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Classical Ideal Gas (Microcanonical Ensemble)

Good morning to all of you. Today will case of a Microcanonical Ensemble.
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And I am going to take a case study of a Classical Ideal Gas a fixed number of particles

volume and energy. So, the case study is that of classical ideal gas ok. So, when I say an

ideal gas this is an example of a system with degrees of freedom that are continuous ok.

So, if I take a gas inside a box of volume V and there are N particles in this box at the

total energy E. So, these particles here basically a free to move anywhere in the box and

the moment is also continuously varying.

So,  I  can  say that  particular  microstate  that  I  have  shown here,  let  us  say this  is  a

microstate mu 1 ok of the macro state N V E it is basically of these coordinates r I, I can

take the coordinates as position coordinates as q i and momentum coordinates as p i. So,

q and p are continuous random variables and so, this is a system with degrees of freedom

that are continuous. So, I can also take for example, the same macrostate N V E for a

different arrangement of particles ok.
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Let us called as mu 2 and this way I can construct a large number of microstates very

large number all corresponding to let us say very large number M all corresponding to a

macrostate N V E ok. So, all microstates correspond to the same macro state N V E the

specified values of N V and E. So, which brings us to the next question what is the

probability of finding my system in any j-th microstate. Well, that is of course, 1 upon

the total number of microstates assessable to my system at this specified condition of N

V and E because all microstates are equiprobable by the Boltzmann assumption.

So, if there are omega number of microstates all of them are equiprobable the probability

of getting my system in one of these microstates is certainly 1 upon omega ok.
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Now, I must compute omega, because that is how I will develop thermo dynamics of the

system ok.  Because,  once  I  compute  omega I  can do a  lot  of  things  I  can  compute

entropy  by  taking  a  logarithm  of  this  omega,  from  entropy  I  can  compute  energy,

chemical  potential,  pressure  so  and  so  forth.  All  thermo  dynamic  quantities  can  be

computed once I have in my hand the expression for entropy by invoking derivatives of

appropriate type. Which means for any thermodynamic calculation to perform I must

first compute number of microstates, because that is how I connect statistical mechanics

to thermodynamics in the system.

So, to compute the number of microstates you need to understand the following. We can

think of our system to be having an energy and I am calling the energy of the system as

the Hamiltonian. Let us pick up any Hamiltonian any microstate mu of j and we say that

the energy of the system which is basically the Hamiltonian is not exactly constraint to

be E, but is allowed to vary between E plus delta E and E minus delta E.

So, as you can see already there is some relaxation of the constraint that the energy has to

be strictly E. And I will show you why this relaxation was necessary because, it allows

me to compute the number of states in the following way.

Now, if you are worried about the fact that have taken a small spread delta E, you know

it poses no problem because I can take delta E to be so small that the ratio of delta over

the actual energy of the system is a very small number. So, it is like almost constant



energy surface the width is so small that the ratio width over energy is essentially 0 or a

very very smaller and number much smaller than 1.
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This small relaxation sphere spherical surface to a spherical shell allows me to compute

omega as the accessible phase space volume divided by some resolution. Now, what is

meaning of assessable phase space volume and resolution? Well, you can think of the

following our system has access to is basically you know it can be represented as a single

point in a 6 N dimensional phase space. So, I am going to draw phase space here ok. So,

I am going to draw a phase space and this is 6 N dimension phase space. So, basically

what I have done here is I have taken momentum and I have taken 3 N momentum axis

and I  have  taken positions  and I  have  taken 3  N position  axis  because,  I  have  a  2

dimensional surface I am constraint to show only 2 axis here, but you must imagine 3 N

momentum axis and 3 N position axis.

And in this 6 N dimensional phase space my entire system of N particles is represented

by one point which means if I project my point here on some access p of i so, if it is

projected on p i. So, basically what I get is the moment of the i-th particle. And similarly

if I project it on the q axis then it gives me momenta of i-th particle; this will give me

momenta of the p-th i-th particle. Suppose I project this point on p p x of 5th particle it

will give me the x component momentum of the 5th particle in the system.



