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Good afternoon students. So, we will basically start of from where we left.

(Refer Slide Time: 00:13)

In the last class, where we showed that the entropy of an ideal gas can be written as well

we derive an expression for the number of assessable microstates for an ideal gas at N, V,

E conditions as this expression. And we remarked that the n factorial here purely stands

for the fact that the particles of a gas or indistinguishable. And hence for each microstate,

there  was  a  serious  over  counting  by  a  factor  of  n  factorial  that  is  the  number  of

permutations you can do with n objects. So, purely respecting the fact that we want to

only take the microstates, where duplication is not permitted; we have to divide the entire

number of microstates with the n factorial. 

And this division by n factorial actually makes the entropy purely extensive; as we shall

see  we  did  derive  the  expression  for  entropy.  And  I  am  going  to  write  down  the

expression for  the  entropy by taking a  logarithm.  So,  you can  compute  the entropy,

which is K B ln omega. And this can be seen very easily if you take logarithms assuming



n is very large, then you can write it as N K B logarithm of e V over N into 4 pi m e

capital E over 3 N h square to the power 3 half.

(Refer Slide Time: 02:49)

Now, this derivation of S from omega you know we have assumed that N is very large,

which means I have taken 3 N by 2 minus 1 as just 3 N by 2. And hence I have taken

factorial 3 N by 2 as just 3 N by 2. And logarithm of 3 N by 2 factorial minus 1 is hence

just a logarithm of 3 N by 2 factorial,  and this  has been taken to be from Stirling’s

approximation just 3 N by 2 lon 3 N by 2 minus 3 N by 2 ok.

(Refer Slide Time: 04:19)



We have also dropped terms like you know ln N, ln E, etcetera. In comparison to N ln N

or N ln E, so these terms are much larger compared to these terms, which we have taken

to be as almost negligible ok. Because, you can simply see that If I take N as a large

number let us say, then lon N approximately goes as 4. If I take a lon 10 to the base E as

1, it  is close to 1. But, n lon N is approximately 4 into 10 to the power 4. So, I am

definitely going to drop lon N in comparison to N lon N ok, so that is the reason why I

have dropped several terms in taking logarithm fine.

So, let  us go back to expression for an entropy which is  a nice beautiful  expression

sitting here. So, I am going just copy this expression ok. So, let us so I am going to copy

this expression to a new page where I am going to do something with it, all right. But, I

said in the last lecture that I want to do some thermodynamics in this system. 

(Refer Slide Time: 06:09)

So, the route to thermodynamics is often laid by this bridge between microstates this

beautiful  expression  given  by  Boltzmann,  and that  this  is  the  microscopic  world  or

microscopic information. And Boltzmann’s bridge connects this with the thermodynamic

or macroscopic observations. So, this is a beautiful bridge that connects the microscopic

world to macroscopic world. 

So, let us take advantage of this bridge, and construct quantities that we require. So, if

you recall the first law of thermodynamics, you can write down ok. So, I am going to

write down the first law of thermodynamics as Tds the heat given to a system equals to



the change in internal energy plus work done by the system may expand, and let us also

include the chemical work or minus mu d N ok.

Now, mu here is the chemical potential. So, if I want to compute the energy of the ideal

gas. So I can use this expression and write down get an expression for energy by simply

saying that Tds over dE at constant value of V and N should be 1 ok. Just take the

differentiation with respect to E keeping volume and number of particles constant. So,

you will see that this will go to 0, and this will go to 0, because N and V are taken to be

as constants. And what you get on the right hand side is just one, because you have taken

derivative with respect to E. 

So, this will give us T times if you look at your entropy impression, taking derivative

with respect to E will give us nothing but N K B over E equals to 1. And there will be a

factor of 3 by 2, which is precisely this factor ok. So, if I take a logarithm of E raise to 3

by 2, it is just 3 by 2 logarithm of E ok.

So, what I will get here is basically 3 by 2 into 1 by E ok, because logarithm of E is

derivative is 1 by E. This will give me the internal energy of a gas as 3 by 2 N K B T that

is the expression for the internal energy of a gas perhaps, we knew it already from kinetic

theory, but here you derive it  using statistical  mechanics.  So,  another result  you can

obtain is the relationship between pressure and temperature. Now, here in this case you

take from the first law at and you take the derivative at constant E and constant N ok. 

