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Good afternoon students, today I will discuss some Mathematical Preliminaries required

to do the problems that, you have encountered that you will encounter in this course. So,

I will be giving couple of lectures on some important mathematical results, which are

handy, if you are dealing with numerical problems.

(Refer Slide Time: 00:38)

So, very simple so, I am going to title this lecture as mathematical pre requisites, you can

skip these pre requisites if you are already familiar with them but, just in case you are not

familiar this might turn out to be useful ok.

So, couple of things that I will discuss, I am going to write them down. So, one is to

compute how you know, compute the Gaussian integral. So, basically we are looking to

integrate  function,  from minus  infinity  to  plus  infinity  and  the  function  here  is  the

Gaussian function. Let us say this is I fine.
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So, this is the first problem on the agenda, second I will discuss an important technique

which is the saddle point approximation that, we have let we will using in, the second

chapter of statistical mechanics is basically a very important approximation method and

if you want to approximate the sum of exponentials.

So, suppose I have exponentials, I going from 1 to some T number of terms and I have

these exponentials of the type e raised to N times some x of i ok. So, these all these terms

here are positive because, they are be exponents they cannot be negative. So, they are all

positive in nature, each term is positive in nature and exponent is some N times x i ok.

So, I will show that, saddle point approximation says that, I can approximate this sum, as

is the maximum of the terms.

So, suppose the maximum term in this expression is e to the power N x max then, I can

approximate the entire sum with the maximum of the terms, if N goes to infinity ok. So,

if you encounter a sum of exponentials, where each exponent, where each exponential

term as a power N times x or N times some function of x. Then as you take N to infinity,

you can approximate this sum as e raised to N x max ok. So, this is the very important

approximation that I will be discussing today. 
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The third thing that I want to discuss is that of Fourier transform. So, some important

Fourier transforms that you have encountered in chapter  1,  you will  be encountering

Fourier transforms everywhere in theoretical physics. So, I am not sure how much of the

background you already carry in the context of Fourier transfers but, we will take some

simple Fourier transform examples and for example, I will take a function that you are

encountered in this course, which is the Laurence distribution or a Cauchy distribution.

So, we have taken this as a distribution, after proper normalization it came out to be

some a by pi into 1 by a square plus x square. 

So, here a is constant. So, I will take the Fourier transform this function. So, let us say

our function is defined as p of x. So, we will compute the Fourier transform of this

function, which defined as x going from minus infinity to plus infinity, p of x e to the

power i k x dx. And the last topic of this lecture would be to compute some important

Laplace  transforms,  I  have  discussed  Fourier  transform I  will  take  one  example  of

Laplace transform and show how it is very important to construct important results ok.

So, Laplace transform is defined.
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So, if you take a function, let us see you take a power law, x to the power n, then the

Laplace transform of this function is defined as an integral x going from 0 to infinity, e to

the power minus s x, x to the power n dx. A naturally this is a integration on x, a definite

integration on x, this result is nothing, but a function of s and with the parameter n and

we will show that, this is equal to n factorial, over S to the power n plus 1 and derive an

important result that your n factorial is nothing but, this function at n equal to 0, at s

equal to 0 ok. Our Laplace transform.

So, this function would be at f s n, taken at s equals to 1, which we also call sometimes

as the gamma function. So, that is the definition ok, it is gamma n plus 1 is called as n

factorial.
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Which means, if I want gamma n, this would be just n minus 1 factorial or we can use

with whichever definition you want to choose so, let us start with the Gaussian integral

ok, the first topic on our agenda so, we will first start with Gaussian integral because,

you are encountered this many places. So, we have the integral,  which is basically x

going from minus infinity to plus infinity, e to the power minus a x square ok.
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So, if you want to understand what is the Gaussian function? Well, this is a bell function.

So,  the  way I  have  written  my function,  it  peaks  at  the  origin  and  it  has  a  if  you



understand this as a probability distribution function then, it is mean value is 0. So, this is

the bell curve or the Gaussian function and the integration of this Gaussian function is

the agenda of our discussion.

