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Good  afternoon  students.  So,  in  this  lecture,  we  will  continue  with  the  Entropy

Maximization. And also a specific case of a dice that is biased the probability distribution

comes out to be Maxwell Boltzmann type or it becomes non-uniform ok. 
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So, let us continue the discussion on entropy maximization or you may wish to call it as

maximum entropy principle ok. Now, we saw earlier that if you take a dice and say that

its faces are all unbiased, which means 6 faces. And the probability of each phase, you

know if you rule it  n times, then it  is expected that one-sixth of the n would be the

probably; one-sixth of n would be the number of occurrence of any i-th face. So, the

probability of any face comes out to be 1 by 6, where i is one of the six outcomes ok.

Now, this  was definitely the case,  when we discussed that  the only constraint  as the

normalization of the probability. 
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So,  when  the  only  requirement  is  that  probabilities  are  well  behaved,  then  you  get

probability  distribution  that  is  unbiased.  So,  I  will  call  this  is  in  this  result  that  we

obtained in the last class as an unbiased probability distribution ok. So, this will be called

as unbiased, all faces have equal probabilities. Now, today will see the important result,

which is establish in the context of biased probabilities. 

So,  this  will  be  the  case  of  dice,  where  some  faces  I  have  a  higher  probability  of

occurrence compared to the other. Now, what do I mean by this it means that I have now

three conditions ok. So, I am going to consider the case of non-uniform or biased PDS or

probability distributions ok.
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Now, this simply means that I have my function of various probabilities as you know the

entropy over N K B, which is given as minus summation i going from 1 to t, I am going

to  taking  a  t  face  die  again  pi  l  n  pi  as  before.  And  my constraint,  so  I  will  take

constraints  now  instead  of  one  constraint  I  will  take  two  constraints.  So,  the  first

constraint is my function g again a function of all these probabilities p 1 p 2 all they have

to p of t as conservation of the of the norm ok, so sum of all probabilities is 1. So, this is

one constrained. 

And I have another constrained now I call it as function h it is the function of all these

probabilities as the average outcome is fix to some epsilon. So, the average would mean I

call the outcome of each faces epsilon i with the weight pi,  and i summed over all t

possible outcomes. And this is basically nothing but epsilon ok.

So, what this basically means that have taken I have said that the die is biased in the

sense that the average outcome you know is epsilon. So, this is like saying the average

value of epsilon is fixed which is nothing but I will call it as I can simply write it as ok.

So, definitely my second constraint is h, I have two constraints. And I want to maximize

my function, which is entropy. So, my function is f which is nothing but entropy per N K

B.
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And I need to maximize my function, which is entropy subject to the constraints ok.

Keeping g and h intact. So, under these constraints I want to maximize the entropy, and

you shall be surprised to see the outcome. So, our usual prescription as discussed in the

last lecture, you can consult the last lecture if where we have derived the where we have

discussed the concept of function optimization using Lagrange multipliers. 

So, you can consult that later I am going to just use that concept here. And say that; I am

going to defined my Lagrange in L as function f minus lambda times g minus my second

Lagrange multiplier  beta times h.  So, you this way as I  have said if you have more

constraints for each constraint, you have a new Lagrange multiplier in the problem ok.

So, a new multiplier Lagrange multiplier for each constraint each physical constraint is a

standard technique of function maximization ok.
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So, let us put the values of our functions f as you know is nothing but minus summation

over all i’s going from 1 to t pi l n p i minus lambda times g, which is nothing but

summation overall pi minus 1, which is nothing but d conservation of norm. And 2nd

Lagrange multiplier multiplied to the fixed value of the expectation of the outcome. So

that is nothing but, summation i in from 1 to t epsilon i and the outcome of each face

times probability of each face minus the average value itself ok. So, these are the two

constraints. 

And I know that the solution of optimization is a probability p of j and p j is the solution

that is p j optimizes the entropy or the function f, then del L by del p j, it should be 0

should be 0. So, let us compute del L by del p j, so you can see the first term of the

Lagrangian only the term p j, I mean I equals to j will contribute, and that is simply gives

minus of 1 plus lon p j. And the 2nd term would give minus of minus lambda in to 1,

which is just minus lambda. And final term would give minus beta into epsilon j, because

only i equal to j term will contribute there, and epsilon is any way constant, the last term

is 0. The derivative of last term with respect to p j is 0. 
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So, you can re arrange everything and obtain the value of p j now. So, there is a 0 here,

so what will do is you can write down a logarithm of p of j as minus 1 minus lambd a

minus beta times e of j. And, this will simply give you p of j as e raise to minus 1 minus

lambda into e raise to minus beta of j, and look at the right hand side. This time the

probability  of the j-th  face is  depended on j,  ok.  Now you can see it  depends on j,

because is a term e j, which is in some sense the value of the face j.
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So, this is called as non-uniform pdf. So, hence we will say that p j turns out to be non-

uniform. So, with the extra constraint that we are taken our PDF has now become non-

uniform. And this is actually a Boltzmann PDF Maxwell Boltzmann pdf, we shall see so

our P j is not yet normalize as can be seen, so will simply normalize p j. 