So, what I can do here is compute the assessable phase space volume to my system and

divided by the smallest compartment in the phase space accessible to my system. So, I

can be divide phase space into small cells; and these cells here are to be you can do this

construction of this phase space in as an net of cells of the size ok. So, the phase space

here is to be seen as you know cells of size h the power 3 N ok.
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So, the smallest compartment in the phase space has a size h the power 3, which simple

reason be for a single particle the moment and the position are uncertain by an order h.

Now this is an 1 direction, in 3 directions you will be uncertain by of this product by an

amount h cube, for N particles the system point in the phase space is uncertain by an

amount h cube to the power N which is basically h the power 3 N. So, this is the smallest

resolution or this is the highest resolution you have in this phase space.

So, you can think of the phase space volume as integral over all the position coordinates

an integral over all the momentum coordinates subject to the constraint that each position

coordinate was inside the volume V. And the momentum coordinates are constrained to

have a sum of squares between twice m E minus delta E and twice m E plus delta E ok.

So, that is my numerator and the resolution which is basically the smallest cell in my

phase space is h to the power 3 N ok.
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Now, if you integrate the position degrees of freedom each position degree of freedom

will give me a volume V because, that is the integration of dq i there are N such position

integrals  give me V raise to  N. And this  is  multiplied to the leftover  which is  these

momentum integrals 3 N of them actually this is going up to 3 N ok. So, subject to the

constraint that: my sum of squares of momentum is between divided by h to the power 3

N ok.

In fact, I will going to write down this h to the power 3 N here ok, what I have done here

is just the fact that an integral triple integral of this type is basically volume V and there

were 3 N such integrals it has given me V to the power N ok. So, this is what I have used

here and now this is given me the number of states accessible to my system macro state

N V E. So, let us call this as equation 1 ok.

So, I am going to refer to this integral momentum integral as omega P; omega P and I am

going to define it as a. So, I am going to write down let me call this as omega which is

my total number of states as V raise to N upon h the power 3 N into omega P and I am

going to call this as equation 1. Where, this omega P is just the contribution of omega

contribution to omega coming from this momentum spherical shell in 3 N dimension,

again the constraint is that the sum of squares of the is momentum degrees of freedom is

constraint to be lying between values twice m E minus delta E is going to 3 N here ok.
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So,  you could  think  of  it  the  following  way. So,  this  is  like,  you can  think  of  the

momentum spherical surface at radius R which is nothing but square root for twice m E

and I have called that the radius is a square root twice m E because, the equation of

spherical surface is summation over i going from 1 to 3 N p i square equals to R square;

the equation in spherical surface and I know this is equal to twice m Es. This is equation

of a spherical surface in 3 N dimensions.

So, I can take a one more spherical surface at radius R 2 which is at square root of twice

m E plus delta E ok. So, let me write to sort of save the space I am going to write it I

have little space available this is a spherical surface at radius square root of twice m E I

am going to write down another spherical surface at radius twice m E plus delta E. And, I

am going to write down an inner spherical surface with radius R 1 equal to square root of

twice m E minus delta E. So, these are the 3 spherical surfaces I have taken.

 And width of this shell I am calling it as delta R remember this is the shell that I have

taken in the beginning. This shell corresponds to an what I have taken here is a shell of

twice delta E ok. So, it is a reminder that I have already taken a shell of thickness twice

delta E that simply corresponds to this thickness delta R, ok.
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So, this surface is at E plus delta E and the inner most is for E minus delta E. Now

clearly I can write down this omega P as, because its spherical shell volume; as some

kind of solid angle 3 N dimensional solid angle some kind of a solid angle I am going to

refer solid angle by an expression a symbol theta. Let us say theta is a solid angle and

just to remind that this is a 3 N dimensional solid angle I am going to raise just put as

superscript 3 N for let us say since it is a label that is use a subscript. So, that you do not

confuse it as a power. So, this is a 3 N dimensional solid angle multiplied to the radius to

the power 3 N minus 1 into thickness which is delta R.