(Refer Slide Time: 10:17)



So, when you do that you basically you are doing, you are taking the derivative of S with

respect to volume at constant energy N number of particles ok. And that will simply give

you T times, if you look at the expression of an entropy taking derivative with respect to

volume is simply giving you N K B over V; because everything else is a constant, and

does not depend on the volume. So, it just gives you T times N K B over V, but this is

equal to if you look at the first law, this is equal to pressure from the first law.

So, you get the ideal gas law as P V equals to N K B T ok. So, this is the equation of state

for an ideal gas derived from statistical  mechanics. And we are now in a position to

generalize our argument of the entropy of an ideal gas to mixing of a two gases. So, this

is an important subject. So, I am going to simply take this expression here ok.

(Refer Slide Time: 12:27)

So, I am going to talk about a new subject, which is mixing of two gases right. So, I am

going to basically construct an experiment, I experiment quite similar to the Gedanken

experiments  done  by  Gibbs,  when  he  was  puzzled  by  the  entropy  increase  that  a

company is mixing of two gases. He did two types of experiments thought experiments

one was mixing gases, which were of the same type, and he did experiment on mixing

gases of different types.

So, in a quite surprisingly he found that when you mix gases at of the same type, at same

temperature, and densities if you do not properly account for a indistinguishability, this

mixing apparently leads to rise in entropy of the universe,  which is wrong. Because,



when you are mixing two gases at same temperature and density, and the gases of the

same type ok,  suppose you mix  oxygen with oxygen at  same temperature  and same

density, then this mixing leads to no rise in overall entropy of the universe. Because, if

you look at the system after a long time as a (Refer Time: 13:48), you cannot distinguish

the macro state; after you have mixed with the macro state that you that you had in the

beginning of the experiment ok. So, we will discuss these two different cases.

And I am going to talk about the first case, when two different gases are mixed ok. And

let us for the simple simplicity, you take the density and temperature to be same at same

rho and T just to keep things simple. So, I am going to draw the schematic, you take one

gas in a container call it gas of type A. And you indicate A type particles with or I think it

is even better if I take let us take circles, and you take in another chamber gases is of

type B ok.

Now, if you see that these particles are of different types. So, let us say there is a shut

shutter here in between which can be opened and closed ok. So, I am going to basically

indicate the shutter by a by a red line let us say ok. So, this is a shutter that can be open

or closed. 

(Refer Slide Time: 16:27)

And I have started for the case of for the case of simplicity; you know N 1 particles on

this side, N 2 particles. And I have taken volume V 1 and have taken volume V 2. I have

taken the temperature to be same, and have taken the density to be same. So, the rho here



is N 1 by V 1, and the density here is also the same, number densities are taken to be the

same. 

So, if you open the shutter and wait for long times, so what do you see? What will you

see after you come back; let us say go for a cup of coffee, and you come back after long

time,  what  will  you see?  There  are  two different  gases  at  identical  temperature  and

density. So, the shutter has been opened, so I am going just to indicate that there was a

shutter here, I will draw a virtual line.

And what you will see after a very long time is that these two part systems have mixed

ok. And I am going to ask you one question is this mixing reversible or irreversible.

When in can I recover my old system A and B, two gases have mixed, I cannot put the

shutter back and recover my whole system ok. So, what you have seen is basically a

mixing that is purely irreversible, so I am going to conclude that this is an irreversible

mixing.

And we know that the entire system A plus B is mechanical and thermally isolated ok.

So, the entire system is isolated from surrounding completely isolated, which means no

amount of heat is exchange, no amount of work is exchange, and particles also cannot

escape. So, no heat can come in or leave the system no work can be done on the system,

and certainly particle cannot escape, so the complete isolation. 

And,  what  you  have  seen  is  that  in  this  isolated  system something  irreversible  has

happened. So, it is well known from the second law of thermodynamics that I must see

the total entropy of the universe to increase ok, it is in fact greater than 0, the equality

should not be there. And I will call this as the entropy of mixing. 



