. So,

the Boltzmann factor will not have energy it will have enthalpy ok. So, that is something

that you need to keep track of that our energy scale has changed from Hamiltonian to

enthalpy. Now like in the canonical ensemble I wanted to know; what is the average

value of the energy?
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Here, I have two quantities that are fluctuating what are the fluctuating quantities in this

system? In our Gibbs canonical ensemble to maintain this macrostate I know there are

two quantities that are fluctuating to maintain temperature I have to allow for energy

fluctuations. So, there are two quantities that are fluctuating; one is energy or I will say

the Hamiltonian that fluctuates, and there is one more thing that fluctuates to maintain

pressure I must allow for fluctuating in the; I must allow for fluctuations in the volume

ok.

So, there are two quantities that are fluctuating in my system the Hamiltonian or the

energy and volume these are two fluctuating qualities. And actually when something is

fluctuating you will be talking about their averages because, their quantities themselves

now have no meaning the instantaneous values of meaning what you really require is the

quantity in the thermodynamic limit or the average of this quantity.
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So, the first average that you can think of is that of volume average ok. So, I am going to

call V as the average of the instantaneous volume. So, this is nothing but you have to

sample this volume among all the microstates and this is the sampling you sample is the

instantaneous volume in your probability distribution. So your probability distribution is

p of mu and V of mu this is your probability distribution function , and you sum over all

mu and V and sample here, your volume this will give the average volume of the system

fine.

So,  let  us  proceed  with  this  calculation  this  is  nothing  but  summation  over  all  the

microstates the volume of the microstate and your probability density function which is e

to the power minus beta in the energy scale which is enthalpy instantaneous enthalpy. So,

H mu plus PV mu this is root enthalpy energy scale, over your Gibbs canonical partition

function which is nothing but summation over all probability; so that this is normalized.

So, I can write down this as 1 upon Z into to pull out a V mu all I have to do is basically

take a derivative with respect to minus beta P of the Gibbs canonical partition function

ok. So, if you want to write down in two steps you can do that. So, I am going to write

this as; this is what you would do. So, the summation is overall microstates and for each

microstate you had pressure is fixed. So, beta (Refer Time: 14:41) any way fixed.

So,  they  are  independent  of  the  microstate.  So,  this  derivative  will  go  inside  the

summation  and derivative  each term and from each term what you it  will  pullout  is



basically a V of mu that is under the summation. And you will get the numerator in the

previous expression. The denominator is just a Z that I have taken outside and this is

nothing, but 1 upon Z d over d minus beta P of the Gibbs canonical partition function.

(Refer Slide Time: 17:16)

Since, beta is anywhere constant here. So, I am going to take it out as minus 1 over beta

dZ by dP and there is a 1 upon Z here ok, this is pressure not small p’s I am going to use

a capital P here ok. So, every were I have to use a capital P. So, this is nothing, but if you

look  at  minus  1  over  beta  d  by  dP  of  lon  Z.  So  this  is  the  average  volume  or

thermodynamic volume of your system, the system is fluctuating in its volume, but it has

some average volume. So, this is the thermodynamic average volume that is computed in

terms of the partition function ok.

Now  you  could  also  construct  this  thermodynamic  average  volume  from

thermodynamics. Sorry, I already know from thermodynamic that there is a energy scale

which  goes  by  the  name  of  Gibbs  free  energy.  Now  that  is  specified  as  enthalpy

thermodynamic enthalpy minus the temperature in entry temperature entropy energy. So,

I can write this as a E plus PV minus TS these are all thermodynamic quantities by the

way.

