
Statistical Mechanics
Prof. Ashwin Roy

Department of Physics
Indian Institute of Technology, Madras

Lecture – 11
Microcanonical Ensemble

Today we will start the second chapter on in this chapter in this course.
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And we will  now be,  because  we will  be dealing  with  the  classical  systems,  where

quantum corrections are not required. So, this is the chapter that we will take on. And the

subject of classical statistical mechanics is beautiful in the sense that, we are not really

focused about exact time evolution of a trajectory of particles in the system ok.

So, if you are looking at a let us say the particles of the gas in this room, I would be

interested in understanding; what are the thermodynamic states accessible to the system

ok. By thermodynamics states I am saying the macrostates available to the system. So,

meaning for example, the values of number of particles, volume of the room and total

energy of the room ok. So, this would be example of a macrostate. You could also say

that  you know I  am interested  in  number  of  particles  pressure  in  the  room and the

temperature of the room.



So, we are dealing with systems at equilibrium, and we are asking questions about states

of the system which can be represented by the combinations of these variables that I have

written down. So, these states are called as macrostates. And a macrostate by itself is

basically characterization of system with very small number of variables. As you can see

I have taken in macrostate I have taken only three variables.

But a given macrostate for example N V E which means if I take this room at a given

value of N V and E. Then you can classify the system you can say that this particular

microstate consists of a several micro states each different from the other, in terms of the

location of the particles and their moment you know. So, I can take one macrostate and

take the system in several different. So, these are basically micro states, ok.

So, this is like the specific arrangement of particles and momentum in the phase space.

Now by phase space I mean, the system the coordinate in of their degrees of freedom in

coordinates and degrees of freedom in a momentum coordinates.
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So, phase space here corresponds to 3 N momentum degrees of freedom for an N particle

system, plus 3 N position degrees of freedom. So, this is basically a 6 N dimensional

space this is coming from a momentum and this is coming from position. And in this

phase space I can represent a micro state by a single point.



So, each of these mu is that I have specified can be represented as a single point in this 6

N dimensional space. So, it is hard to visualize a this the space, but we can think of 6 N

orthogonal axis. So, one of them could be the p x; x component of the momentum of the

first particle then you can take another coordinate as a p y of the first particle. And in this

way you have taken you know you can take one more here. So, you can take 3 N degrees

of freedom and now you can also take coordinates.

So, here a microstate here, it could be just one point its just one point here. So, I will say

this is let us say micro state u 1; well this is a only means that if I project this microstate

on any of  the axis  let  us  say a  if  I  project  on the axis  p  x 1 then  I  will  get  the  x

component of the first particle. If I project it on the axis p y, then I will get the mean term

y component of moment of the first particle and if I project it on q and z, I will get a z

component of the n-th particle in the system. So, in the 6 N dimensional phase space, the

system  is  actually  just  a  single  point  and  the  evolution  of  system  through  these

microstates. So, system can go from microstate mu 1 to microstate mu 2 all the way to

mu n and these large number of micro states clearly n is very large here; n is not the

number of particles I should use a different symbol here. The small n I will choose a

small n because capital N is reserved for number of particles. So, I will use q n.

So, clearly number of micro states are large, and is seem to sort of occupy these the

phase space in such a way this is the projection of each microstate on the corresponding

axis gives the coordinate of moment or the position of a particular particle, where a you

are protecting the phase space point, where you are projecting the microstate on.
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So,  basically  what  is  being  said  here  is  that,  it  is  not  required  to  time  evolve  the

coordinates, as you would do in classical mechanics, it is not required ok. That means,

that in classical mechanics you would take an Hamiltonian, which is a basically function

of a your position and momentum, and you would normally take the time evolution of a

the position and momentum through the Hamiltonian.