So, normalize p of j and to normalize this p of j, I need to find a normalization constant,

which is nothing but summation over all j p of j. So, this will go from 1 to n 1 to t, and

because the value of p of j is given here, it simply becomes if I submit t times. This will

simply the e raise to minus 1 minus lambda into summation of summation on j p of j.
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So,  with  this  normalization  constant  our  final  normalized  PDF  becomes  they  are

normalized pdf, which is simply e raise to minus 1 minus lambda into e raise to minus

beta times epsilon j divided by the norm that we have just obtained, so we plug it here.

And it is simply becomes right, so I have just (Refer Time: 14:45) small type of here

thank you. So, this becomes e to the power minus beta e j of course.

And then you can write down the final answer as your normalized pdf, which is a to the

power minus beta e j over summation j going from 1 to t e raise to minus beta e j. And

this is nothing but if you say that beta is 1 over K T, and this where e j is nothing but the

energy  levels  of  j-th  you  know state.  Then  this  is  nothing  but  Maxwell  Boltzmann

distribution, where our normalization constant is also known as partition function.
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So, in some sense this is like a partition function for your problem, which depends on

beta ok. It does not depend on energy levels per say because, this summed overall the

levels that is gone, but it is a parameter here is beta. 

So, this is the reason why we see Maxwell Boltzmann distribution, everywhere around as

if your system has constraints more than just the conservation of probabilities. So, if you

set the average value of energy to some constant, then the distribution will come out to

be  Maxwell  Boltzmann.  And  the  consequence  this  is  a  consequence  of  the  entropy

maximization that you see Maxwell Boltzmann distribution profound in nature. So, this

is one example that we have discussed.
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And I am going to give you one more example worked example, where the degrees of

freedom are not discrete they are continuous ok. So, what we saw I am just going to

summaries it. So, what we saw so far is basically two different types of PDF for the

district  case, one type of PDF is simply p of j as 1 upon t, I call it  as uniform PDF

probability  density  functions.  And  this  comes  if  there  are  the  only  constraint  is

summation of probabilities, which are conserved or the probabilities are all the add up to

one. 

And the other case that we have seen basically p of j, which becomes non-uniform. So, I

have e raise to minus beta j over some over, so I get non-uniform pdf, if I have an extra

constraint. So, above the well behavedness of the probability, I have two constraints here.

One that the probability is well behaved the other is the probability the average value of

the outcomes is fixed ok. 

So,  I  have two constraints  here.  And I  have only one constraint  here ok.  And these

constraints basically manifest in the type of PDF that we obtain ok, so that is the end of

discrete probabilities. We will now move on to case of continues probability distributions

ok.
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So, I am going to talk about the case of continuous probabilities. So, I am going to call

this as not as pdf, but actually just probabilities here, because there discrete probabilities.

And similarly here to sort of the more accurate, I will call it as probability ok. So, let us

look at the case of one dimensional gas ideal gas ok. So, let say the ideal gas is some

temperature T. Now, I know by equipartition theorem that per each a degree of freedom

the energy contribution to an ideal gases half k of T half k T ok.
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So, I can take the velocities for the case an ideal gas to be just along the line x axis. So,

this is the v axis, v is the velocity ok. So, I have some distribution of v and I know that

the distribution is Gaussian or Maxwell Boltzmann like. And I know the answer to be so

will derived this distribution. And so what we really know here in these cases that my

kinetic  energy average kinetic energy per degree of freedom is basically half k T by

equipartition theorem ok. And I want to know what is my PDF, let us say is unknown

although we know from the standard literature that the PDF is supposed to be Maxwell

Boltzmann like, but there is no formal group presented to you so far.

So, the task of this section is to show that the only PDF that is satisfied by the particles

here is Maxwell Boltzmann PDF or Gaussian PDF ok. So, we will prove that. Now, what

are the ingredients needed for this proof? Well,  first is definitely I need to know the

function of that function that I am going to optimize or maximize. And that function is

basically my entropy which is basically my entropy. And just as you know in the case of

a discrete case, I will take my entropy is to be instead of taking summation I will take it

as a negative integral of p of p ln p of p dv ok. And the limits here are going from minus

infinity to plus infinity ok.

Now, if you are bothered by the fact that this p of p is dimensional and I have taken

logarithm of it, where it is not dimensional, because I have divided by p upscale of PDF

which takes care of non-dimensionalization ok. So, this PDF are all non-dimensional and

consequently  this  velocity  scale  is  also  non-dimensional.  So,  the  all  this  non-

dimensionalization leads to a constant of entropy hear that have taken to be conveniently

0, because at the end of the day I do not require exact values of entropy, I required a shift

or the change in entropy. So, when you take for any practical purpose delta S, you can

simply change this is fact simply go to 0, because it is a constant.