(Refer Slide Time: 20:27)

Now, what  is  delta  is  here  is  basically  the  entropy  of  mixing  or  the  total  entropy

difference initially and finally ok. So, this delta s is nothing but the entropy of the final

configuration  minus  the  entropy  of  the  initial  configuration,  and  this  is  a  positive

number, we can calculate this. And this delta is precisely called entropy of mixing ok. 

Now, if we recall this expression for entropy, so I can use this expression here ok. So, I

can use this expression to compute the entropy of mixing. So, you write down the initial

entropy first, now initially what you have is basically these two gases A and B. So, you

write down the entropy of these two gases and add them up.

So, initially the entropy using this  expression for the A type particles is simply N 1,

because you had N 1 particles into K B into l n, I am going to write down e e by rho 1,

because N 1 by V 1 is rho 1 into 4 pi m 1 e E 1 by 3 h square N 1 to the power 3 by 2.

This is just a entropy of first gas ok. I can in fact take K B constant outside. 

Student: (Refer Time: 23:36).

No this is just S i initial entropy. So, initial entropy I am taking the sum of A and B plus I

am going to write down the entropy of 2nd which is N 2 ln e by, and since the densities

are the same. I am going to write down just rho ok, because rho 1 and rho 2 are just rho. 

So, I think for the presentation it is better to write down K B multiplied to each one of

them just improves the presentation. So I am going to write down shift this entire object



towards  slightly on the ok.  And I  am going to  write  down. So,  this  is  basically  the

entropy of the A plus I am going to write down the entropy of the system B, and this is

initial entropy ok. This would be K B in two particles ln e by rho into 4 pi m 2 e E 2 by 3

h square N 2 to the power 3 half that is it fine, this is for B, so right.

(Refer Slide Time: 25:39)

So, now what we can do here, we can write down the final entropy also. Finally, if you

look at the system here on the right hand side, N 1 particles of A now have access to the

entire volume. So, if I call that the final volume is the sum of the initial volumes which is

V, V being the joint volume of the two boxes. So, I can see that my zeros and the crosses

have both occupying volume B.

So,  if  I  want  to  write  down  the  final  entropy,  the  same  expression  gives  me  the

expression that I have written here for entropy gives me N 1 ln e by I am going to write it

as e by N 1 into totally V into 4 pi m 1 e E 1 upon 3 N 1 h square or I am going to write

it as a h square into N 1 to the power 3 half plus for the 2nd system B system K B into l

n, but now it has access to the full volume divide by N 2 into 4 pi m 2 e E 2 over 3 h

square N 2 whole raise to 3 by 2 fine.

So, this is now the entropy of A and B ok. So, to compute the difference entropy of

mixing, I have to subtract the final entropy minus the initial entropy fine. So, you can

clearly see that there a couple of term that I can straight away cancel. So, the term that I

can straight way cancel from the from these two expressions is the; well, I can straight



away cancel the log e and log e raised to 3 by 2 terms, because both of the pre factor K B

and 1 ok.

So, if you if you look at the expression, I can from the A types I can simply write down

K B N 1 into ln into rho, because it is minus of S i and it is only lon 1 by rho. And from

the 2nd term everything else cancels, in the second term I can write down K B N 2 ln V

by N 2 into rho, because S i component is minus of lon 1 by rho, which is already lon rho

and that is it. Everything else cancels, because if you look at here for example the m 2 to

the power 3 half will it simply become 3 by 2 lon m 2, and the pre factor is K B N 2

numerator upstairs if you see there is one more K B N 2, and that is also multiply to 3 by

2 lon m 2. 

So, all these terms will cancel, what you will have in the end is just this expression,

where an I can simply write down one more step. If I take K B outside, this simply gives

me N 1 ln see rho is already N 1 by V 1, so this becomes V by V 1 plus N 2 ln V by V 2

ok.

(Refer Slide Time: 31:35)

And as you can tell that V is greater than V 1 and V 2; V over V 1 is a number greater

than 1, which means logarithm of V over V 1 and V over V 2 is greater than 0. So, S f

minus S i is a positive quantity. So, what we ended up showing the delta S mixing is a

positive  quantity,  and  it  should  be,  because  my  final  configuration  is  a  state  of

irreversible mixing look at the crosses and the circles. There is no way I can recover



initial system, where crosses are sitting in one compartment and circles are sitting in the

other compartment.

