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Hi, so good morning students. Today, we will talk about system of continuous degrees of

variables  a  continuous  degree  of  freedom.  And this  will  be  system under  Canonical

Ensemble.

(Refer Slide Time: 00:32)

So, the case study would be of an ideal gas, where the degrees of freedom are continuous

random variables. So, I am going to take case study of classical ideal gas. We had taken

this  case  study of  the  ideal  gas  under  constant  energy condition  that  was the  micro

canonical ensemble.

So, today I am going to take the same gas where particles are to be treated ideally in the

sense  that  they  do not  have  any  interaction  potential.  So,  micro  state  typically  of  a

classical ideal gas is composed of a set of coordinates and momenta, these constitutes a

single micro mu. And the microstate belongs to our macro state N, V, T ok. So, this is

your micro state and there are large number of micro states. And this is our macro state

the specified value of N, V, T ok.



(Refer Slide Time: 02:03)

So, now, you can think of this ideal gas as a system which is enclosed in a container and

you particular particle here is having momenta of pi and location is some q i and so on

and so forth ok. So, this is a box of volume V, there are N particles in the box and it is in

contact  with the heat  reservoir  at  temperature  T, which means I  can write  down the

probability  density  function.  Remember  we  do  not  have  probabilities  here  because

degrees  of  freedom are  continuous.  So,  we  need  a  some continuous  version  of  our

probabilities which is density function.  Now, this  is to be realized as function which

when integrated over the entire volume of phase space accessible to my system is unity

ok.

So, I can define my PDF of a particular microstate which means the microstate here is

nothing  but  a  particular  set  of  values  for  momentum  and  positions  which  keeps

continuously changing.  So, this  is  one microstate  and I  want  to know its  probability

density. So, this would be 1 upon h to the power 3 N into 1 upon N factorial e to the

power minus beta times the Hamiltonian of the microstate over the canonical partition

function. 



(Refer Slide Time: 04:43)

Now, as you can see here what is meant by the probability density function is that I can

ask myself what is the probability now of finding our system in a in the neighborhood of

see if I basically ask yourself, ask you a question that the neighborhood of some in the

neighborhood some part of phase space. So, some value q and p in the phase space of

some point now this is momentum and this is you know then basically what is what is

meant by here is that I would like to write this you know some of the phase space point

as some point in the phase space. 

Let us say let us call that point in the phase space as some point as a mu naught which is

given by some specified values of you know these all the particles ok. So, all q i’s are

specified and all p i’s are specified. And the neighbor[hood] of a neighborhood of this

point mu naught means that in the vicinity of mu naught and that is basically number of

states  between  some  mu  naught  and  mu  naught  plus  d  mu  naught  ok.  And  that

probability is given as simply p of mu d of mu at mu equals to mu naught that is the

meaning of probability density. So, you go to your 6 N dimensional phase space.

And so this is basically 3 N momentum coordinates and I have 3 N position coordinates.

In the 6 N dimensional phase space, if I select a point as mu naught you know some

microstate and if I want to ask what is the probability of finding a system in a small cell

of volume you know in a small shell around this mu naught, then basically of volume ok.

So, in some sense this  would be; this would be like in the neighborhood of this mu



naught and so this would be like some distance d mu naught. See you can volume around

this mu naught then your answer is this probability that I have written here ok.

So, let us from the definition of this probability density function or PDF, compute the

partition function.  Say if  you look at  the definition of the PDF you can think of the

canonical partition function simply as a normalization of your PDF.

(Refer Slide Time: 08:46)

So, I can write down the canonical partition function which is the norm of this PDF. So,

this partition function by the definition of p of nu that have taken you know is simply the

norm of this so which is nothing but partition function normalizes our PDF. So, it is

simply by this definition given as 1 upon h to the power 3 N into 1 upon N factorial into

these N-dimensional 3 N dimensional position integrals to conserve the space. 

So, I will use the space done below to write it down. This is the cell volume h to power 3

N, the N factorial here reminds us that we are looking at the case of ideal gas where

particles are all identical. So, to avoid over counting of the microstates because particles

are indistinguishable. There are precisely N factorial microstates for each arrangement of

unpacked particles. So, I need to divide the partition function by N factorial to avoid the

over counting.