It is very easy because, if you had taken a sphere in sphere in 3 dimensions. Let us say in

3 dimensions, if we have taken a sphere of radius R and you are asked to compute the

volume of  a  spherical  shell  at  radius R and of  thickness  d R. Well,  you could have

computed the volume this shaded region as simply 4 pi R square which is 3 minus 1 into

delta R this was the volume of the shell ok. So, this 4 pi that you taken is basically the 3

d solid angle into R raise to 3 minus 1 3 is basically number of dimensions delta R; that

is what I have done here we have instead of 3 dimension momentum shell I have a 3 N

dimensional momentum shell which means instead of 4 pi I have to take a solid angle

which is 3 N dimensional that is this guy.

And instead of R to the power 3 minus 1 I have taken R to the power 3 N minus 1

because now the number of dimension 3 N that is the second guy and the thickness that I



have taken is delta R which is this guy ok. So, I am going to compute each of them

separately ok. So, let us label this as some equation 2 and now proceed. The easiest thing

to compute first is delta R thickness of the 3 N dimensional shell. Now this is nothing but

R 2 minus R 1 if you look at the figure, R 2 is the outermost R N is the innermost. So,

the thickness delta R is R 2 minus R 1 which is nothing but I will take the pre factor

square root of 2 m as common, and write it as E plus delta E square root minus E minus

delta E square root I am going to take square root E also outside. And this will give me

simply 1 plus delta E by E square root minus 1 minus delta E by E square root.

This is where approximation will come to a rest, I have already taken E to be very large

and delta E to be small if you recall your observation here or your assumption here I am

going to. So, delta E by E is already taken to be a much smaller than 1, which means if I

expand it in a Taylor series and a retain terms of only first order then this expansion

straightaway gives me each one of these terms inside the square brackets as an Taylor

expansion. So, to linear order I can write it as delta E over twice E and I am going to

drop terms of the order delta E square minus here I will get 1 minus E by 2 E again I am

going to drop terms of the order delta E square here.
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So, this is basically just twice m E square root into delta E by E which is nothing, but

twice m by E square root into delta E because delta E is much smaller than 1. So, I will

not be taking terms beyond order 1 in delta E. So, delta R is computed very simple. So,



let us plug this delta R in equation 2 what we get now is omega P as the 3 dimensional

solid angle into R to the power 3 N minus 1 into delta R which is already computed

twice m by E square root into delta E and let us plug the value R also R as we already

know a square root of 2 m by E 2 m E.

So, I will I can write this as I can simply write it as 2 m E to the power 3 N minus 1 the

whole divided by 2 into 2 m by E to the power half into delta E since, I have used R as

square root of 2 m E let us call this as equation 3. Now, you can see that the only thing

remaining is to compute 3 dimensional solid angle that is the only thing remaining.
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So,  here we take  a  small  digression;  small  digression is  needed here  I  am going to

compute different integral disconnected from a problem. So, take some integral this is a

pure mathematical  construction I  which is  nothing but the N dimensional  integral  or

sorry 3 N dimensional integral of this Gaussian ok. So, I have got a Gaussian integral an

N dimensional.

Now, since  all  the  moment  as  are  independent  I  can  write  it  simply  this  integral  is

between minus infinity to plus infinity each integral on each degree of freedom p i goes

from minus infinity to plus infinity and there were 3 N of them. And since, each degree

of freedom is independent of the other I can write it as a single integral going from minus

infinity  to plus infinity  of some variable p its a dummy variable.  Because, you have

definite integral here E to the power minus p square the entire thing raise to power 3 N



and you know the guy inside the bracket this is nothing but square root of pi to the power

3 N, because I know that the Gaussian integral is square root of pi.
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So, I am going to write it as pi to power 3 N by 2. So, I have just computed this integral I

as which was defined as these N integrals of this is a product this is the summation this is

not a simple pi this is the product of d p i e to the power minus summation overall i

going from 1 to 3 N p i square and we have just computed this result as pi to the power 3

N by 2 ok.