So, I am not writing it, but I am aware that this p of p non-dimensional ok. So now, this

is my entropy or the function that I am going to maximize. The second ingredient that I

must observed or I must you know take into consideration is the fact that my PDF that I

am changing are normalized ok. So, p of v is normalized, very important ingredient. So

which means, my constrain g is basically integral v going from minus infinity to plus

infinity  p  of  v  dv  minus  1  which  is  equal  to  0  my  PDF is  normalized  that  is  my

constraint.
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My third  ingredient  is  one  more  constraint.  I  know from equipartition  just  now we

discussed I know that half m v square average is just half k T. So, this basically gives me

my constraint h I am just going to write down my constraint h as simply integration v

minus infinity to plus infinity the average value of half m v square which is nothing but

half mv square a measured in the distribution minus half k T is 0 ok. So, average value of

any function of v is  nothing but the like we said this  is  nothing but this  quantity  is

integral is nothing but average value of half mv square ok. So that is what I have written

here right.

So, now I have the function that I want to maximize. I have my two constraints g and h

under  which  I  am going to  maximize  my function  S.  So,  I  will  use the  concept  of

Lagrange multipliers and that is straightforward, it is just the same Lagrange multiplier

business  that  we  have  done  in  the  context  of  discrete  probability.  And  it  is  very

interesting.  At  the  end  of  this  optimization,  you  will  see  and  natural  emergence  of

Maxwell Boltzmann distribution.

So, let us do that. And instead of firmly established in our heads why nature why mother

nature  always  prefers  Gaussian  distribution  or  Maxwell  Boltzmann  distribution  for

velocity for a system which is isolated has been given enough time to evolve and reach

thermal equilibrium at temperature T that is only reason for this observation is that a



Gaussian distribution is the distribution of maximum entropy. So, let us do that. So, same

principle maximization principle leads us to the following equation.
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I will write down the following equation. I will write down our Lagrangian as function f

this f is the entropy minus lambda times g, where lambda is the Lagrange multiplied

corresponding  in  the  constraint  g,  another  Lagrange  multiplier  which  is  beta

corresponding to the second constraint h. Let us write down what are these quantities.

So, my function f is nothing but the entropy which is minus of integral v going from

minus infinity to infinity p of v ln p of v d v minus lambda times g which is nothing but

use the space wisely. And now you simply take derivatives and say that this Lagrangian

is maximized by some PDF which is p and call it as so this is the p that maximizes it.
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And so I have to set this to 0, and if you take the derivative this simply becomes I am

going to write down the entire thing under the integral. So, from the first term I get 1

plus ln p of v. So, I am going to take derivatives respect to p of v fine. And for the second

term I get lambda times 1; and for the third term I will get beta times mv square by 2 that

is it this is an integral on v which is 0, I have already written 0. So, it is not required now

you can actually write down 0 on the right hand side to sort of and we shall remove a 0

from here ok.

Now, we can  see  that  the  integral  is  0  for  all  values  of  integrand  for  any arbitrary

integrand cannot specify that a p of v has to be a certain type only then this is 0 ok. So, I

can say that for this entire integral to be 0, my integrand has to be 0 ok.
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So, which means I will write on my integrand as 1 plus ln p of v plus lambda plus beta

mv square by 2 as 0 ok. And so, you can simply right down p of v as e raise to minus 1

minus lambda into minus beta m v square by 2. Now, we can see that this is also a non

uniform PDF ok.  So,  let  us  normalize  it.  So,  I  am going  to  find  the  normalization

constant ok. This is nothing but the integral minus infinity to plus infinity p of v d v and

that will come out to be e raise to minus 1 minus lambda integral of a Gaussian is square

root of pi by a pi by a, a itself is beta m the 2 pi fine.
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So, then our normalize PDF I will call it is as a velocity distribution becomes p of v as

simply the PDF that we have written divided by the normalization constant it is e raise to

minus beta mv square upon 2 into square root of m upon 2 pi k B T. So, this is basically

the Gaussian or Maxwell  Boltzmann distribution.  So, this  is  the Maxwell  Boltzmann

distribution of velocities. You can also obtain Maxwell Boltzmann distribution of speeds

by simply writing the distribution in terms of molecular speed not velocities.

So,  the  fact  that  here  is  the reason why we get  a  normal  distribution  or  a  Maxwell

Boltzmann distribution is the fact that this is the distribution of maximum entropy. So,

this basically is a formal proof of why you see certain types of distribution more often

than the others, and especially for equilibrium system this is the preferred distribution or

in fact this is the only distribution not a preferred distribution. 

So, we end the lecture here. And this basically completes the chapter 1 of our syllabus. In

the next chapter, we will talk about basic postulates of statistical mechanics. And in this

context  we will  discuss  various  important  ensembles,  and discuss  examples  physical

example where the ensembles are relevant, ok. So, we end it here.