And then I have these integrals over the entire phase space. So, I am going to write down

d cube q 1 into d cube q 2 to all the way to d cube q N, then I have these momentum



integrals of the our Boltzmann factor which is e raised to minus beta the Hamiltonian of

a microstate is nothing but summation overall particle momenta, where i will go from 1

to N p i square by 2 m ok. So, p i square is nothing but the sum of squares of momentum

of each particle and there are N particles in the system.

So,  straightaway  I  can  see  that  the  position  integrals  and  the  volume  integrals  are

independent. So, I can integrate them separately. So, the position integrals will give me

its position integral will give me, so I can write down this as a integral d cube q 1. And

since each one of them is separate I can say that this is nothing but to the power N yes I

will take just one of them and raise it to the power N because, they are all the same and

they are independent. And the same applies for the momentum integrals. So, let me just

write them after small manipulation here. So, I am going to write down this as a integral

d cube p 1 into d cube p 2 all the way to the d cube of p N into e raised to minus p 1

square by 2 m correct.

(Refer Slide Time: 13:41)

So, now I can write this simplify this further I can write this is 1 upon x to the power 3 N

into 1 by N factorial. The single volume integral would give me V, but I have raised it to

the power N so, it gave me V to the power N. And look at the momentum integrals since

they all these p i’s are independent of each other. So, I can write this as a single integral

over one particle and raise this to the power N, in case since all these particle momenta

are independent. You can basically write that momentum and positions are independent. 



Now, you can write this as so the momentum integral that I have written is if you look at

p 1 square is the sum of squares of the components of momentum of the first particle ok.

So, this can be written as I can write down this as d cube p 1 can be written as week

triple integral d p x d p y and d p z of e raised to minus beta p x square plus p y square

plus p z square of the first particle ok. And I can raise the entire thing to N ok. So, I am

going to write down this as for the first particle itself. So, a single particle contribution

has to be raised to power N that will give you the contribution coming from N particles.

(Refer Slide Time: 16:06)

Now, you can see that each component of the momentum of any particle is independent

of the other component which means I can write this as further simplification is possible

here, I can write this as simply integral d p x e raised to minus beta p x square by 2 m,

but now I have to raise it to power 3 there was already a power N sitting outside ok.

Since p h, p y and p z are independent that is the definition of a vector its components are

linearly independent.

So,  then  I  know that  the  now the  integral  that  is  sitting  inside  bracket  is  a  simple

Gaussian integral, which is just square root of pi by a, a being the pre factor p x square.

So, I can write this as V to the power N square root of pi by a, a being the pre factor of p

x square. So, I just have beta here and 2 pi m. But this entire thing is raised to the power

3 N by 2. So, I am going to the entire thing is raised to 3 N. So, I am going to write this

as just one half that comes from the Gaussian integral and 3 N which is already sitting



outside ok. So, this is the canonical partition function. And let us just simplify it a little

bit. So, what I can do is I can write down this be V raised to N upon N factorial and take

the h inside this parenthesis. So, I can write this as 2 pi m upon beta h square raised to 3

N by 2 ok.

(Refer Slide Time: 18:29)

So, this is my canonical partition function. And I can write it as V raised to N upon N

factorial beta is just 1 upon k T. So, I can write this as 2 pi m k B T upon h square to the

power 3 N by 2, now 2 pi m k T upon h square is related to a length scale. Why do I say

it because partition function is dimensionless it has to be here we are going to take a

logarithm  of  this  to  compute  pre  energy  and  build  bridge  that  connects  to  the

thermodynamics very soon I am going to construct that bridge. But let us know that let

us be aware of the fact that Z has dimensionless which means I have got a volume to the

power N already, N factorial is dimensionless, which means this guy if I write it like V to

the power N upon N factorial into 2 pi m k T upon h square raised to half raised to N. So,

this quantity should have the dimensions of the V to the power minus 1, because there is

a V raised to N as a pre factor, so unless this 2 pi m k T upon h square root.

Student: That whole raise to 3M right so.

Right, though.

Student: (Refer Time: 20:06).