So, they are already averaged fine, what I am going to do is basically write down volume

in terms of thermodynamic variables and compare my equation 1 where I have written

thermodynamic volume connected to statistical mechanics. The comparison of these two



expressions  will  reveal  yet  another  bridge  between  statistical  mechanics  and

thermodynamics. So I am say that suppose you were doing thermodynamics not stat-

mech you could still compute the volume of your system by appropriate thermodynamic

derivatives this is what I am going to do now.
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So, I am going to write down the differential form for this law as a dE plus Pdv plus Vdp

minus Tds minus Sdt. And here, you can substitute from first law I can write down dE

plus Tds dE plus Pdv minus Tds as simply mu dN and remaining quantities I am going to

write down as Vdp minus Sdt. Because,  from first law of thermodynamics,  I already

know that the total heat given to the system is just a book keeping a law of conservation

of  energy appears  as  summarise in  internal  energy plus some pressure volume work

minus mu dN some chemical work; if you allow N to exchange ok. So, if I substitute the

value of dE plus Pdv minus Tds it is simply mu dN which is what I have done ok.
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So, now you can look at this differential form of the thermodynamic law and write down

what is the value of volume. So, this gives me for volume as dG over dP at constant N

and T and this is exactly my system. So, my T and N are constant and I want to see how

my Gibbs free energy changes with pressure. So, if I compare this equation 2 with the

equation 1 just look at the left hand side they are both volumes thermodynamic volumes

right hand side is dG over dP and right hand side is the dG over dP of 1 upon beta lon Z.

So, I can compute I can equate my Gibbs free energy with 1 upon beta lon Z. So, this is

the bridge that connects stat mech to thermodynamics. So, the quantity on the right hand

side has information of all the degrees of freedom in a microstate information which is

embedded in Z. Let us see your partition function you summed overall probabilities to

make  it  normal  it  has  information  of  your  microstates  your  Hamiltonian  all  the

microscopic world information is inside Z. The left hand side quantity is nothing to do it

is just the thermodynamic quantities g that you measure in any process in for a system in

which has very very large degrees of freedom in the thermodynamic limit.
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So, this is a beautiful connection similar to the connection that we had in the canonical

ensemble recall that for the canonical ensemble you had this 1 over beta lon Z connected

to the free energy. So now, what you have here is Gibbs free energy not the Hammond’s

free energy simply because, you now have pressure volume work instead of the total

energy instead of the Hamiltonian.  So, I  am going to write down just  to  remind the

audience that this is the how to differentiate, because the right hand side is similar know

both of them 1 upon beta lon Z.

So,  this  is  the partition  function for  the  macrostate  NPT where as  this  is  a partition

function  for  the  macrostate  NVT please  note  the  distinction  here  these  are  different

partition  functions.  Now, we  have  already  computed  one  average  which  is  volume

average we can compute another average which is the average of the enthalpy.

Remember our total energy is no longer just the Hamiltonian it is the Hamiltonian plus

PV. So,  like  I  said  there  are  two  fluctuating  variables  I  have  already  computed  the

average of V I am now interested in computing the average of H plus PV, because that is

what is the new energy scale in the problem ok.
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So, so, average enthalpy because enthalpy is your with new energy scale is given as you

know you have to take the average of the energy scale and this will be your average

enthalpy I am calling it is H. So, this is nothing but. So, I can write down my H as

summation over mu.

And the volume this is my joint jointly mu and V we will represent a microstate and

summing overall  microstates.  And basically  in weighing this  variable  thermodynamic

variable  I  will  take  the  weight  of  this  variable  in  this  distribution.  Remember,  our

distribution  is  now jointly  specified  by the microstate  and the volume so this  is  my

distribution  and in  this  distribution  I  am going  to  sample  my variable  which  is  the

enthalpy. And at the end of the sampling what I will get is the average value of my

variable that I have sampled in this distribution ok. So, this is going to give me nothing

but summation over V mu H of the Hamiltonian plus PV mu e raise to minus beta H mu

plus PV mu. Over the Gibbs canonical partition function which is I am going to call as Z

of NPT. In the same similar way since I have to pull out H plus P mu I am going to take a

derivative  with  respect  to  the  numerator  is  nothing but  the  derivate  of  my  partition

function with respect to minus beta ok.
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So, this is if you look at is nothing, but if I pull out a minus sign it is nothing, but going

to just use new space here. So, this is nothing but minus d by d beta of lon Z and the

quantity that I was basically computing was the average enthalpy this was the energy

scale this is the energy scale in our NPT on symbol.

