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So we were in the process of examining the velocity auto-correlation function for a Brownian

particle moving in a constant magnetic field, a uniform constant magnetic field. And if you

recall, our final answer said that this quantity which I call 
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the correlation function apart from normalization, I multiply it with what happens at t equal to

zero, this thing here is k T over m, then we have got a complicated expression for it here

inside. 

There was of course damping factor, so e to minus gamma t and then that gets multiplied for

a field B, which was B times some unit vector n. 

(Refer Slide Time 01:14)

This gets multiplied by n i n j plus delta i j minus n i n j cos omega c t where omega c is the

cyclotron frequency, q B over m, 

(Refer Slide Time 01:37)



q being the charge of the particle, so there was the second term minus a third term which is

epsilon i j k n k sin omega c t. And this was true for greater than zero, equal to zero. This is

the expression we derived. 
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So if  you check  I  rearrange  some of  the  terms  and then  after  simplification,  this  is  the

expression you get, Ok. Now the first thing you notice about it is that gamma does not appear

anywhere here at all. It appears only here. So the effect of dissipation is taken care of entirely

by this factor exactly as in the field free case. The moment you have a field switched on, you

have this expression. Of course if you switch it off, you go back to just this expression with

delta i j because this is zero, that is zero, this is zero identically and you end up with just the

original expression as before. 

Now we would like to find out what happens for negative values of t? We derived for positive

values. We would also like to examine what does it do for negative values of t? Now recall

that in the field free case, we had v i of zero, v j of t in equilibrium, this was equal to k

Boltzmann T over m e to the minus gamma modulus of t. 
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The way we derive this, this thing here is by pointing out that this must be an even function

and the way to get the evenness of this or oddness property whatever, the symmetric property

of this, is to put in, if you like time reversal and ask what the whole thing does under time

reversal exploiting stationarity. 

So if you recall in the field free one-dimensional case, it started by saying v of zero, v of t in

equilibrium, since it is a stationary process, so equal to implied by stationarity of the random

process v, this was equal to v of minus t, v of zero. 
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(Professor – student conversation starts)



Student: In the earlier formula there was delta i j

Professor: There should be delta i j, thank you. So in the one-dimensional case I said that the

origin of time does not matter. So I subtract t from each of these arguments and I end up with

this  expression  here.  This  immediately  of  course  says,  that  since  these  are  commuting

variables, this immediately says that this is a symmetric function of t. That's the reason we

got hold of e to the minus gamma modulus t, yeah. 

Student: But for field free case, if we derive from the first formula, we will have a cos term in

0:04:49.6, entirely cos over here. 

Professor: n is zero in that case, I mean there is no n.

Student: omega c is there?

Professor: This is gone; omega c is zero, of course, right. And this goes away, this vanishes.

So I want you to appreciate that we are looking at what happens at t negative, not by doing

another calculation but simply arguing that this is the stationary random process. So I can

subtract  any  number  I  like  from the  argument  of  the  whole  function,  from all  the  time

arguments. 

(Professor – student conversation ends)

When I do that it becomes an even function of t, Ok. So the argument was it is k T over m, e

to the minus gamma modulus of t using stationarity. We can do pretty much the same sort of

thing and this term will become modulus t here. But let's do this systematically. Let's ask

what happens to this in the general case. 

So  in  general,  I  already  mentioned  that  even  in  the  presence  of  the  magnetic  field,  the

velocity continues to be a stationary random process because there is no energy being given

to it; there is no dissipation involved with the magnetic field or anything like that, Ok. So if

you grant that, then it is immediately clear that in general, v i of zero, v j of t, if I call this

quantity, let me call this equal to phi i j of t. The reason I am calling it phi is because when I

divided this by its value at t equal to zero, I call that C i j of t. I don't want to use the same

symbol, 
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phi i j is... 

So this is equal to v i of minus t v j of zero by stationarity. I subtract t from both sides, right.

But this is equal to v j of zero v i of minus t, 
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which is equal to phi j i of minus t, Ok. Because these indices get interchanged which did not

happen in 1-dimensional case. So this tells us that this correlation function C of t, this matrix

C that we computed yesterday is such that it is equal to C transpose minus t 
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because of this property. It becomes transpose and then the argument becomes minus t, right? 

So it  immediately follows whether  I  use phi or C, doesn't  matter, they just  differ over a

multiplicative constant k T over m. So this immediately follows that C i j of t plus C j i of t,

this is the even part of the tensors of C i j of t divided by 2, of course. The minus part is the

odd part of this tensor. So given 
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any second rank tensor t i j, I can write t i j plus t j i over 2, that is the even part and the odd

part, the anti-symmetric part is t i j minus t j i over 2. 