So, I am going to make a small trick here that, if I want to compute I, I can instead

calculate I square ok. So, I am going to write down, I square as a the integral x going

from minus infinity to plus infinity, e to the power minus a x square, dx and square it up

which means, I can write it as some y going from minus infinity to plus infinity, e raised

to minus a y square dy. The reason being x and y are independent coordinates, they are

the coordinator that are integrated over.

So, they are being, they serving the purpose of dummy variable ok. So, neither is this

integral function of x, neither is this integral function of y, which means I can keep the

integration variable as x y z or anything. So, is this just a function of a.
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And this is also function of ok, just a function of a and this is also function of a. So, this

allows me to write down the square as two separate definite integrals  and now again

combine these two definite integrals and use a double integral, one for x and one for y

and I can take the integrand and combine it has call as a e raise to minus a, x square plus

y square,  dx dy and then actually I can you know pause here,  instead of proceeding

further and notice that this is nothing but, in area integral ok.
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So, I have taken a function e raise to minus a, x square plus y square and I am doing area

integral of this function. So, I can make some substitutions already. So, I know in two

dimensions and this is a two dimensional integration. So, if I take this is my x axis and if

I take that is my y axis, then any small area element that I can consider here, some small

area element would be just you know, dx dy and I can simply integrate over the entire

space, that would be my total area. So, I can write down my area element dx dy, in polar

representation, as simply dr into r d theta ok.

So, if you want you can think of this as my small increment in the direction of unit vector

r and this is a small increment in the direction of unit vector theta. So, whether I use the

Cartesian components or if I use the r theta components, the displacement components dr

and rd theta, if I go into the polar components.
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And hence I  can write  down my x square plus y square,  as the length r  square and

similarly  the  limits  on  integration  will  now become.  So,  my  integration,  which  is  I

square. Now, becomes this double integral that I have written, is now our integral r, that

is going from 0 to infinity because, if I look into this figure.
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To compute an area integral, at location r, you know what I need to do is basically, take

my aerial vector, aerial displacement ok. At various points in my surface and at each

point this would be nothing but, a aerial element located at coordinates r comma theta.



So, theta here will go from 0 to 2 pi and the location would be just specified at a distance

r from the center ok.

So, then I  can simply write  down my theta  to go from 0 to  2 pi and this  particular

integrand, is just e raise to minus a, r square and I can write down this element dx dy, as

what  I  have written  here ok,  r  into  dr  d  theta  fine.  And then,  simply  take  the  theta

integration first. So, that would simply give me 2 pi and the integration and r would

become just e to the power minus a r square, into rdr and by substituting r square as just

u by a ok.
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I can write down twice rdr, as just 1 upon a into du. So, this will give my I square as 2 pi,

into integration 0 to infinity because, the limits on r are the same as limits on u and I get

e to the power minus u into 1 upon 2 a du. 

So, this will give me just pi by a, integration 0 to infinity, e raise to minus u d u and that

is nothing but, pi by a, this will give me just pi by a and then I can write down, I as

square root of pi by a ok.
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So this is the Gaussian integral  that we were chasing. That is the result of Gaussian

integral. So, our next problem in the agenda is to use a saddle point approximation.
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And we can do this.  So,  these were important  topic  that,  we deferred for a separate

lecture and you have to recall some of the concepts that we discussed in second chapter,

where  we  have  used  saddle  point  approximation  especially,  in  the  computation  of

entropy for an ideal gas system.



So,  I  will  describe  this  as  just  approximation  for  a  sum,  over  a  large  number  of

exponentials.  So,  if  I  have  T exponentials  and if  I  summed them up and here  each

exponential is of this form, e the power some N times of function of x, let me take this as

the function of x. Simplest function of x is x itself, you can take any function of x here

and the index i here is just f of x i ok. So, you can take f of x as simply x, then this

becomes just a summation over then, my s simply become summation over i going from

1 to T, e to the power N x i ok.