Right, right. So, this has to be so I am going to write it as. So, the entire 2 pi m k T upon

h square to the power 3 by 2 should have the dimensions of 1 upon volume, because then

raised to the power N it has the dimensions of 1 upon volume to the power N ok, so that

will cancel with the dimension it will cancel with the dimensions of V raised to N.

Now, which tells me that since volume is constructed as a cube of a length scale, I have

to take this tells us that the entire thing that I have indicated as V raised to minus 1 is a

cube of a length scale. So, I can tell that 2 pi m k B T upon its square raised to just the

one half is related to some length to the power minus 1, because now if I raise both to the

power minus 3, there comes lambda to the power minus 3, which is like a 1 upon volume

that is what I want ok.

(Refer Slide Time: 21:59)

So, if I call this as the some 1 upon length scale ok, some inverse length scale and I am

going to tell you that this is an important length scale. So, let us this gives let us workout

what it gives; my lambda as simply h upon square root of 2 pi m k B T. Now, this length

scale very clearly you know it goes to 0 as the temperature goes to infinity. And this

length scale becomes larger and larger as the temperature goes to 0. So, this  is very

important  length scale which goes by the name of de Broglie scale length,  it  sort  of

manifests the onset of quantum mechanics at low temperature. So, one has to associate

lambda  that  at  what  temperatures  one  has  to  consider  quantum  mechanical  effects



naturally, lambda alone will not tell  us the onset of quantum mechanics, you have to

compare lambda with some other length scale.

(Refer Slide Time: 23:35)

So, let me come give you a some comparison. So, if you have a density, so there would

be a length scale that you can construct from density. So, I would say that there is a

construct some no, I am going to tell you how quantum mechanics sort of how can you

tell that quantum mechanic effects are arising in your system.

So, construct some length scale from density which is something like material property

of a system, because density is once you decide the density for your system, it remains as

it is ok. So, N particles in a box of volume V fixes your density. Now, you can play with

the temperature and hence play with your de Broglie wavelength and see how does your

de Broglie wavelength compare with your density length scale.

So, let us say you have a density which is fixed ok. So, construct some density land scale

lambda sub N which is nothing but n to the power minus 1 by 3 roughly if you take an

inverse cube root of density, it will give you a length scale which is I am going to call as

a density length scale.

Now, the  ratio  of  your  de  Broglie  wavelength  over  lambda  N  decides  if  quantum

mechanical efforts are present. So, if lambda is over lambda N becomes a number which

is much smaller than 1, you know that lambda N is dominating here which means your



density scale lengths are much much larger compared to your de Broglie wavelength. So,

you will not be using quantum mechanics here at all, when will lambda by lambda N

become a smaller than 1, well certainly when your either your density is very. 

So, lambda by lambda; lambda over lambda N to the power N simply tells me that you

know this is the classical limit, where your lambda is much larger than lambda N. So,

here density is fixed to some length scale. Now, if your de Broglie wavelength is much

much smaller, which means the temperature is too high at the high temperature limit. So,

your quantum mechanical efforts are almost gone.

Student: Anyone this length scale can be (Refer Time: 26:27) about distinguishability or

distinguish between it will save the length scale we can talk about the.

So, distinguishability is embedded in quantum mechanics from the property of the wave

function  itself.  So,  for  example  we  know  that  for  fermions  and  bosons  have  wave

functions that are either anti-symmetric or symmetric, depending upon whether they are

Fermi wave functions or a wave functions bosons.

So, in distinguishability is embedded in quantum mechanics from the beginning and so

we  do  not  have  to  introduce  N  factorial  in  the  calculations  that  is  totally  separate

argument from whether you are in classical limit or quantum limit. So, the every system

can be pushed to quantum limit by increasing density or reducing temperature both have

the same effects;  see if I increase the temperature density my length scale lambda N

reduces.



(Refer Slide Time: 27:29)

So, let me write down first. So, the other limit of course yes, when you are in much

larger than 1 and I am going to say that this is a quantum limit. Now, let us see both the

cases. See you have in your hand two things; temperature and density; if you take high

temperature and low density, high temperature would make lambda smaller de Broglie

wavelength smaller, so your numerator in the first case is getting smaller.