I am going to re write this integral, because using the fact I am going to re write integral

using  the  fact  that  this  volume  element  this  volume  element  is  nothing  but  the  3

dimensional solid angle into my summation over p i square into dR or d ok. So, this is

basically I have to define what is the meaning of this R here R here is nothing but square

root of summation I going from 1 to 3 N p i square, because summation overall  p i

square is nothing but R square ok. So, this is because if you have been just 3 dimensions

ok.

So, I am just going to show in 3 dimensions dp 1 dp 2 and dp 3 is the volume element I

can write it as 4 pi p square which is nothing p 1 square plus p 2 square plus p 3 square

into dp where p is nothing but the square root of sum of p square that is what I have

written this 4 phi is a nothing but you know 3 d solid angle. So, instead of 4 pi I have

taken our 3 N dimensional solid angle which is this term, instead of just p 1 square p 2



square and p 3 square I have taken summation over all p i square which is nothing but

my R square.
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So, this is nothing, but theta to the power 3 N into R square into dR ok.

So, I can write down my integral I as which is already is calculated to be as phi raise to 3

N by 2, but now the I am going to rewrite my integral as simply instead of individual co-

ordinates  going from minus infinity  to plus infinity  I  have taken now the magnitude

which is R. Now, R can only go the radius can only go from 0 to infinity for example,

analogy with 3 dimension would be if I take this volume element and sum function of p.

This integral if I make p 1 p 2 p 3 all go from minus infinity to plus infinity I can rewrite

this as a you know R going from 0 to infinity 4 pi R square d R into f of p where, R

square is nothing but p 1 square plus p 2 square plus p 3 square ok.

So, in the same analogy I am going to write down this as ok. So, I am going to use is a

analogy  with  3  dimensions.  So,  our  integral  now becomes  theta  to  the  theta  3  N 3

dimensional solid angle into R square and this function. Now our function E raise to

minus  R square  into  d R,  because  we are  integrating  this  I  where  E raise  to  minus

summation p i square is simply E raise to minus R square, right.

So, I can substitute R square as some u ok. So, this will give me twice R dR as du and

which will finally give me my d R as 1 upon 2 into square root of u du correct. So, I am



going to substitute this in my integral which is already pre computed to be phi to the

power 3 N by 2. But now, this will transform to an integral in u where, the limits on u

will go as usual from 0 to infinity theta 3 d 3 N dimensional solid angle R square is

already taken as u and E to the power minus u and d R is taken as 1 upon 2 square root of

u d u ok. So, let me just check everything here ok.

So, I have made a small error here. So, this is a small correction here this cannot be R

square it has to be R to the power 3 N minus 1 ok. So, this has to be basically 3 N minus

1 by 2, because the in 3 dimension you have to take 4 phi R square d R which is R to the

power 3 minus 1. So, in 3 N dimensions you have to take radius to the power of 3 N

minus 1.

Now, radius itself is summation p i square raise to 1 half as I have written here this is my

radius ok. So, R to the power 3 N minus 1 would still which is be this summation i pi

square to the power. So, this is this is already 3 N minus 1 by 2 the square root is 1 by 2

correct. So, with the small error this becomes 3 N minus 1 and here this becomes u to the

power ok.

(Refer Slide Time: 39:22)

So then, this becomes I can write down pi to the power 3 N by 2 equals to solid angle is a

constant this simply becomes integral 0 to infinity in fact I can take 1 by 2 as outside this

simply becomes u to the power 3 N by 2 minus 1 into E raise to minus u d u and this is

nothing, but the definition of 3 N by 2 minus 1 factorial. So, this gives me nothing, but 3



N by 2 minus 1 factorial  whereas, use this result integral 0 to infinity some u to the

power N E raise to minus u du is nothing but N factorial ok.

