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So, good morning to all of you; so, today we will start a discussion on case study on

Microcanonical Ensemble. So, in the last class we looked at what is meant by a micro

canonical ensemble.
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So, this is the ensemble of fixed N V and E and these are systems which are thermally

and  mechanically  isolated.  Thermally  means  you  have  the  energy  constant  and

mechanically means you have the volume constant. And I would like to discuss a few

case studies of you know micro canonical ensemble. So, I will take two case studies. So,

one case study would be the study of discrete degrees of freedom. So, I will take an

example from the world of discrete degrees of freedom and examples here would be

particles with energy levels.
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So, I will take the simplest case of a two level system, where the particles in the system

can exist only in one of the two levels ok. For the case of continuous degrees of freedom,

and we shall visit this case study in the next lecture, I will take the example of an ideal

gas.  Now  we  say  that  the  ideal  gas  is  continuous  degrees  of  freedom  because  the

particles in an ideal gas can take any value of energy from 0 to infinity.

So, we consider this and a system with continuous degrees of freedom; the momentum

degrees of freedom are continuous whereas, in the discrete degrees of freedom trace the

particles can take energy is only in these two levels that we are going to talk about.
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So, today we will discuss the case of the discrete degree of freedom or the two level

system in micro canonical ensemble ok. So, we will take the case of a two level system

in the micro canonical ensemble.

Now, this means that we take N particles in two levels. So, the two levels I mean that we

take two energy levels with values 0 and epsilon these are the two energy levels, and you

can put particles in these you can distribute these N particles like this, some of them

being in the excited states some of them being in the let us say the ground state ok. And,

naturally we can call the occupation number or the excitation I would say the excitation

state ok

So, the excitation number the excitation can be taken as either 0 basically mean it stays

in the ground state that the i th particle is in the ground state, we can take the excitation

of the i th particle as 1 that only means that this is in the excited state ok.
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So, this way if I compute the total energy, which will come out to be summation over all

particles, the state in which the particles are and the energy level. So since I have taken

the energy level the 0 and epsilon, the total energy summation of summation over all

particles the excitation state times epsilon. So, this will suppose you are first particle is in

excited state you will take n i is 1 the next particle is in ground state and the next is also

in ground state and so, on and so, forth you will have 1’s and 0’s. And, in the end what

you will have is basically the sum as sum N1 times epsilon where N 1 is clearly the

number of ones that you have ok. So, you can write down the energy as total energy as N

1 times epsilon, where N 1 is the number of excited particles.

Student: (Refer Time: 06:21).

Only for two level system; so, if you had three level systems you would have you have to

take 0 epsilon and probably epsilon 1 or something. So, in that case your energy levels

will have one more energy state.
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So, now we can think of the probability of finding the system in a certain microstate mu.

Now microstate mu here is a certain combination of these a excitation values. So, you

say that the set of n i’s. So, if I take N 0 has 2 and you take N 1 as 1 then basically these

are this is the this is a microstate for a three particle system ok. So, the set of particular

set of n i’s that you take constitutes a microstate ok.

So, you can take for N equal to let us say 10 particles, we can take the ground state

number of particles in the in the in the ground state ok. So, as simply I am going to take

this as a let us say I am going to take N 1 has let us say 6 and N minus N 1 in the exited

state as 4. So, this is basically particular microstate. So, you can change these microstates

and obtain the values of you know and the system at  you can construct  system and

different microstates 

And  I  am going  to  write  down  this  probability  of  finding  a  system in  a  particular

microstate as just 1 upon the total number of states accessible to system ok. Because

each microstate is equiprobable and in this way I can write down the micro state as a

function of total number of particles and the energy E ok. So, inside this energy E is the

information of number of particles in the excited state.

So, N is the total number of particles, N 1 is the excited particles. So, N and N 1 together

constitute  the  total  number  of  microstates  in  the  system.  So,  then  what  we  have  is

basically right. So, this is the probability of a particular microstate corresponding to a



macrostate N 1 or N comma E. So, N comma E specifies a macrostate has which has

basically omega of N comma E microstates.

So, if you so, the above expression says that if you have these many microstates for a

macrostate N comma E, then the probability of finding a system in one of the microstate

is as essentially 1 upon omega because these macro states because these microstate are

equiprobable fine. So, if there are 10 microstates then the probability of each microstates

is 1 by 10 is it right. So, then we can compute this would be clear.