And the fact that you have taken low density will push a lambda N to larger values, a

particles  are  now separated  further  and further,  because  you are  at  low density. So,

numerator is smaller, denominator is larger what is this ratio make become numerator is

smaller denominator is large?

Student: (Refer Time: 28:16).

Numerator is small denominator is large the ratio becomes much smaller ok, so that is

your classical  limit.  Now, quantum limit  for the system can come if  you go to high

density and low temperature, which means if you go at low temperature, your de Broglie

wavelength will inflate, it will become larger and larger, because it goes as 1 upon square

root T. So, low temperature means de Broglie wavelength will go up. So, look at your

expression. So, de Broglie wavelength is going to larger and larger values, because a

temperature is taken to lower and lower values. What happens to the denominator? 

Student: When density is very small.



When density is  small,  now the particles  are basically  closer to  you know when the

density is large not small. So, the classical limit high T and low density and the quantum

limit is sitting at I am going to use different colour and this is sitting at low temperature

and  high  density.  Now,  think  when  the  numerator  which  is  lambda  depends  on

temperature. So, if you go to low temperature what happens to the numerator?

Student: (Refer Time: 29:47).

And if you go to high density what happens to the denominator?

Student: Decreases.

So, what happens to the ratio?

Student: (Refer Time: 29:53) greater than.

Because 10 by 100 is definitely much larger than 100 by 1, which is much larger than

1000 by 0.1 and so on and so forth, so you are making this ratio larger and larger. So, the

de  Broglie  wavelength  that  I  have  written  here  he  tells  us  the  onset  of  quantum

mechanics if you have another length scale to compare. So, I have argued here that the

length scale to compare is the density length scale. 

You cannot just say by looking at high temperature and say that you know, classical

effects are expected. Now, you have to also look at density because that will give you

another  length  scale,  the  density  length  scale  with  which  you  can  compare  and  tell

whether  classical  effects  are  seen  or  quantum  effects  are  seen  ok.  So,  you  need  a

reference density scale length being the reference in this scale ok. So, your system can go

to the appropriate limit depending upon whether depending upon the ratio of these length

scale ok. So, the ratio is important. 

Now, let us get back to our calculation. So, we have reached the stage where the partition

function is ready for use and as I have always been telling that partition function exists

for a certain purpose, it helps us to establish a connection with thermodynamics.

 (Refer Slide Time: 31:41)



So, let us make that connection. So, the partition function in the canonical ensemble was

given as  fine.  So,  now I  am going to  build connection  to thermodynamics.  And the

starting  point  is  the  computation  of  free  energy.  So,  the  connection  from  classical

mechanics classical statistical mechanics to thermodynamics is obtained by connecting

the microscopic world that is residing in your logarithm of Z to the microscopic world

which  is  in  free  energy  is  a  thermodynamic  average  to  thermodynamically  average

quantities. So, they represent micro macro states or macro states information. 

So, now I can write down my free energy as simply minus k T and logarithm of Z would

simply give me N log V these are natural logs to the base e and since N factorial is large

I am going to use a Stirlings approximation here. So, it is minus N lon N plus N and the

parenthesis as 3 N by 2 lon 2 pi m k T over x square. And so you can sort of simplify for

you know for the sake of convenience,  so you can take  can pull  out  the number of

particles and write it as minus N k T. 

And the first two logarithms can be written as logarithm V by N. And you have one here

when you pull out an N, so you get a one here that is lon e to the base e. So, I am going

to club that e here ok. And this is simply 3 by 2 lon 2 pi m k B T over h square fine. So,

let me just write it slightly. Now, so let us call this as expression 1. 



(Refer Slide Time: 35:35)

So, you recall from thermodynamics that your free energy is given as E minus T S ok.

So, you can easily write it in differential form and this simply becomes and from first

law, we can write d minus Tds as minus P dv plus mu dN. 

So, if you recall the 1st law of thermodynamics, we can write down the heat given to a

system as work done by the system minus mu dN. And there is also change in internal

energy, so you can write down plus dE ok. So, if you write down dE minus Tds, it is

minus P dv plus mu dN.