You can take f of x as x square then, your summation becomes i going from 1 to T, e to

the power N x i square, you can take any function basically. So, what I am going to do is

take any function f of x and simply over simply some over various values of x and take T

such terms and add them up. The argument is I can approximate S, by the largest term in

the sum and the largest term would be the term which is at you know, the maximum of f

coming at sum x star. 
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If N tends to infinity so, we can do this very simply by saying that, look my sum was

composed of a large number of terms. So, I am going to write it as, if I going to, if I am

writing my original sum as a sum over all these exponentials, as f at x 1, plus e to the

power N f x 2 ok. In the last term being so, I can definitely say that my summation would

be less than, e to the power N f max, at sum x star. Let us say one of these terms is the

maximum, at occurs at x star ok.



So, I definitely know that my sum is less than that and I can definitely say that my

summation. So, this is very clear and it is also I have to say that this. In fact, I have made

a small error here, it has to be definitely greater than and it has to be definitely less than,

if I replace each term in the summation by the maximum, then what I would get it just N

times just sorry, if I reach replace each term by the maximum then, I would get T times T

maximum ok.
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So, then I can say that, my S is less than it is definitely less than, T times, T being the

total number of terms, if I replace each term with the maximum then, definitely it is over

counting my sum and if I just take the largests in the sum, the definitely my x is greater

than that. 

So, this gives us, this very nice in equality. Now, you can do a couple of things here, you

can take a logarithm on entire  inequality. So,  taking logarithm,  natural  logarithm so,

taking natural logarithm, you would get N times f maximum, at sum x star ok, which

should be less than natural log of S, which should be less than natural log of T, plus N

times f max, at sum x star fine. You have taken natural log throughout and natural log to

the base e of e is 1.
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Now, you can divide throughout by N ok. So, if you divide throughout by N, what you

get is nothing but, the maximum of the function, at the at one of the values of x. Let us

say that is x star, is less than lon S over N, is less than lon T over N, plus f max at sum x

star. Now, this is very gets interesting, if you take and which is always possible or I will

say taking not if but, I will say taking our T, the total number of terms, as sum power of

N ok, which is always possible.
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Suppose you take for example, you have total 100 terms and your number of you can say

your big N is 100 then, I know a is equal to 1 because, 100 to the power 1 is 100 ok. So,

that is one case but, if I take let us say you now. So, this would give me a as 1 but, if I

take N as 1000 ok. So, here I can get my a to be. So, I can compute my a as simply, 100

equals to 10 to the power 3, times raise to the power a. So, if I take a lon on both sides

this would be roughly 2 and this would be just a into 3. So, I can say that a should be 2

by 3 because, 1000 to the part 2 by 3 is 100.

So, this may you can take any N and always find that, you can rise into a sum power and

get the number of terms that are required, toughly to an order ok. So, then I can always

write down my inequality that is written above. So, in this in equality is now re casted as,

by know with the substitution T as N the power a.
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You can write it as, f maximum, it is sum x star, this will be less than, lon S by N, which

should be less than a lon N by N, plus f maximum, at x star ok. Now, you can see that,

for large N, which is the case that we are chasing, I can ignore lon N by N, simply being

suppose you take N as 100.
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Then lon N by, is roughly 2 by 100 and if you take N as, let us say even larger 10 to the

power 6 or 8, some larger number then, you know you can say that lon N by N, is an

even smaller number, this would be just 8 by 10 to the power 8.

So, as you take N to be very large, it is typically the number of particles that you would

have in a system and then in the limit of such large Ns, you can always drop lon N by N

because, that is going to be a number of vanishing magnitude. So, I can then recast my

inequality here as simply. 
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So, this gives us as N goes to infinity ok, f star f max, at x star less than lon S by N,

which is I am going to drop my a lon N by N, as simply write this as f max, at x star.

Now, you can see that lon S by N is now bounded from above and below, by the same

number, which is f max and this is only possible, if I write down lon S as it takes the

value, one of them ok. It is bounded forwarded and below by this same number. So, we

will  say  that  lon  S  by  N  is  equal  to  f  max,  at  x  star  ok.  I  am  going  to  use  an

approximation here because; you have drug lon N by N in the approximation that N goes

to infinity.
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So, then we can write down our S, as simply e to power N times f max, at x star. So, that

completes  our  saddle  point  discussion  ok.  So,  this  is  very  important  equality  or

approximation that, we can use in the limit of large N right. So, we will go to the next

topic which is, if you recall, this is like taking Fourier transform of function and as an

example I have taken Lorentzian function. So, let me take it is Fourier transform right.