So, you compute the total number of microstates for this particular macrostate ok. So, we

have basically  this  is a macrostate  and omega which is the number of microstates is

nothing, but the number of ways in which we can arrange N 1 particles in the excited

state ok. So, these many basically these many microstates exist in this one microstate of

N comma E ok.

(Refer Slide Time: 11:47)

Now, we assume that these N, N 1 and N minus N 1 there all very large let us say then

our N particle system has large number of particles and hence large number of particles

in the excited state. So, these values of number of particles in both excited state and

ground  state  as  well  as  the  total  number  of  particles  are  very  large.  So,  under  that

assumption I can approximate these numbers using Stirling approximation.



I can use the Stirling approximation and write down our N factorial as N by e to the

power N factorial and to the to the power N and N 1 factorial as I am going to use the

approximation symbol here because these are approximations as N 1 by e to the power N

1 and finally, I can write down N minus 1 whole factorial as N minus N 1 divided by e to

the power N minus N 1.

(Refer Slide Time: 13:19)

These are Stirling approximations of course, I have dropped terms which are quadratic in

which are I have dropped terms and the pre factors of the order 2 pi N, but that is not

necessary here. So, if you use these Stirling approximations in your equation let us label

this as equation as equation 1 we can write down our omega, number of microstates in

this macrostate N comma E as N to the power N upon N 1 to the power N 1 into N minus

N 1 to the power N minus N 1 ok.

The exponential cancel and now I can take logarithms on both sides and noting that the

entropy is related to logarithm of omega by the Boltzmann’s expression.
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So, I can write down my entropy S over KB as N log N this is a logarithm to the base e

natural log minus N 1 log N 1 minus N minus N 1 lon N minus N 1 is it fine. Let us call

this  is  equation  2.  Now  we  know  from  previous  lecturers  that  the  value  of

thermodynamic temperature is  nothing,  but the derivative of entropy is  a function of

energy ok. So, we know that the temperature is given by this thermodynamic expression

in this case we have the constant number of particles as the extensive variable. So, I am

going to take the derivative of equation 2 and get temperature.

So, I am going to write down my 1 upon temperature as simply KB times and just for

this reason for the time being note that, I can convert this derivative to a derivative on N

1 by simply taking an epsilon outside since you by noting that  the total  energy is  a

variable of purely N 1. So, I can write down this derivative in terms of just N 1. So, that

gives me this derivative as. So, I can write this as KB upon epsilon and the first term is

constant because it is totally a function of N and N is a constant.

So, the second term will give me minus 1 minus lon N 1 then I will get plus 1 that the

derivative of lon N minus N 1 and finally, I will get plus lon N minus N 1.
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So, now you can knock off this one and that one and write down your temperature as KB

over epsilon into logarithm of N minus N 1 upon N 1; other beautiful relationship which

tells you something very important. You see in this expression I know that lon of any

quantity  is  greater than 0 if  x is  greater than 1.  The moment x becomes less than 1

logarithm becomes negative. So, for this logarithm to stay positive I must demand that N

minus N 1 upon N 1 should be greater than 1 for T to be positive for the logarithm to be

positive enhance temperature to be positive.

Ah We must  demanded  N minus  N 1  upon N 1  should  be  greater  than  1.  So,  this

basically tells you that your N 1 should be always less than N by 2 because if you put N

1 as N by 2 N minus N 1 by N 1 becomes 1 exactly 1 and the moment your N 1 becomes

larger than N by 2 the numerator becomes smaller than N by 2, denominators already

larger than N by 2. So, N by N minus N 1 by N 1 will become smaller than 1. So, I will

say that N should remain less than N by 2 for temperature to be positive right.
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So, if you if you simply say that if N 1 exceeds N by 2 what happens? N minus N 1 will

be less than N by 2 because the total is N the denominator is N 1 is already greater than

N by 2. So, I can write that N minus N 1 by combining these two I can say that N minus

N 1 by N 1 has become smaller than 1. And, hence logarithm of N minus N 1 by N 1 has

turned negative thereby turning my left hand side negative which is 1 over temperature.

So, implies that 1 upon T has become negative which implies that my temperature has

become negative what is going on. 

So, I will tell you what is going on in a short while, but this expression it is you know

gives us the conclusion let us proceed by making this not conclusion let us proceed by

making this observation, that our maximum number of particles is N by 2 in the excited

state  and this  means  that  our  T turns  out  to  be  negative  if  excitation  or  number  of

particles in the exited level is greater than half the number of total particles ok. So, this is

the observation that we have made here ok. So, that is the observation we made here and

I am going to proceed with the discussion by saying that the maximum excitation or

population in the excited state appears to be half filled.