Now, I can use this to get an expression for entropy. So, the entropy here is nothing but

you know a partial derivative of free energy with respect to temperature at constant N

and V conditions constant N, V conditions. So, my entropy is nothing but minus dF over

dT at constant N, V conditions constant number of particles and constant volume. I can

also write this as d by dT of minus F at constant N, V conditions ok. 

Now, your expression for F is here equation 1 ok. So, this is your free energy F fine,

which is obtained by taking logarithm of the (Refer Time: 38:18) partition function. So,

you can take the derivative of free energy or minus F as you take it there are two terms.

So, if you take the derivative the first term, what you get is just N k B ok. And you write

down the entire term, which is lon ev by N plus 3 by 2 lon 2 pi m k B T over a h square. 



Now, you take the first term which is just N k B T and take the derivative of the second

now lon ev upon N has no temperature unit. So, from the second term you get 3 by 2 as a

pre factor, then 1 upon the argument of the log, which is h square by 2 pi m k B T. And

you have to take the derivative of the pre argument with respect to the temperature that

will give you another 2 pi m k B over h square lot of things are going to cancel of here. 

(Refer Slide Time: 39:47)

So, we can knock off the x square h square with x square, you can knock off 2 pi m k B

with 2 pi m k B here and you can knock off this temperature T with this temperature T

ok. So, just 3 by 2 N k B is remaining there, which is particularly I pleasing, because it

can give you the internal energy of a gas at constant N, V, T conditions as we shall see.

So, this is nothing but 2 pi m k B T over h square plus 3 by 2 N K, because everything

else got cancelled. Let us call this as expression 2. 

So, we now have an equation for the entropy of an ideal gas. From this you can construct

lot of other things. And as you can already see that the entropy here is extensive in nature

thanks to the fact that we have taken care of the in distinguishability. So, if I scale N, V

by lambda N and lambda V my entropy is scales by lambda times S, so it is purely

extensive. And it is also a monotonically increasing function of temperature as expected.

And what I am going to do here now is basically compute the pressure of ideal gas ok.

So, from the ideal gas you know equation of state I already know that pressure is equal to

N k T upon volume or P v equals to N k T, but can we derive it here. You derived this in



the case of kinetic theory of gases we are using the approach of kinetic theory. But, using

the statistical mechanics approach also you can get the equation of state for an ideal gas

as very simple.

Just look at  this  equation that I have written here for the incremental change in free

energy this equation. So, if I look at the incremental change in free energy, I can write

down  the  pressure  as  negative  derivative  of  free  energy  with  respect  to  volume  at

constant N and T ok. So, I am going to use this equation to my advantage and compute

the equation of state. 

So, I am going to write down for pressure, I am going to write it as negative derivative of

free energy with respect to volume at constant N, T conditions, number of particles and

constant temperature, which is nothing but derivative with respect to volume of minus F

at N, T conditions constant N and constant T conditions. 

Now, if you look at the expression for Helmholtz free energy, you can see that only the

first term in the square parenthesis has a volume dependence, the second term does not

have the dependence ok. So, what I am going to do is just take the product of N k T in to

lon ev by N as the free energy term that will give me. 

(Refer Slide Time: 44:05)

So,  if  you take  the  derivative  of  free energy with  respect  to  in  this  expression  with

respect to volume, so what you will get is just N k T, because I need derivative of with



respect  to  volume  of  minus  F,  so  just  N  k  T  that  is  the  pre-factor,  it  is  volume

independent  here ok.  And lon ev by N simply gives me N by ev that is  the 1 upon

argument of the log. And if you go and see the pre-factor of so if you see the argument, it

is ev by N. So, it will give me ev one more ev and 1 by N derivative with respect to so. 

Student: (Refer Time: 44:47).

With respect to volume right. So, it just e by N absolutely right. So, you can see that this

is nothing but so you can see that this e knocks off and this N will knock off. So, what

you will have is just N k T over V ok. So, this will equation of state of an ideal gas ok.

So, now you can also compute internal energy of an ideal gas, so that the fact that we

have computed pressure and entropy you can also compute what is the internal energy of

the ideal gas. Now, there are two ways to compute internal energy. So, one is the one

way which is the easier way is to basically use the thermodynamic law that connects free

energy with internal energy. So, I am talking about basically from here ok. 