So, by the pure nature of the mixing, there will be a positive entropy of mixing. So,

basically I would I will say that my entropy of the universe has increased ok. So, the total

entropy of the universe is precisely increasing by a factor delta S mix ok. So, if you want

to understand, what is meant by this argument it is like I can say that the entropy of the

change in entropy of the universe is nothing but the change in entropy of the systems

plus change in entropy of the surrounding; now nothing happened to the surrounding.

The surrounding is basically shielded say I have shielded A plus B this means that I have

seen that the surrounding. Now nothing that happens inside my A plus B influences the

surroundings, surroundings entropy is not changed ok. In fact, if I come back after my

cup  of  coffee  the  surrounding  looks  the  same nothing has  happened  there.  But,  my

system inside which is enclosed inside isolated boundary or boundary, which isolates my

system, then I see the delta S of the system has become positive. And so this is in fact

greater than 0, what we have observed fine.

(Refer Slide Time: 34:13)

So, now you will take different case, the case of mixing two same gases ok. And as usual

I am going to take the case of ideal these is the case of mixing, when the temperature on

both the sides is same, and the density in both the sides are same.



So, now I am going to do this experiment. So, as usual you take two compartments, and

you take particles of the same type on both sides, because I am mixing two gases of the

same type. And I have taken N 1 particles, N 2 particles, the volume of the container here

is a V 1, and volume the container is V 2, and I am taking the density to be the same. So,

both sides I am taking density rho, and I am taking the temperature to be the same ok.

(Refer Slide Time: 35:57)

So, if you taking the energy as E 1 and energy here as e 2; well, then this is nothing but 2

by 3 N 1 ok, and the temperature here is 2 by 3 E 2 over N 2 K B ok. So, in some sense

times keeping same temperature in both side means energy density same even by N 1 is

the same as E 2 by N 2 on the other side. 

Now, again as usual we have the shutter here that we can open and close as per our wish,

so I have my shutter here. So, I am going to open the shutter and allow the gases to

make. So, basically I will wait for long time allow them to mix. So, when I come back

after sometime, so what do I get, you can you might have already guessed it. So, if I

come back after long time, let me draw virtual vertical line just to remind us that there

was a shutter here before we went for a coffee, and what you see is basically A type

particles uniformly spread across the two compartments.

Now, I am going to ask you a simple question. The final volume is V 1 plus V 2, which is

V, the final density remains the same, and the final temperature is also the same, because

you did nothing to the temperature and densities the temperature density on both sides



whether it is same. So, they remain the same, after you have mixed it well if you want to

see, why they remain the same is simple.

The final density is nothing but they with final number of particles divide by the final

volume right. So, you just take a numerator multiply by 1 upon V to both the terms. So,

you take V 1 into N 1 by V 1 plus V 2 into N 2 by V 2 divide by V 1 plus V 2 this is just

this is just N 1 by V 1. If I take it as rho, it can be written just as a it remains the same, so

it is either a N 1 by V 1 or it is N 2 by V 2, which is nothing but your rho ok. So, N 1 by

V 1 is rho, and N 2 by V 2 is also rho like I have taken here. So, I can substitute rho from

both sides what I get is rho plus rho divided by 2, so it is just rho itself, fine.

So, you can see the right hand side. So, you can take V 1 into rho plus V 2 ito rho divided

by V 1 plus V 2, which is just rho ok. So, the final density does not change remains the

same and the final temperature also does not change. Because, you can write down the

final temperature by the same logic that it is 2 by 3 into total energy, which is now sum

of the two energies divided by the total number of particles, which is the sum of two

particles divided by K B. Hence, E 1 plus E 2 the same logic like N 1 plus N 2 divide by

V 1 plus V 2 did not change, it remained N by V 1. Similarly, E 1 plus E 2 divide by N 1

plus N 2 remains as E by N. 

(Refer Slide Time: 41:07)



So, this remains as E by N 1 or it remains as so the final temperature also is the same ok,

you can do the same trick. You can multiply the first term by 1 by N 1, and 2nd term by 1

by N 2 and just the same trick.