So, the equation of motions that you will start with basically minus p i dot as a del H

over del q i and q i dot as a del H over del p i. So, you do not require, you do not in

statistical mechanics, you do not do a time evolution of your coordinates exactly.
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So,  what  you  do  basically  in  any  equilibrium  system  is  basically,  we  study  the

distribution functions. I will describe what this distribution functions are. And for each of

the  equilibrium  systems  that  I  have  discussed  or  I  have  described  not  described

mentioned in the at the beginning of this lecture such as N V E systems at constant N V

N energy; this system is called as a microcanonical ensemble we will describe I will

describe these ensembles in detail or when you specify the number of particles pressure

and temperature which we call  as the canonical  ensemble.  So,  I will  call  this  as the

microcanonical  ensemble.  This  is  the  canonical  ensemble,  or  you  could  take  Gibbs

canonical ensemble.

So, instead of studying the exact Hamiltonian evolution you know or the evolution of the

trajectory  of  particles,  we will  be concerned about  the stationary  properties  of  these

systems. So, by that I mean that I will not be concerned about a single particles anymore,

where  the  amount  of  information  available  is  huge,  but  the  problem  also  becomes

interactable. Instead, we will go to the information of distributions. So, with that in mind

I will take the first ensemble which is a micro canonical ensemble ok.
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And the prototype system for each of this ensemble will be gas in a box. So, I am going

to take for example, an ideal gas in this box and I am going to take this box with N

particles  volume  V and  total  energy  E.  So,  this  is  going  to  be  my  microcanonical

ensemble.

And as I said that, N V E represents a micro state here. So, you can specify a number of

particles to be of the order of a you know 10 to the power of 23 you can specify the

volume to be may be some 100 litres and you can specify some energy to be some joules

ok; so x joules. And so, once you have specified this with the values of a number of

particles, volume of the room and the total number of a and total amount of energy in this

room. You are now basically in position to do some a statistical mechanics on the system

ok. 

So, by that I mean this is a system where a macrostate is specified by the condition that

any macro state will have a Hamiltonian; that is nothing but the E that you specified ok.

So, you have specified the energy to be E and the system could be in any micro state by

micro state. I mean the exact position of the coordinates of the particles the momentum

coordinates and the position coordinates. And as long as the Hamiltonian of the system is

E  which  is  the  energy  specified,  then  this  probability  of  finding  a  system  in  that

microstate  corresponding to a  macro state  M would be nothing but  1 upon the total



number of microstates that the system has access to. And this will be the function of E

and V.

So, if I increase the number of a particles or if I increase the volume, then the number of

accessible states will also increase. And so, this is as long as your Hamiltonian is equal to

the  specified  energy. And I  know the  moment  we pick  up  a  micro  state  where  the

Hamiltonian is not equal to E, then we will say that this is 0. So, the microstate has 0

probability if the energy corresponding to that micro state is nothing, but E ok.
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So, omega here corresponds to a number of microstates accessible to the system. And the

fact that I have taken each micro state to have probability of 1 by mu, this essentially

means that; I am going to write it here the fact that I have taken the probability of any

microstate corresponding to a macrostate M as 1 upon omega if H mu was E. This means

that I am assuming equal a priori distribution or equal a probability a priori probability

distribution.

So, the meaning is if your macro state has omega micro states then each microstate is has

an equal probability for in that macrostate ok.
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So, with that consideration, we can always write down the Boltzmann hypothesis for a

entropy S k B l n omega ok. So, this equal a priori probability distribution allows me to

involve the Boltzmann’s definition for entropy which is not nothing but a statement that

the entropy is a you know is a negative extensive quantity and the calculation of entropy

is a logarithmic related to a number of states accessible to the system.

So, armed with this important rule we can look at some cases interesting cases you can

actually revisit some laws of thermodynamics. In fact, you can derive statistically laws of

thermodynamics in the context of micro canonical ensemble. So, you are going to give

strict  to  micro  canonical  ensemble,  and  give  some  discussion  on  laws  of

thermodynamics.  So,  the  first  law  that  I  would  discuss  is  the  Zeroth  law  of

thermodynamics ok. Now, I would not state the law straightaway in fact, I will present a

small experiment, and the Zeroth law of thermodynamics will appear naturally at the end

of it.
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So, let me just take two systems at equilibrium ok. So, these are two systems that are let

us call the systems as A and system B, and let us say that they are at equilibrium both

thermal and mechanical equilibrium. Now, the meaning of this is that the systems are

thermally isolated which means there is no exchange of heat with the surrounding. So,

there is absolutely no exchange of heat with the surrounding and you have fixed walls

that cannot move.