So, I can now compute my 3 N dimensional solid angle as simply pi raise to 3 N by 2

into 2 divided by 3 and by 2 minus 1 factorial.
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So, let us call this as equation number 4 and you plug this in our equation 3 and that will

give you the enumeration of omega or enumeration of microstates.  So, our omega p

omega number of microstates for our system simply becomes. So, our equation 3 if you

see in fact I am going to plug it in equation 1 ok. So, basically to get the final answer

somewhat write it as we were to plug it in equation 3 and using then in equation 1 finally

we want the omega.  So, this  we had V to the power N upon h the power 3 N into

component coming from momentum space for which we have just computed the solid

angle that is 2 phi to the power 3 N by 2 divided by 3 N by 2 minus 1 ok.
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And this component 2 m E to the power 3 N minus 1 by 2 in to let us see something else

is pending into square root of 2 m by to delta E fine So, this is the final form of the

entropy of the number of states, but there is still  a problem here. So, this problem is

basically due to the fact that we have seriously over counted the number of microstates I

have explained why do we need to correct this.
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The fact that we have taken a microstate mu a 1 which is basically you know a particles

arranged like this someone will show only 3 particles to make the case simple. So, I will



take the first particle here second particle here. And the third particle here what you have

just  computed  also  includes  a  microstate  precisely  with  the  same  arrangement,  but

particle 2 here, particle 1 here, and particle 3 here without changing the location of 1 2

relative orientation and you can just permute this labels 1 2 3 in 3 factorial ways. So, this

is basically there are 3 factorial microstates for just you know 3 relative orientations of 1

2 and 3.  Now with N particles  clearly  there are  N factorial  microstate  that  are  over

counted ok.

(Refer Slide Time: 45:16)

So,  I  can  say  that  I  must  correct  this  over  counting,  because  the  particles  are

indistinguishable since N particles are identical we need to compute the omega number

of  states  by removing all  those N factorial  permutation  that  you can  do on these N

particles. So, our final expression is just this expression that we have computed and I

want to correct it forward counting by by simply dividing it by N factorial ok.

So, this N factorial is very necessary and I am going to just remind a user that what you

have done here by simply highlighted correction ok. So, this N factorial is correction

necessary  to  remove  the  over  counting  of  the  microstates,  because  precisely  for  N

particles I can shuffle the positions without changing the relative orientations or relative

positions in N factorial ways.

So, each micro state that was computed in omega were basically over counted by a factor

which is N factorial.
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So, I have to correct for that and now I have a correct expression for omega. So, this is

the route, so this end the you know or this ends discussion on computation of micro

states well it  also opens up the route to thermodynamics.  And route thermodynamics

opened up by simply  computing  entropy by taking  the  logarithm of  omega  by both

Boltzmann’s formula and I can simply write down take their logarithm using the fact that

N is large ok.

So, I can approximate 3 N by 2 minus 1 as 3 N by 2 and write down the entropy as N ln

V minus N ln N factorial plus N minus 3 N ln h ok. But I can write it as minus 3 N by 2

ln h square and plus ln 2 plus 3 N by 2 ln pi plus 3 N by 2 I am going to write down 3 N

minus 1 by 2 as just as 3 N by 2 into ln 2 m E minus 3 N by 2 ln 3 N by 2 plus 3 N by 2

plus 1 half ln 2 m by E plus l N delta E ok.

Now, there are several terms which can be dropped because there of lesser order much

lesser order then the other terms. So, clearly I can drop this term because it is of the order

l n E this term also can be dropped. And I am going to drop this is well do these qualities

are intensive and they not going as extensive going as N or N l N N ln N ok. So, what I

get here is just then the following.
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So, I can write this as would entire thing is multiplied by KB. So, this is nothing, but if I

take N KB as constant N KB as a constant pre factor and this gives nothing but V by if

you re arrange the terms you can write it as e V by N into 4 pi m e E by 3 N h square to

the power 3 by 2.

So, this is the definition of entropy. And in the next class we will compute other various

thermodynamic quantities starting from this expression for entropy. So, we will break

here and we meet in the next class.