So, in a two level system by raising the temperature of the system you can only increase

the number of particles and excited state to be half the total number of atoms that is the

maximum we can do. And we can see that by inverting this expression ok. So, I will



invert this expression for energy and show that the maximum we can do is just a half

filled in the excited state ok. So, let me pull this expression here ok.
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So, I am going to explain this maximum excitation to be half filled and not more than

that in two ways ok. So, I will explain this using. So, the question is why is the N 1 max

equal to N by 2 in these two level systems. So, this question will be answered using two

argument.
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So, I will use one argument which I will say as the energy argument, which is perhaps

easier  to  understand  at  this  moment  for  immediately  understandable.  And  the  other

augment  that  I  am  going  to  use  is  basically  the  argument  of  disorder  or  entropy

argument.  Entropy is  a  measure of disorder. So,  it  is  delightful  scenario  to  basically

understand why I cannot more increase the population in the excited state by more than

half  using two different methods by the argument  of energy and by the argument  of

entropy.

So, let  us use the energy argument  which is straightforwardly obtained from the last

expression on the temperature. So, if I invert this expression for energy what can I do is

basically I can say that my from the let us call this as some equation third fourth, let us

call it as third. So, I can say from equation 3 I can write down the value epsilon upon K

BT as just the logarithm of N minus N 1 upon N 1 which means I can say N minus N 1

over N 1 is e raise to epsilon upon K BT and I can simply say this is N by N 1 equals to 1

plus e raise to epsilon upon K BT and finally, I am going to write it as N 1 equals to N

upon 1  plus e raise to epsilon upon K BT.
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Just simple transposing terms on both sides now I will multiply epsilon both sides which

is nothing, but the expression for energy because, epsilon into N 1 is my energy ok. So,

let us write it as ok. So, this is basically my energy. So, the energy is epsilon N upon 1

plus e to the power epsilon over KT now let us plot this we learn a lot from sketchers ok.



So, let us sketch it. So, I am going to sketch my energy versus temperature ok. Now as

you can see at T equals to 0 the denominator becomes e raised to infinity plus 1 which is

infinity and 1 upon infinity is 0. So, my energy is 0.

And at T goes to infinity I have e to the power 1 by infinity which is 0 which is e raise to

0 which is 1. So, I have the maximum energy as N by 2 into epsilon. So, let me construct

this  maximum  value  of  energy.  So,  my  energy  as  a  function  of  temperature  will

monotonically rise and its maximum value is suppose to be just N by 2 epsilon. And as

you can see that I can go to this is called any entire region below this dash line is called

as the region of positive temperature ok.

And I know that if I try to push the number of particles more than half to the excited state

it goes to the region of negative temperature. So, I am going to call this region as the

region of negative temperature. Now we can see why negative temperatures are hotter

than the infinite temperatures. So, the to if I start from a system which has less number of

particles in the ground state, I continue increase in the temperature of the system I and go

to infinite temperatures yet I will not be able to push the number of particles more than

half to the exited state.

One the other hand if I somehow start whether system which has more particles in the

exited state then the ground state, when the system is already in the negative temperature

state.  So,  I  will  say  that  the  negative  temperature  state  is  hotter  than  the  infinite

temperature case, because even with infinite temperature I could not exit more than half

of the number of particles. So, somebody has given me more than half which means he is

giving me a hotter system, but I know his system is in the infinite temperature state. So,

it  apparently  is  hotter  than  you know T equals  to  infinity  because  I  have  put  more

particles in the excited state.

So, this is the reason why if you start with positive temperature you cannot go to more

than  half  filled  precisely  because,  the  amount  of  you  know  the  highest  possible

temperatures  we can reach in  your  system is  by is  you know we will  only take  the

excitation to 50 percent in your system. And so, that is the reason why you cannot go to

negative temperatures by simply heat in the system. The other argument that you can

give is the entropy argument.



So, this argument means that you know our S behaves like logarithm of omega and this

is  monotonic  function  in  the  sense  that  if  omega  monotonically  increases,  then  my

entropy will also monotonically increase with omega. Now I know that my omega is

basically the number of microstates and that is N factorial upon N 1 factorial  into N

minus N 1 factorial, you know this has a maximum at half filled excitation ok. So, the

binomial  multiplicity  peaks  at  the  value  N  by  2  ok.  You  know  this  result  that  the

maximum value of N c r is at N c N by 2.
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So, it has a maximum N by 2 which means my omega max is a sitting at. So, I can expect

my entropy which is monotonic function of lon omega is also sitting at N by 2 because

entropy is a monotonic function of you know omega. So, which means I can plot the I

am going to use a bigger figure here because this is the beautiful argument the disorder

argument.