So, there is absolutely no way in which energy can leak out of the system and the walls

are  fixed.  So,  the  volume  cannot  change.  So,  they  are  thermally  and  mechanically

isolated. And the systems have energy content let us say the energy content of the system

is E A and the internal energy of the system is E B ok. So, the systems are in thermal and

mechanical equilibrium. 

And if I ask you, what is the entropy of the system? So, you can individually say that the

entropy of my first system would be k B l n omega A; where omega is the number of

states in which our system A can exist and the entropy of the system will  be k B ln

omega B. So, where omega A and omega B are the number of states in which systems A

and B can exist.
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Now, let us you know connect the systems. So now, I am going to connect these systems

ok. So, let me. So, this is my system B and this is my system A, I have connected these

two systems in such a way that the system A and B can exchange energy ok, but they are

shielded from the surroundings. So A, and B will not take or give any energy to the

surroundings,  they  can  exchange energy internally  they  can  energy exchange  energy

between themselves, but they are still isolated both mechanically and thermally from the

surroundings ok.

So, A and B can exchange energy now ok. Only energy the walls are all fixed. So, there

is no volume exchange between the A and B. Now what happens to the; what can you tell

about  the  joint  entropy  of  the  system?  So,  let  us  say  immediately  after  you  have

connected the systems, the entropy of the joint system is S A a function of E A plus S B a

function of E B this is the total entropy.

But wait the system is expand you know if the system is redistributing energy.
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So, you wait for sometime wait to equilibrate. So, you come back after sometime and

now you see that  the total  entropy. Keep in mind that  the total  system is  you know

isolated which means our energy initially was E A plus E B it is still E A plus E B and I

am call it as a the big E, that is my energy. So, I am going to underline this that my total

energy was always been E A plus E B.

So, what has happened is, after waiting for a long amount of time I see that the energy of

my system A has become E A star and the energy of my system B has become E B star.

And if I call this as the equilibrium state of the joint system, I can write down the final

entropy which is you know S the total entropy of the joint system and the joint system as

energy E as the entropy of system A, but which is now sitting at energy E star plus

entropy of the system B which is now sitting at energy E B star, and this is actually a

state of maximum entropy.

We can prove that is the state of maximum entropy, because if the systems had different

energies and they exchanged energy between them after bringing them into contact. Then

there  is  no  way  this  system  will  go  back  to  initial  configuration  on  its  own  or

spontaneously. Which means, this redistribution of energy was irreversible and when you

say this energy was irreversible, this redistribution was irreversible the entropy of the

system has definitely increased and we can find this out.



So, what we really mean here is, if you look at the change in entropy which is delta S.

So, you can find out the change in entropy from.
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So, I am going to write down the question that, what is the condition for equilibrium. So,

the condition for equilibrium is nothing but a certain state where this entropies of each

subsystems a and b have maximized.

So, for that we must allow for establishment of identical temperatures on both sides and

that  is  the  condition  that  will  derive  as  a  consequence  of  a  you  know  entropy

maximization. So, you could basically say that the change in entropy the system A would

be d S A over d E A at constant volume. And, you can think of change in entropy of

system B as d S A this would be total trophies. So, this would be ok.
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And the overall change in entropy would be nothing, but delta S A plus delta S B which

is nothing but delta S A upon S delta A E A plus this is the overall change in entropy. And

now I am just going to recall the fact that, the total energy of the system is constant. So, I

will write down E as E A plus E B its of course, also equal to E A star plus E B start the

sum of final energies, but that is not required.