(Refer Slide Time: 31:56)

So, one of the important mathematical techniques is the technique of Fourier transform.

So, we will take our function, in such a way I am given a function with the motivation

that is follows, you know this function will require you to compute the Fourier transform

by the method of contour integrations. So, it is like hitting 2 birds with 1 both 1 arrow.

So,  we  will  also  learn  something  about  contour  integrations  here.  So,  the  Fourier

transform of this distribution function, which is also called as the characteristic function

of the distribution and that you will see in the chapter 1, is nothing but, the limits x going

from minus infinity to plus infinity, p of x e to the power i k x, dx.

Now, you must have taken some course in Fourier transform, if you are not then the take

home messages that, you have a function that is required at each points in the direct

space, in this case p of x and the Fourier transform will then give me the function, in the

Fourier space at 1 value of k. So, as you can see, a function p of s is taken at all values of

x, from minus infinity plus infinity, to generate one value of the Fourier amplitude at

mode k. The inverse transform, would mean that I will get my function, at one value of

the direct  space,  by simply taking inverse Fourier transform; that means,  my Fourier

amplitudes have to be known everywhere in the k space ok.

So, if I know the Fourier amplitude everywhere in the k space then, I can compute the

inverse Fourier transform recover the function. So, all x give me 1 k and all k giving me

1 x, is the logic here and usually the function that we are usually in fact, almost always



the function that we take, for Fourier transforms are a periodic functions because, Fourier

transformers are derived from Fourier series in the limit, when the functions seizes to

become periodic or fails to complete one cycle ok. So, in distinction to Fourier series,

which applies to periodic functions in box of size l, Fourier transforms are useful for

functions which are a periodic ok. So, let us compute the Fourier transform here.
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So, you can I will take the Fourier transform and leave the inverse to you, so this should

be just integral x going from here computing the Fourier transform. So, x going from

minus infinity to plus infinity, our function is a by pi into a square plus x square, into e

raise to i k x, dx ok. So, this can be written as, a by pi into integration of minus infinity to

plus infinity, e to the power i k x, over a square plus x square. 

Now, expect that you have taken some course on complex variables and because I will be

using complex integration to compute this integral. So, I am going to call this integral 1

and say that  instead  of  computing  this  integral,  I  will  compute  some integral  in  the

complex plane which is nothing but, the contour integral, of e to the power i k z, over a

square plus z square, dz.

So, I must indicate my contour here. So, the contour that I am using is basically, so this is

my complex plane and I am using semicircle contour and this the direction of my contour

integration, this is my x axis, this is y axis and there are 2 poles of this function.
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So, the function has the integrand, you know it has, I can rewrite this integrand, to show

that it to basically expose it is poles, it can be written as e raise to i k z upon z plus i a,

into z minus i a. So, there are 2 poles, I am going to use only one of them, which is at a

and there are another pole at minus a, that I am going to drop. 

So, as you can see ok. So, then I can easily write down my contour integral, this would

be nothing but, 2 pi i, into the residue at z equals to i a ok, only the contour in the only

the residue in inside the contour that is drawn. So, this would be nothing but, the residue

at z equals to i a, would be nothing but; would be nothing but, if I just substitute z equals

to i a, it is a simple pole. So, all I have to do is just substitute z equal to i a there, so it

will give me e to the power i k into i a, divided by 2 i a, just substituting z equals to i a in

my function. So, the residue here is, at any z naught is nothing but, limit z tending to z

naught, into a function ok.