So, now when you look at the final configuration, when A plus A has been mixed, you

see that this is reversible scenario. In the sense that the final I am going to write down

here, this is a state of it is completely reversible mixing. Because, I cannot distinguish

between the final macro state and the initial macro state, no distinction can be made here.

The system is this in the same macro state ok. So, when that has happened, you cannot

tell  that this is systems entropy has changed ok. So, this configuration after we have

waited for a long time is in the same state. And you cannot distinguish that an experiment

has happened by any a test of any investigation.

So, clearly the final system is in a completely reversible you know in this entire change

is completely reversible, and we do not expect any entropy difference to have you know

arisen. So, so clearly when you are macro state has not has not change, you do not expect

any  you  remain  in  equilibrium,  you  are  in  equilibrium  to  begin  with  you  are  in

equilibrium now, so you are not going away from the equilibrium, which means entropy

has not changed the system is isolated, and the configurations are indistinguishable.

(Refer Slide Time: 45:17)

So, you can check it from your expression. So, if you write down your entropy here, so I

am going to  write  down let  us  take  this;  so I  am going to  I  just  want  to  copy this



expression, I guess we just recalling that this is expression for entropy. You can compute

the total change in the entropy.

(Refer Slide Time: 45:31)

So, as usual you write down the initial entropy, which is the sum of two entropies of A

and B. So, our particles of were now distributed A type wherein compartment A with

volume V 1 and B type wherein compartment B. So, we can write down as N 1 K B ln e

V 1 by we can write down V 1 by N 1 as simply e by rho into 4 pi m m 1.

Student: (Refer Time: 46:16).

I am going to take m 1 for both of them. E 1 by 3 h square N 1 fine, this is for just A type

for just one compartment plus N 2, because the compartment volumes could be different,

they we have taking a type in both the compartments. The compartment volumes could

be  different,  which  means  the  number  particles  in  the  two  compartments  may  be

different, because we are keeping density the same.

So, we are going to write down as K B ln e by rho 4 pi m 1 e and 2, because the masses

are same upon 3 h square N 2 to the power 3 half fine, this is for the B type ok, before

we open the shutter. After we open the shutter, and waited for a very long time.

So, the final entropy becomes, now you have N 1 plus N 2 sitting in volume V 1 plus V 2

ok. So, here it is going to be just N 1 plus N 2 that is going to be a total number of

particles. So, they are of the same type multiplied by K B e v by n is simply rho, because



that has not change the density into 4 pi m 1 e upon 3 h square. Now, you can write E 1

by N 1 or you can write E 2 by N 2, it is the same thing ok.

So, I am going to write down as E 1 plus E 2 divide by N 1 plus N 2 with the realization

that they two are the same is the same as individual density. Now, this is the final entropy

for the A plus A. In fact, there is no B here,, we will be going to write it as it is A only in

the two compartments. 

Now if you take the difference what you think should happen, I am going to I have

actually missed an lon here. So, I am just going to write it again, because I have missed a

lon here I we will have to rewrite it again, I missed a lon just there is a lon here that was

missing e by rho into 4 pi m 1 into e E 1 plus E 2 divided by N 1 plus N 2 all raised to 3

by 2 half divided by 3 h square here. Now, you can see E 1 plus E 2 divide by N 1 plus N

2 is the same as E 1 by N 1 or E 2 by N 2.

So, the entire (Refer Time: 50:39) logarithm argument is the common argument in all the

three terms. And if you look at S i, there is N 1 K B plus N 2 K B, whereas in the

denominator is the same N 1 K B and N 2 K B. Say if you take the difference of S i

minus S f,  you are going to get nothing but 0. Because, of the fact that your energy

density is the same as initial energy density, we have already shown this, we are mixing

them with constant temperature, and so the logarithm of argument is the same in all three

terms, and when you take the difference what you get is essentially 0.

(Refer Slide Time: 51:47)



So, there is absolutely they take a messages that there is no change in entropy for this

mixing.  And  the  entropy  did  not  change  simply, because  the  macro  state  remain  in

equilibrium, and did not change. So, you had the same macro state to begin with and you

go the same macro state when you end it, there is absolutely no way you can tell that an

experiment was actually was performed ok, when you come back, you can put the shutter

back and recover the old system with the same density on either sides, and the same

temperature either sides. 