That means, I can write down my delta E which is 0 which is equal to delta E A plus

delta E B which simply says that delta E A is equal to minus delta E B if you if you

substitute it up stairs what you see here is that, the delta S comes out to be delta SA over

delta E A into delta E A constant value would V A plus delta S B over delta E B at

constant value of V B and I a substituting delta E B as minus delta E A and if you take a

delta E A constant.
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Now, you are looking at the condition for equilibrium here. Like I said before if the

evolution of your two systems after connection was such that they arose in reversible

change  ok.  Some  energy  went  from  hot  system  to  a  cold  system.  Now  this  is  an

irreversible change, you cannot after the two systems have equilibrated, you cannot bring

the energy back you know you cannot recover the initial configuration.

So, there is some amount of information that is lost, which is said as the change being

irreversible. Now, when the change was irreversible, you will definitely expect a positive

change  in  the  entropy it  will  be  greater  than  0.  But  we are  chasing  a  condition  for

equilibrium, which means if you are at equilibrium then there will not be any change in

entropy any change of energy from any passage of energy from a from body A to B is

reversible because you are at equilibrium. And if that is a case, then for any arbitrary

energy change to make delta S 0 I must demand at my pre factor here is 0 only then mind

delta S will be 0.

So, if equilibrium is achieved and by equilibrium I mean thermal equilibrium then I have

to demand that the pre factor is 0.
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The pre factor is simply delta S over delta E A at a constant volume equals to. If the

bracket  is  0  which means these two values  are  equal.  Now this  is  the condition for

equilibrium.

And, I can now define empirically the empirical temperature as you know 1 upon T. So,

if I define dS over dE as 1 upon T, then this quantity dS over dA at a constant value of a

dS over d E A at constant value of the volume of system A is nothing but 1 over inverse

temperature for the system A. So, I will say this is A comma B similarly this is A comma

B, this is A comma B ok. So, the condition for equilibrium is simply equivalence of the

two temperatures. So, remember how we derive this condition for equilibrium.

We just completed the change in entropy for a re distribution of energy between two

systems. Now as long as we are away from equilibrium, this change in entropy will be

non  0  which  means  your  temperatures  are  not  the  same.  The  moment  you  reach

equilibrium which could be let us say after an hour or after 2 hours or after 10 hours

whatever be the case we come back. And now when we compute the change in entropy

you will see that there is absolutely no change, because any energy that is exchanged

across these two systems at equilibrium is basically a reversible change or reversible

process.



And when that  happens you take the entropy change to  be 0 and this  would be the

condition of thermodynamic equilibrium between the systems A and B. So, this is like

the zeroth law of thermodynamics.
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This is essentially says that the two systems will continue to exchange energy until the

temperatures become equal ok. So for example, you connect them wait for a minute and

ask the several question, has the equilibrium be achieved while you will see a are the two

temperatures same?

If the two temperature are not same you will you know wait longer. Because, when the

temperatures are not same any energy distribution any energy changed that has happened

between the two is not reversible  it  is irreversible.  And this  irreversible  exchange of

energy will continue to happen until the two temperatures are same that is the condition

for equilibrium. We can proceed from here and derive the first law as well.

So, we can candidate the first law which is essentially nothing, but I would say its book

keeping of energy. So, you simply associate first law of a thermodynamics as a law of

conservation of energy or bookkeeping of energy, you simply account for each mode of

energy injection and work done and the first law of thermodynamics is nothing but a

statement of a energy contribution. So, we shall see what that means. Suppose you take a

system at equilibrium. So, consider a system at equilibrium ok.
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So,  this  is  a  system having some energy E and  some volume and some number  of

particles, some volume in energy E and the system is at equilibrium now what we do is

we allow. So, at this stage let us say the entropy of the system was a function of E and V

we are keeping N constant. So, we can drop N and what I am doing is, am allowing the

system to expand the little reversibly. So, there is some expansion of the system that I

call as that I will address as delta v.

So,  some reversible  work.  And this  reversible  work is  basically  because is  an exact

differential, I am using horizontal bar here; means that this work cannot be traced the you

know  it  is  basically  path  dependent,  it  is  not  an  exact  differential  and  so,  this  is

highlighted by this strike off and I call it as minus P into delta v.