So, you multiply z minus z naught which is, z minus i a and that would be just e to the

power ikz upon z plus i a, in that you substitute i a, that would give you your residue.
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So, this would be nothing but, pi by a, into e to the power minus ka fine. Now, there is

something that I would like to mentioned here, my contour integral e raise to I mean the

integral of e raise to i k z upon a square plus z square, can also be written as a sum of 2

integrals.
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So, I can write down there is a line integral here and there is a contour integral here, I

will call it as CA and I am going to call this as CL, the straight line part ok.
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So, I can write my contour integral, which is e to the power i k z, over z square plus a

square d z ok, as simply the straight line component, which is going from if I call this

point as plus R and this point as minus R, this is a circle of radius R, semicircle of radius

R. Then this the straight line part goes from x equals to minus R to plus R ok, that is my

CL. And here my function is e to the power i k x, dx over because, z is just x here ok.

Plus I will have a part where, if you look at the contour here, the only degree of freedom

is theta because, R is fixed here. So, I can call my complex variable z, on this contour as

simply R, each point on the surface is just on the circle is just R e to the power i theta ok,

that is my complex variable.

So, here theta goes from 0 to pi and this is my contour CA the arc, the pi arc and here my

function is nothing but, e to the power i k and the complex variable is R raise to, R into e

raise to i theta, divided by z square is nothing but, R square, e to the power 2 i theta, plus

a square and d z would be nothing but, R i, e to the power i theta, d theta ok. Since, I

have taken z as R e raise to i theta, d z would be R i e to the power i theta d theta

because, R is not constant, R is constant, only theta varies on that semicircle.
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So,  now you can see that,  the this  contour  integral,  if  I  going if  I  am going to  just

consider this one, you can see that; you can see that, it can be written as, theta going

from 0 to pi, I can split up the numerator as, e to the power i k R cos theta into e to the

power minus k R cos sin theta because, e raised to i theta is cos theta plus i sin theta, i

into i because, you have minus sin, into R, i e to the power i theta and d theta divided by

R square, e to the power 2 i theta plus a square fine. So, as you can see as, for k greater

than 0, I know in the quadrant that I am doing my integral, the first quadrant the second

quadrant, sin theta is always positive.

So, if k is greater than 0 and sin theta is always positive because, I am in the first and

second quadrant and as R goes to infinity, I can see that my numerator goes to 0 because,

it is going as e to the power minus R into R and the denominator is going as R square ok.

So, the denominator will become larger and larger the numerator will go towards 0.
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This means my overall  integral here, will only go towards 0, it  is magnitude will go

towards 0 ok. So, the numerator is going as e raise to minus k R into R that will go to 0,

the  denominator  is  going  much  faster  towards,  you  know  denominator  is  going  as

quadratic in R but, towards infinity. So, the ratio of numerator of a denominator, we will

definitely  go  toward  0.  And  so,  if  I  take  a  bigger  circle  and  even  a  bigger  circle

eventually, if I take my semicircle at infinity, my function remains analytic, e raise to i k

z remains analytic because, that is going towards 0 but, it is integral on their contour on

the arc becomes 0, which means I can say that the residue does not change the residue is

unmoved.

So, the integral I z as R goes to infinity, remains if the same. So, it remains pi by a, e to

the power minus k a and I can write down for a fact that, the integral on the arc goes to 0,

as long as k is positive which means, I can write down my integral, this part the CL part

that. So, I can now write down the entire thing as, limit R tending to infinity, minus R to

plus R, e to the power i k x over a square plus x square dx, plus theta goes from 0 to pi, e

to the power i k z and d z over a square plus z square and I have just shown that and this

integral is basically pi by a, into e to the power minus k a.
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So, as R goes to infinity, if I want to drop this term then, I have to change my k to

positive. So, I have to write down 2 things happened; one is that the straight line integral

becomes a minus infinity to plus infinity, e to the power i k x, upon a square plus x

square dx and what we does to my right hand side is that is makes my k always positive.

So,  I  have  to  take  it  as  minus  of  mod  k  into  a  because,  only  then  I  can  put  the

semicircular  contribution  to  0.  Now, combining this  with what  I  wanted.  So, what  I

wanted is basically a factor of a by pi outside in equation 1.
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So, my Fourier transform, is basically a by pi into pi by a, e to the power minus mod k to

a which is nothing but, e to the power minus mod k into a, that is the answer ok. You

could  have  taken  the  bottom circular  contour  also  but,  that  would  have  given  your

integration from infinity to minus infinity with the negative sign. So, it gives you the

same answer, whatever contour you take fine. And this brings us to the last topic in the

discussion which is a gamma function.
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So, I will introduce the gamma function from Laplace transforms. Since, I have already

taken Fourier transform and example in Fourier transform I will take one example in the

Laplace transform. So, Laplace transforms and Fourier transforms are connected in the

sense that, if you are unable to take a Fourier transfer of a function that diverges in the

limits  then,  you  can  pat  this  function  only  on  the  positive  side  and take  a  Laplace

transform for the imagery frequencies. 