So, clearly the change that happen happened in this isolated system was reversible, and

for such systems for such changes you do not incur in incur a change in a positive change

in entropy. So, hence the entropy of mixing turns out to be purely 0. So, if you had taken

in your expression for number of microstates, so I am going talk about this expression

now. Remember this N factorial, which is highlighted in red colour. This stands only to

safeguard your computation, and to make entropy purely extensible extent extensive. So,

if  you see your entropy expression,  if I scale E by lambda,  N by lambda, and E by

lambda  the  entire  entropy  expression  is  killed  by  lambda,  which  is  known as  pure

extensive scaling of entropy with respect to its arguments. 

So, if I had not taken this care and not divided by N factorial, it would have given me an

entropy which was not purely extensively. And as consequence of that the case of mixing

of two same gases would have given me an entropy change that was that that would be

positive.  So,  you  can  do  this  calculation  mix  two  gases  of  the  same  type,  at  same

temperature,  and  same density  using  an  expression  for  S  that  does  not  have  this,  S

correction factor, and you will see an entropy change that is positive.

I will leave that exercise as homework. And this is precisely the problem that puzzled

Gibbs for a long while, and this problem is called the Gibbs paradox. Today, we resolve

that paradox. We stated that there is absolutely no change in the entropy. If you correctly

can  count,  you  know a  numerate  the  number  of  microstates  by  taking  into  account

indistinguishability of the particles. So, the Gibbs paradox stands resolved, we did not

encounter it, because we computed the states correctly.

And, we shall give you one problem as homework that will so write down the homework

problem, so I am just going to state here. So, we will give you the solutions, but you

should do this problem yourself. Say, if you take the let me copy this expression, so the



problem is in Gibbs paradox, it is very simple thing to understand. We did not encounter

it, because we did the calculation correctly.

But, suppose you were to do this calculation incorrectly, and this is where Gibbs paradox

comes. So, suppose you so suppose you took the wrong expression for you know the

number of microstates, you did not take the N factorial ok.

(Refer Slide Time: 57:17)

Suppose you missed it. Then without this N factorial the expression for entropy, and I am

going to write down the super script to just tell you the fact that this is over computation,

this would be just N K B. You can do the calculation without the N factor just a take

logarithm on both sides. You would get V into 4 pi m e E over 3 h square N to the power

3 half. Now, you can see that your entropy is not extensive. In the sense that if I scale N

by lambda N, and volume by lambda V, and E by lambda E, my overall entropy S star is

killed by you know S original plus; so this would become my this would become my

lambda S plus N K B ln lambda ok, because E by N does not matter.

So, E by N remains E E by N, because they both killed by lambda. And V scaled by

lambda V, so I can take N K B lambda N K B lambda ok, and 1 lambda N K B into V

into this thing is just lambda into S ok. So, this extra factor that I get should have been 0,

if entropy was you know this not 0, so that is how I say that my entropy is not extensive I

get I got an extra contribution. And you can see this is positive in nature, because I have

over counted omega. 



(Refer Slide Time: 60:23)

So, now if you mix to you know, you redo this mixing of gases take the case of two gases

at two same gases, at same temperature, and density you will get, you should get the

entropy of mixing as non-zero. In fact, there should be you will get it as a quantity which

is positive. So, this is basically Gibbs paradox. 

A little while ago when we did this calculation, we saw that the entropy change is 0. But,

if you do this calculation at home at you know you know at temperature and density

which are same on both sides, and you mix two same gases, when you do the calculation

the same spirit like we did just a few minutes ago, you will find that entropy of mixing

comes  out  to  be  positive.  And  that  is  completely  wrong,  because  it  should  not  be

positive, it should be 0.

So,  the  heart  of  the  Gibbs  paradox  lies  the  incorrect  enumeration  of  microstates,

precisely because you did not take into account that there are N factorial microstates that

are indistinguishable, when you over counted them. And thereby made the entropy non-

extensive and hence you ran into this issue.

So, we will close this lecture here. And the next class when we meet, we will talk about

canonical  ensemble.  And  this  is  an  ensemble  where  you  allow  for  the  energies  to

exchange in order to maintain constant temperature. So, we will start the next lecture

from canonical ensemble and taken from there.



Thank you.