So this is the symmetric part of the tensor correlation tensor, this is the anti-symmetric part.

But by this property this is equal to C i j of t plus or minus C i j of minus t, over 2,
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using this property. It follows therefore that this correlation tensor C i j of t is such that it's

symmetric part is an even function of t, where there is an even function of t, and its anti-

symmetric part is an odd function of t. That's a general property. 

As soon as you have a correlation matrix for some random variable and it is stationary, it

follows that the even part  of the correlation tensor, the symmetric  part  of the correlation

tensor is an even function of the argument and the anti-symmetric part is an odd function of

the argument. We will use this property later on, Ok

(Professor – student conversation starts)

Student: And it does not require detail that…

Professor:  This  doesn’t  require  you  know what  the  function  is  at  all.  I  have  only  used

stationarity at that end over there. We will use this property. It is a crucial one. We will use

this symmetry property. But you can see how this is, how it actually is tallying with what

goes on here. We need to write down what this thing is for t less than zero and let's write it

down in the following way. 

(Professor – student conversation ends)

What does this do, for this t less than zero, less than equal to zero, v i of zero v j of t is equal

to, none of this gets changed k T over m, e to the minus gamma modulus t, you have to put a

mod here exactly as in the field free case, multiplied by whatever is inside here is going to be



the time reversed value of whatever is in the bracket for t greater than zero. So you have to

reverse time, from t to minus t, Ok. And what happens if you do that? 

You get n i n j plus delta i j minus n i n j cos omega c t and then what do I get? The next term,

it is not just setting t to minus t. 
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That's time reversal. But when I reverse time and let the system run backwards I should also

change the sign of the magnetic field. It is an externally applied magnetic field. So on the

time reversal; I have to change its sign as well. You can see this happening even in Newton's

equation for a charged particle. 

If you look at what the Lorentz force does, the equation is F equal to d B over d t equal to q

times v cross B. This is an external applied field. 
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Now I make the time reversal  transformation.  t goes to minus t,  then p goes to minus p

because this is m d r over d t. And r doesn't change, position but the momentum changes sign.

Whatever  was going in this  direction now goes in the backward direction,  right?  So this

changes sign, this changes sign. Therefore this does not change sign d B over d t. 

And if the equation has to be the same under time reversal invariance, in other words we

impose the fact that Newton's equation for charged particle is invariant under time reversal.

This is an imposition from outside. If you impose that condition, then since v changes sign, B

must change sign, Ok. So does the electric field change sign? No, if you put in electric field

also, it is q times E, that doesn't change sign because this side doesn't change sign. 
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So this cannot change sign under time reversal. But this will change sign. B will change sign. 

You can kind of, physically understand it  by saying in heuristic terms; look finally every

magnetic field is produced by some current loop of some kind. If there is time reversal, then

that current flows in opposite direction and it produces the field in the opposite direction, Ok?

So B must go to minus B which means that n k must go to minus n k. So under time reversal,

goes to minus n sub k. 
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So this term remains minus epsilon i j k n k sin omega c t. 
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And this expression is true for all t. 



We have taken care of this here for negative t. 
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So that's the exact expression for the correlation function for all t. And now you can verify

explicitly that this property is satisfied. So check out that the symmetric parts of the tensor is

in even function of t and the anti-symmetric portion is an odd function of t. That appears by

inspection because this tensor, the symmetric part comes from here, here and here. This part

is anti-symmetric in i and j. That's an odd function of t. This part is the symmetric part of the

tensor and that's an even function of t, Ok. 

If that did not happen, I would really be in deep trouble, Ok, worry about what's going on. So

this gives you a check on what the t reversal properties are. It helps. That symmetry is valid,

it is applicable here too. It's a general statement. So it better be true here too. Now given this,

the next step is, well, we can proceed in many directions, but the next step we could do is the

following. 

We saw that for a single free particle in one dimension, we saw the diffusion coefficient got

related, imposition got related to the velocity auto-correlation. We saw in fact, in that case,

we saw that x of t minus x of zero whole square went asymptotically very large t to 2 d t. And

we got an expression for this d, k T over m gamma in the, in this Langevin model but we saw

that from first principles, if I just took 
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displacement to be the integral of the velocity and then impose the fact that velocity is a

stationary process, I ended with a statement that D was equal to integral from zero to infinity,

d t v of zero v of t. The equilibrium autocorrelation function 
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of velocity. So we got this explicit formula here. 

Now the question is what happens now in this problem? What would happen in this case?