(Refer Slide Time: 46:30)

So, we can write down the internal energy as F plus T S. And for F I can substitute the

entire expression first going to copy it. So, this is the expression for the free energy F, so

this is just the expression for free energy and I need to take the expression for T S. So, let

us copy the expression for S, so this is the expression for S.

So, we are supposed to add T S, so I am going to add T S here. So, as you can see the



first term clearly knocks off with the first term in the second parenthesis. So, this term

will knock off with this term, because the free factor is just N k T in both the terms. And

very easily you can see that this term will also knock off with this term, what were left

with just 3 by 2 N k T. 

Student: (Refer Time: 48:42).

So, here I need to multiply T here, because this is T S. So, therefore, I can write down E

as 3 by 2 N k B T. So, this is another important result that goes by the you know in the

contacts of the ideal gas, this is the internal energy of the ideal gas. We already obtained

the equation of state, which is P v equals to N k T. We also obtained the entropy and the

free energy was already obtained to build the connection with the thermodynamics.

Now, what you can also obtained is if you look at the incremental free energy, you can

also obtain chemical potential of an ideal gas at under N, V, T condition. So, if you look

at this relationship,  you can write down for mu as dF by dN at constant volume and

temperature ok. So, so you can take the derivative of free energy with respect to N at

constant volume and temperature and that will give you mu. 

(Refer Slide Time: 50:08)

So, from thermodynamics dF by dN at constant volume and temperature should give me

the chemical potential ok. So, you can compute the chemical potential as if you look at

the function free energy, so let us copy the free energy, so that we can use it readily. So,



this is the free energy functional formula, I think this is already there as F plus T S so if

you will use it, so this is its already in front of me. So, this quantity is F, let me copy it

anyway so. 

Student: (Refer Time: 51:29).

In fact, all other not just here as a good question. So, let me just finish this computation

hold on to a question for a second. And so this is my free energy expression, so you

recall that your free energy is basically this expression ok. And from here if I want to

compute  the  chemical  potential,  I  have  to  take  the  derivative  with  respect  to  N  at

constant V and T. Let us do that first. 

So, again you can see here that so I am going to do it So, let us let me take the first term,

which is N minus N k T and the derivative of log ev by N is nothing but N by ev into e v,

and this will be minus 1 by N square and that is it, second term does not have any N plus

lon ev by N plus three half ln 2 pi m k B T upon h square into minus k T. 

(Refer Slide Time: 53:15)

So, if you see you can knock off this ev with this e, one N with this N square and so what

you have is nothing but minus just k T. So, I can take k T from this common you just

have k T here, because this entire N square will cancel. There is an N square you know 1

upon N square you know. So, this N square will cancel, there is one N here and this one

N here ok, and minus becomes positive.



So,  if  I  take  k T outside,  then  I  have 1 minus  logarithm of  if  I  take  the  these two

logarithms are combined, what do I get? I get e v upon N into 2 pi m k B T to the power

divide by h square to the power 3 half fine by clubbing the two logs. And the minus k T

is coming with the minus sign here, because I have taken k T outside. 

One more step I can write down this one as lon e ok. So, this is like k T I can visualize

this one as lon e to the base e. So, it will simply become let me write it as ln e to the base

e minus ln ev by N into 2 pi m k B T by h square to the power 3 half is the end of the

logarithm is the end of the square bracket fine, we will be one more step and we are we

have reached our goal, which is lon. So, I do not need a bracket anymore, because now

these two logs will be combined to one. So, this becomes just N by V into h square by 2

pi m k B T the whole raised to a 3 by 2 fine. 

(Refer Slide Time: 55:52)

Now, you can think of this N by V as sum density N by V as sum density. And h square

by 2 m k T the whole square root is nothing but our d by wavelength or d by scale factor,

this entire thing is raise to the power 3 ok. So, now we can see in some sense the role of

chemical  potential  here.  And the there are two length scales coming one is  the d by

length scale and the other is the density length scale n. And that is whose logarithm

decides the chemical potential in our case.