Now, the reason why I have taken a minus sign here is that, any work done by the system

will lead to reduction energy and internal energy. So, if you would take an system and

allow it to expand, there is a delta v which is positive. So, P delta v is positive, but minus

P delta v will be negative. So, its internal energy will be reduced, because the gas is has

done some work. So, it is now sitting at a lower internal energy, it did work on account

of its internally.

So, we are taking the convention as a minus p delta v that explain the minus sign now

what has happened after the small expansion is that, N has remain the same, but both V



and E have changed ok. So, my system is now sitting at N V plus delta v and energy E

minus P d v fine. So, let us compute the change in energy the change in entropy.
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Show the change in entropy due to this reversible work that we did on the system is

basically delta S ok.

But I want to know; what is this delta S as a function of E and V. We can compute this by

a simple first order Taylor expansion. So, we can compute the entropy the final entropy

by a simple Taylor expansion, we say that the energy after the work is equal to the energy

before we did the work plus data S over delta E at constant value of v in to d E plus delta

S over delta v at constant value of E into delta v.

So, this is the first order expansion of entropy around E and V is expanded around E and

V as you can see that these derivatives are taken at E and V here. So, this is the first

order expansion around energy E and volume V let us call this as equation 1. Now you

recall that the system is thermally isolated ok. So, I will say that my data Q is 0; and so

the only change in energy that can happen is due to the work that has been done on the

system which is basically minus P d v ok.

The energy of the system can only changed due to the work done on the system, because

the heat given to the system is 0 is thermally isolated.
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So, in equation 1 I can substitute this thing and I can write down this equation 1 as E S of

E minus E at the final energy values and the volume value, and I will take S of the at

initial values of energy volume on the left hand side. On the right hand side I will write

as d S over d E at constant volume into minus of P delta v plus d S over d v constant

value of energy into d v fine.

And call the left hand side as the change in the entropy and the right hand side you can

take delta v outside common, and call this is as delta S over delta E at constant volume

into minus P plus delta S over delta v at constant energy into delta v ok. And now, what

we  have  learnt  from  the  first  law  discussion  that,  the  thermodynamic  definition  of

temperature is del S over del E at constant volume.

So, what we will do is, we will substitute this in this expression.



(Refer Slide Time: 49:49)

So, over delta S becomes minus P over T plus del S no in fact, I what I will do here is ok.

Now, this is the variation in the entropy that is done very close that is done very slowly

so that I am always at equilibrium. Because, if you remember this variation is due to

reversible work which means I am always at equilibrium.

So,  delta  S  must  be  0  why?  If  data  is  not  zero,  then  basically  I  have  lost  some

information permanently and that is the indication that the process is not reversible. Then

any loss of information is basically a consequence of an irreversible process you cannot

recover it. So, that would be associated with a positive change in entropy. And if I am

claiming  that  the  process  is  reversible  to  be  invest,  then  this  delta  is  must  be  0 no

information is lost that means for any arbitrary delta v that I take ok.

This variation in volume is arbitrary I could have taken change in volume as per my

liking,  but  any arbitrary volume displacement  that  I  take such that  the work done is

reversible, and that should lead to 0 entropy change and that is only the possible if the

pre factors here is 0. Because, delta v is not 0 it is arbitrary. The product of two numbers

is always 0 one of them is arbitrary, while you will say the second number has to be 0 ok.

So, I can take delta v to be non zero.

So, this is only possible the product will go to 0 only if the pre factor here which is what

I have written in the parenthesis is 0. So, I will write down P over T is equal to del S over

del v at constant energy. So now, you can compare equation 2 in equation 1 and re write



equation 1 ok. So, what I will do here is basically take the entropy on the right hand side

left hand side and write down equation 1 again.

So, I am going to just. So, basically what I am going to do is you know I am just going to

write down equation 1 again. 
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So, we just using equation 2 I can say that, delta S is basically you can write down d S

over d ES a 1 upon T. And if you look at the third term here is d S over d v at constant

energy which is equal to P by T from equation 2 into derivation of volume V ok.