And its average value is related to is directly given as negative derivative of lon Z with

respect to beta. So this Z here is nothing but the Gibbs canonical partition function. Now

compare this with your canonical result there the relevant energy scale was just the total

internal energy or the average of the Hamiltonian, we obtained it as the average of the

Hamiltonian. And we saw that this is equal to minus d over d beta of lon Z look at the

beautiful  symmetry  here  this  is  the  same relationship,  but  this  Z  was  the  canonical

partition function where as the Z that is here in the current problem is a Gibbs canonical

partition function.

So here there are beautiful symmetries here relevant energy being Hamiltonian, relevant

energy  being  the  enthalpy  and  its  relation  to  the  its  relationship  with  the  partition

function is symmetric its exactly the same ok. So, we are not learning newer things we

are just encountering the same thing, but we need to keep track of the relevant energy

scales in the problem. Now, once I have determine the average enthalpy have been I will

be interested in enthalpy fluctuations.



(Refer Slide Time: 30:33)

You  can  see  where  this  is  going,  I  computer  energy  fluctuations  in  the  canonical

ensemble,  and  show that  the  energy  fluctuations  in  NVT or  canonical  ensemble  are

related  to  heat  capacity  at  constant  volume.  I  am going  to  show  similar  to  energy

fluctuations in canonical ensemble there is enthalpy fluctuation in our Gibbs canonical

ensemble, and it is also related to a material property which is heat capacity at constant

pressure ok.

So,  after  average  enthalpy  I  am  going  to  talk  about  enthalpy  fluctuations  because

ensemble enthalpy fluctuates how does it fluctuate? Well of course, I am going to write it

as second cumulant of the enthalpy ok, which is the measure of the variants in enthalpy

or the fluctuations in enthalpy, size of the fluctuations.

Well, this is given as the second movement minus square of the first movement and let us

write it down its a very simple calculation just little bit tedious. So, please do not you

know be discouraged with the expressions that are going to get longer the calculations

extremely simple and very straight forward. So, the average here means I am sampling H

square in some distribution.

So,  this  is  nothing,  but  sampling  in  our  microstates  distribution  H  which  is  the

instantaneous enthalpy is nothing but its mu plus PV mu. But we have to take it square in

the distribution p mu V mu that is the first term minus the second term is nothing but the

sampling of H which is enthalpy which is nothing but H mu plus PV. So, this will give



me just mode of the enthalpy, but I am going to take a square of this because the second

term is the square of the average the quantity inside the bracket is the average enthalpy

the outside square is this square.

So, next that is inside P ok. Now, we know that our probability distribution function is

nothing but I am going to write it since I need I am going to require more space let me

shift  equality  on  the  extreme  right  side  left  side.  So,  the  first  term  is  nothing,  but

summation mu V mu. And I can write this as H mu plus PV mu whole square e raise to

minus beta H mu plus PV mu divided by the Gibbs canonical partition function minus; I

am  going  to  write  down  summation  overall  the  microstates  the  quantity  inside  the

bracket is the average of the enthalpy and there is a square outside this bracket.
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So, what you can do here now is simply you can write down the first term as nothing but

1 upon Z which is I am going to take the denominator outside. And the numerator if you

carefully see is nothing but the instantaneous enthalpy pulled out twice from the partition

function. So, to pull it out once you have to take a derivative with respect to minus beta

to pull it out twice you have to take two derivatives which is nothing but d by d d square

by d beta square of the partition function.

So, one derivative with respect I will pull out minus enthalpy one more derivative will

pull  out  another  minus enthalpy minus minus becomes plus  and that  is  your  second

derivative and here the second term would be you have just pulled out one term. So, it is



going to be 1 upon Z into the d by d beta of the partition function and you square it ok.