So,  they  are related  to  each other, I  will  skip the  background of  Laplace  transform,

except that I will tell you what Laplace transform mathematically means. So, if you want

to  take Laplace  transform of  some function  then,  it  basically  amounts  to  taking this

integral, 0 to infinity, fx e to the power minus sx dx. Now, since this is a definite integral

on x, the answer is a function only of the s, which is basically your frequency imaginary

frequency  or  imaginary  wave  vector,  depending  upon  whether  you  take  x  as

displacement or time ok.



So, it is just a function of s ok. So, now, if I take you know for example, if I take our

function as some x to the power n then, the Laplace transform of my function is nothing

but, Laplace transform of x to the power N and this will be nothing but, a function of

both my variable s and the parameter n because, it is defined as an integral x going from

0 to infinity, x to the power n e raise to minus sx dx ok. So, this is very simple we have

computed  Laplace  transforms  in  the  grand  canonical  ensemble,  I  think  the  Gibbs

canonical ensemble and so, this is basically going to help you, if you are not aware of

how to take Laplace transform. So, here this is I will take simple example, which is x to

the power n.
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So, you can write down this as a, in the form of a recursion relation. So, this is just x

going from 0 to infinity, x to the power n e raise to minus sx dx. Now, to solve this you

have to do integration by parts and our encourage you to take this as the first function, x

to the power n as the first function and e to the power minus sx is the second function

but, the reasons are simple, each successive derivation of x to the power n reduces it is

order, order of derivative, that is the encouragement to take this as the first function. 

So, you take this and perform the integration by parts, what you get in the first term is x

raise to n, e raise to minus sx, over minus s, and you apply the integration limits, plus n

by s into the integration x to the power n minus1, e raise to minus sx dx ok. Now, look at

the first term, at x equals to infinity, e raise to minus sx will go to 0. Of course, x is to n



will go to infinity but, you can easily show by L Hospital’s rule, that x raise to n, e raise

to minus sx will go to 0 and for x equals to 0 which is the lower limit, the exponent

becomes 1, but x raise to n become 0.
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So, this is overall 0 at both the limits, first limit you can show by L ‘Hospital’s rule,

second limit you can just show directly but, what is left over now is interesting, it is n by

s multiplied to the Laplace transform of x raise to n minus 1 ok. So, this way if you

continue so, if you take one more Laplace transform, it would be n by s, into n minus 1

by s, into Laplace transform of x raise to n minus 2, I will keep continuing, what you will

get at the end of the overall steps.



(Refer Slide Time: 55:18)

Would be n by s into n minus 1 by s, all the way to n minus 2 by s and the last term

would be 1 by s, into Laplace transform of x raise to 0 or 1 ok. So, basically what you

have here is nothing but, n factorial over s to the power n, into Laplace transform of 1,

which is nothing but, Laplace transform of 1, if you look at the definition, just put n

equals to 1 here, you will get just 1 upon s ok. So, this will be n factorial over s to the

power n plus 1 and that is the Laplace transform of x raise to n and this is the function of

s and n ok.
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So, the definition of n factorial is also the value of this function, the Laplace transform,

taken  at  s  equals  to  1  and  this  can  be  also  define  mathematically  to  be  as  gamma

function. In such a way that gamma n plus 1 is always n factorial; it is just definition,

nothing more than that ok.

So, you can always, since n factorial is equal to n into n minus 1 factorial, I can call this

as n into gamma n and this is nothing but, gamma n plus 1. So, that is how you form a

recursion of gamma function. So, n gamma minus gamma n plus 1 right so, this is how

we compute gamma functions or n factorials, all right. So, this is where we end and when

we meet  in  the next  class  will,  you will  have  one more  mathematical  preliminaries,

where I will discuss some more important useful integrals and we will take it from here. 