So, now including all variations which means you are no longer during this infinitesimal

derivatives. If we include all variations I can write down this law as dS equals to d E

over T plus P d v over T.
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In other words I can write T d s it is the heat given to the system as a change in internal

energy  plus  work  done  by  the  system.  So,  this  is  basically  your  first  law  of

thermodynamics which if you see is nothing but an energy conservation statement that, if

you give an amount of energy to the system which is T ds, it lonely increase the energy

of the system by an amount d E plus if you allow the system to expand the work done

would be P dv ok. So, that is the statement of the first law.

And with this we are now in a position to look at the second law of thermodynamics,

which is basically a statement of a.
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So, now I am going to discuss the second law of thermodynamics, which are basically

gives you the arrow of time and what is meant by the arrow of time? It simply means that

now so, far we have taken two systems and we have connected them and we asked the

question what is the condition of equilibrium.

So,  the  condition  of  equilibrium  is  weight  long  enough  such  that  the  temperatures

become the same, fine. But we do not have any idea as to what is the direction of flow of

an of heat net direction of flow of heat from one body to the other, which is basically

saying in which direction the time will forget.

So, in other sense we are basically asking question what would be the direction of heat

flow, ok. So, what is the direction of heat flow? In a problem of a heat conduction; so we

can give this direction of heat flow from the second law.
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So, you can basically say that the total entropy which is given as S that is nothing but S A

function of E A plus S B a function of E B, you know which is basically soon after I just

call as SA plus S B and give the independent variables very shortly ok. So, I am going to

write down the situation all right. So, I will write down right after connection and at

equilibrium. So, at equilibrium I know that the entropy would be S of A at E A star plus S

of B E B star, and right after connection was a S of A E A plus S of B E B and this

entropy is definitely larger than the entropy to begin with ok.

So, that is the entire concept of a irreversible change. So, the initial entropy is definitely

lesser than the final entropy, because you have lost some information. So, you have total

entropy, change has to be positive. So, if I want to compute the change in entropy: the

change could be delta S and that change will be nothing but S A E A star minus S A E A

plus S B E B star minus S B E B and I know that this change will be greater than equal to

0, because I have you know the change is irreversible ok.
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So, if I write on this delta S. So, the right hand side basically means SA E A star minus

SA E A is nothing but delta S A over E A into delta E A plus delta S B can this is greater

than equal to 0, fine. So, basically what is meant is, this quantity is this thing and this

quantity is this term. So, basically I am writing down the change in entropy as, the rate

multiplied by the total change in energy. Now, this quantity is nothing but 1 upon T A

from the definition of temperature into delta E A and I have 1 upon E B into delta E B

which is greater than 0.
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And since, delta E A is equal to minus delta E B that is because E A plus E B is constant.

You can rewrite this in equality as 1 upon TA minus 1 upon T B into delta E A greater

than or equal to 0. Now this is the beauty of the second law that it gives you the direction

of heat flow. See the left hand side is a positive quantity. And that means, if you take TB

to be greater than TA, so B is hotter than A. That means the quantity in the bracket will

be definitely a you know a positive quantity.

So, 1 upon TA minus 1 upon TB will be positive because TB is lesser than TA. Now TB

is greater than TA now to make the quantity positive overall quality positive
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 I want the delta T A should be also greater than 0. Now what does this mean? Which

means your object A has received a net flow or a net flow of energy, which is expected,

because B was hotter than A you cannot have a hot body taking net flow of energy from a

cooler body that is not possible.

So, the direction of heat flow is basically decided by the second law of thermodynamics,

and that was naturally derived in the under the constraint of a you know the fact that the

entropy of the system has to always increase if the process is irreversible ok. So, we had

taken in case of a irreversible loss of information, and that has given as the condition that

the heat flows from hotter body to a cooler body



 So, that ends today’s discussion. And next class we will start with the simple examples

of  a  in  microcanonical  ensemble,  and  we  will  formalize  the  various  concepts  of  a

microcanonical ensemble.