So, if you take one derivative with respect to beta it will pull out a minus H, but look

there is a square outside.

So, it makes it if you could take out a minus sin and square it become positive the other

minus sign is because of the fact that the entire second term is taken negative,  right.

What I mean to say is that I could have taken derivative with respect to minus beta to

pull out an H, but this minus sign taken outside of the square poses no issue. So, I am

going to just write it as just d by d beta if that is your concern it poses no issue. So, then I

can see that this is nothing but d by d beta of 1 upon Z dZ by d beta. So, if I apply the

chain rule to get the first term minus the second term because, 1 upon z derivative is

minus 1 by Z square and this is nothing but if you look at the quantity in the parenthesis

is nothing, but d by d beta of lon Z.

But this should ring a bell in your minds that this quantity is already been calculated

what is this quantity? This quantity is nothing but average enthalpy. So, this quantity was

the computed as the average enthalpy H the average of.
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So, what you are getting here is nothing, but d over d beta of the average enthalpy H. So,

if you refer let me put the equation number have I named it no I have not given any

equation number. So, let me given equation number we are given 1 2 3; so, let us call this

as equation number 4. So, this is like refer to equation 4.



Beautiful result because what you see in front of you is that is there a minus sign missing

correct. So, this is basically minus of H so, I will pull out minus H here. So, I am going

to write down this to be used to correct it myself that this is related to. So, I am going to

write it as minus of H or minus of both sides I need to put a minus sign ok.

So, then you can think of it this way that d over d beta is nothing, but minus d over d of 1

by KBT of enthalpy which is nothing, but if I pull out KB in the numerator it simply

becomes  KBT square  d  by  dT  of  your  enthalpy.  And  this  enthalpy  is  temperature

derivative is called as the heat capacity at constant pressure ok.
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So, CP here is the heat capacity at constant pressure and let me just write down what is

CP? CP is the heat capacity at constant pressure. So, the temperature derivative of the

energy scale is the heat capacity that we already know, but what we ended up proving is

that the quantity that we are computing from the beginning the left hand side is nothing

but enthalpy fluctuations. So, these are all enthalpy fluctuations. So, in the end I must

write  down that  the  enthalpy  fluctuations  similar  to  energy fluctuations  in  canonical

ensemble are related to the heat capacity at constant pressure.

So, this is also a quantity that scales with system size of this is also extensive remember

these are heat capacity not specific heat. So, they are extensive in nature, you can think

of this variable here H which is enthalpy with that itself is extensive, all the quantities in

this are intensive ok. So, this is the relationship that is very important and just to recall



you are not saying something that is new. If we call from your NVT there we had seen

that the energy fluctuations are related to energy fluctuations they are referred to as the

have the fluctuations in the Hamiltonian.

So, there the energy fluctuations in the Hamiltonian was shown to be related to heat

capacity  at  constant  volume here  we are  showing that  the  heat  capacity  at  constant

pressure is related to enthalpy fluctuations.  So, there is this beautiful  correspondence

between these two ensembles and that in itself is a beautiful observation that if to know

about  the  material  properties  which  is  heat  capacity  you  can  find  it  out  by  the

fluctuations in the system. So, fluctuations reveal a lot more about the properties of the

system than we actually think you know. So, here the fluctuations are telling us how the

heat capacities are; you know what are the heat capacities in the system I should say it

that way.

So, we end the lecture here, and we meet in the next class will talk about some examples

we take one discrete example. In fact, we will take two discrete examples one is the case

of an ideal gas, when is the case of magnetic spins in a uniform magnetic field that is

going to be the case of a discrete degree of freedom example. And I am going to take

another example which is a classical ideal gas which is a continuous degree of freedom

example, both under Gibbs canonical ensemble. So, when meet in the next class we will

carry forward and discuss these two examples.