So, I am going to plot this as a function of E and noting that E is nothing, but purely a

function of N 1 I am going to plot S versus E. I know at N 1 equals to 0 and hence E

equal to 0 my entropy should be 0.
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Because when N 1 is 0 or our energy is 0 omega is nothing, but N factorial by N 1

factorial  into N minus N 1 factorial.  At N 1 equal to 0 omega at N 1 equals to 0 is

nothing, but 1 because its simply becomes N factorial upon N factorial and what is lon of

1? 0.

Therefore our S becomes 0. So, I have a point here and the maximum number of N 1 I

can have is basically N. So, I will say this is the minimum this scenario where excitation

is maximizer  is  there all  of them are excited.  Again here I  can say that  omega as a

function of N 1 is nothing, but N factorial upon N 1 factorial into N minus N 1 factorial

you put N 1 as N this is nothing, but 1 again because now you have N factorial upon N

factorial again which means my entropy which is logarithm of omega is again 0.
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So, this was the case of maximum this was the case of minimum N 1. So, I will go I will

basically is to be symmetric in my. So, I am going to write it as simply means N equals

to E equals to this is the case of maximum. So, basically I am again back to 0 when my

energy is N times epsilon and I am 0 here and somewhere at the peak at the value when

N 1 becomes N N by 2. So, the energy is basically by 2 epsilon have a peak. So, I am

going to draw function which has a maximum.

So, this is the maximum value of entropy and as you can see from thermodynamics the

slope is basically 1 upon T because it is ds over d E this is the slope ds over dE. And you

can see as you increase your energy you are slope reduces. So, this is the direction in

which slope reduces which means your T increases. So, 1 by T reduces which means T

increases finally, when you reach this peak the slope 1 by T is 0 which means this is the

regime of infinite temperature.

So, when you reach in the energy here you would have reached in the entropy picture

here when the slope becomes 0 or temperature becomes infinity. Now if you try to go on

the other side, the slope 1 by T has turned negative. So, what you are trying to do is

basically in this side. So, I will say that my T increases or S increases my disorder also

increase, but on this side I will see that my disorder decreases. So, what is happening is

that above the maxima if I try to put in more energy my system becomes more and more

disordered.



So, if I try to increase energy from 0 to N by 2 epsilon the system gets more and more

disordered all the way up to infinite temperature which is the point here at the maximum

you cannot cross this. Now moment you try to cross it by you know artificially pumping

particles in the excited state more than half filled, you go to the other side of the curve

where your entropy begins to decrease. So, this is like I am putting more energy. So, this

would be the region where you know.

So, I will say that S decreases with energy and here S increases with energy. And this is

not possible I mean you cannot these are this is we had scenario that you are trying to

increase energy in a system and created more ordered. It would be like asking a bunch of

students who are more hyperactive you know an expecting them to be more ordered

hyperactivity  means,  they have more energy they will  be constantly jumping up and

down, but apparently this group of students who are hyperactive are more ordered then

this  group  of  students  which  are  normal  and  you know not  hyperactive  there  more

disordered.  So,  this  is  the  entropy  argument  that  you  cannot  exceed  the  number  of

particles in the exited state more than N by 2.
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So, the only way to exceed you know beyond N by 2 is to start with a system with N 1

greater than N by 2 which means you have already started with a negative temperature

state. And as soon as the system you know comes in contact with a reservoir at positive



temperature, with a reservoir you know at some positive temperature let us say T R is

greater than 0.

There will be in exchange of energy between these two systems. In fact, this system

would only lose energy, any excess energy that  it  has it  will  lose that  energy to  the

reservoir and come back to positive temperature and thereby you know after this it will

come back. So, eventually  you can say that this  two level system returns to positive

temperature. So, we can start with more particles in the excited state then the ground

state, but this would be a metastable state. You should not be a system that will stay in

negative temperature forever 

So, as soon as the system comes into contact with the reservoir at finite temperature, it

will come down to positive it will come down to a lower energy such that its temperature

turns positive. And this is the manifestation of negative temperature states you can you

can think of a negative temperature state to be an exceptional state, where putting more

energy yields more order into the system thereby making the slope ds by d negative. So,

in the next class will proceed with the system with continuous degree of freedom and

discuss the case of ideal gas in the context of micro canonical ensemble. So, the break

here and give me it in the next class.