So, let me write down the three results would be obtained here. So, we obtained the

chemical potential, we obtained the internal energy, and we obtained the question of state



for the ideal gas. Now, let me write down the differential form first law and till you the

meaning of it. I am going to copy this, and this is important. So, the entire derivations of

you know the  meaning  of  these  thermodynamic  derivatives,  which  derivatives  these

derivatives. So, let me sort of push it on the right side, because I need some space.
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So,  this  is  our  this  basically  provide  provided  us  with  tool  to  construct  all  these

derivatives. So, we constructed, for example for pressure we said that it is minus dF over

dV at constant N and T. And same thermodynamic law give us the expression for entropy

as minus dF over dT at constant V and N. And same chemical potential  gives us the

expression as dF over dN at constant V and T. 

Now, the  question  is  I  have  computed  these  three  quantities  pressure,  entropy  and

chemical potential by taking a derivative with respect to V, derivative with respect to

temperature and derivative with respect to N. But, in my canonical ensemble these are

the three quantities preserved or conserved a micro state is specified by the triplet N, V, T

and I am taking derivative with respect to N, V and T.

So, what does that  mean,  well  it  simply means that  you have to construct  canonical

ensemble at different values of V key thing N and T constant. And simply tell how free

energy changes with volume that will give you the pressure of that system, what does

that mean for pressure for example, so for computation of pressure, I want to take the

first case only and that will that should be enough to explain how entropy and mu can be



computed. 

So, you create different canonical ensembles. So, let us say you create this ensemble at

N, T and volume V1 ok. This is one system call it  as a system S1. You take another

canonical ensemble, this time you do an experiment with another canonical ensemble.

So, let me sort of make the system in contact with the heat reservoir.

(Refer Slide Time: 61:01)

So, this is in contact with some heat reservoir it is exchanging energy. And this system is

maintained at N, T and V 1 or you want to call it as N, V 1, T. So, the volume of the

system is V 1, we are taking n particles at volume V 1 and temperature T ok, call it as

system 1. Then you do an experiment with another system. This time this new system is

connection in is in is in contact with another reservoir, but at a same temperature, the

number of particles are same, but the volume of the system is V 2, this is my second

system. You took you are free to choose any volume. So, you choose you chose the

volume  v  2  number  particles  and  temperature  are  kept  the  same.  This  way  you

constructed large numbers of systems varying only in volume with respect to each other

with number of particles and temperature are taken to be constant. 
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Now, from all the systems let me call let me let me show the nth system also the Nth

system is  also connected to a reservoir  temperature T. We have the same number of

particles. The volume of this system is taken as V N some value I do not know. And now

from all these N systems you basically construct you compute their you compute their

free energy versus volume. So, this would be like something like this. So, this is your V 1

and this was the free energy of the first system, this was the volume of the second system

and that is the free energy of the second system and so on this way you simply extended.

And  somewhere  at  on  the  line  you  have  the  volume  of  the  Nth  system  and

correspondingly you have its you know free energy. You simply done a bookkeeping of

this  and you call  this  as F N. And in the end you have just  opening your book and

plotting these values fine. 

And I am saying that the pressure of system one is nothing but the slope here which is dF

by d dV. The pressure of the system at V 2 is nothing but the slope here and the pressure

of the system nth system is nothing but the slope here. The slopes here nothing but dF

over dV which is what I have shown here negative of that slope. Similarly, you can

construct systems at various temperatures keeping N and V the same. And after you have

constructed large numbers of such systems varying by small temperatures. You compute

you plot f versus T and take the derivatives at the value of temperature you want to take

and that would give you the entropy of the system fine, so that is the meaning of these

derivatives.  So,  do not be alarmed when you see the derivatives  they have a simple



meaning. 

So, I am going to call this as simply this derivative as simply dF by dV at V 1 which is

giving me minus pressure fine ok. So, we break here and when we meet again we will

discuss the Gibbs canonical ensemble which is ensemble that is constructed by allowing

one more thermodynamic variable to fluctuate which is either volume or magnetization.

So, if you allow volume to fluctuate, you can control pressure, so where in ideal gas this

will lead to an N, P, T ensemble. For magnet in contact with magnetic field in presence

of a magnetic field this should also be a N, V, T ensemble. So, we will discuss the Gibbs

ensemble in the next lecture. 

Thank you. 