Well you can kind of see intuitively that the portion that is not going to, that’s going to be

unaffected would be along the direction of the field, along the vector n because there is no

magnetic force in the direction at all but in the perpendicular or transverse directions there is

a force which tends to make this particle go in loops, go around the direction of the field in



cyclotron orbits. So it is diffusing, it is being kicked around but every time it is being kicked

around, it is still trying to curve back on itself, Ok. 

So  I  would  expect  the  diffusion  coefficient  to  be  less  in  the  longitudinal,  more  in  the

longitudinal direction unaffected from the free particle case and in the transverse directions, I

had expected to be a little smaller. The fact that it diffuses; there is no question because this

integral exists because of this factor and these are just oscillatory terms here, Ok. 

So the question is what is the generalization of this formula, this is the famous Kubo Green

formula, a special case of it 
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and when we do linear response theory in 
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some detail, we are going to work this formula out, we are going to explicitly prove a much

more general version of this formula for all kinds of susceptibilities or response functions.

But let me state the result here. 

What happens now is that diffusion becomes a diffusion tensor, the coefficient is a set of

coefficients, diffusion tensor denoted by D i j, Ok, because I also have to tell you where does

this fellow come from, what does this D i j look like? And it comes from the fact that the

probability  density  in  position  obeys  the  analog  of  the  diffusion  equation,  little  more

complicated  than  free  diffusion  and  that  involves  the  set  of  coefficients  which  are

summarized in this diffusion tensor here. 

We will do this when we write the general formulism down the linear response theory we will

come back, we will revisit this problem. But the answer can be written down here and you

can see from physics in it, 0:18:24.3 so we can see, this tensor is defined as the symmetric

part, so it is an half D t phi i j of the plus phi j I of t, where phi is the auto-correlation. 
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So this fellow here stands for v i of zero, v j of t. We can therefore compute it; we can go

back here and compute it.  We need only the symmetric  part  of this  tensor  therefore this

doesn't contribute at all and so only this portion would contribute here. And this is an easy

integral to do. First of all, this term is immediately obvious, it is e to the minus gamma t,

that's just 1 over gamma. This term, e to the minus gamma t cos omega t which is gamma

divided by omega square plus gamma square, omega square plus gamma square. That's it. So

we can write the answer down explicitly, right

And it turns out, D i j, this thing here is equal to k B T over m gamma as before multiplied by,

that portion remains as it is, n i n j plus delta i j minus n i n j gamma square over gamma

square.  So that's  the answer. As I  said this  won't  contribute  at  all  because it  is  the anti-

symmetric part of tensor and does not contribute. 
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Now can you interpret this? 

For instance you can see directly what is going to happen. For instance, suppose n was equal

to zero zero 1, so the field is in the z direction. And we have the x-y plane. There is no force

in  the  x-y  plane;  sorry  there  is  no force  in  the  z  direction  because  the  field  is  in  the  z

direction. Then n i, the only term that contributes, they are the diagonal terms that you can

see, and now what will happen if it's 3, d 3 3, that's going to have a contribution 1 from here.

And this portion cancels out and it is the original diffusion constant. 

On the other hand if you look at 1 1 for example, in this case, then this term is zero, doesn't

contribute, that portion is zero, this gives you 1 and it gives you gamma squared over gamma

squared plus omega c squared. So the diffusion coefficient, the longitudinal part equal to k

Boltzmann T over m gamma as before, but the D in the transverse direction is equal to D

longitudinal multiplied by this term. So it is therefore 
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attenuated. It is decreased. 

If omega c becomes much larger 
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than gamma square, then you can see it decreases by a factor of gamma square over omega c

square, Ok. That's exactly what this says. You don't have to go to a special case like this. This

thing here is a projector in the direction of n and that thing there is 1 minus the projector, Ok.

So this is, you know from ordinary vector...

(Professor – student conversation starts)

Student: 0:22:46.3



Professor: Pardon me

Student: Projection onto the transverse direction?

Professor: It is the projection on the transverse direction because well, all you have to do to

verify  it  is  multiply  both  sides  by,  contract  it  with  n  j  or  something  like  that.  And  it

immediately tells you D i j n j just has n i here because n j n j is 1 when you sum and this is

obvious what you have here, Ok. 

(Professor – student conversation ends)

So you know, when you do elementary vector algebra in 3 dimensions, you learn about dot

product and the cross product between 2 vectors and so on, but there is also a tensor product

of  2  vectors  but  you don't  write  anything  in-between.  That  is  called  a  diadic  in  ancient

literature, just another word for tensor of rank 2, but when they did vector analysis; people

used this term throughout 0:23:43.9 in the beginning. 

So this quantity here is such that it is a 2 headed object, 
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it is such that no matter what vector you operate this on, whether from the left or the right,

you produce a component of the vector in the direction of n. Because you could take this

vector and dot with a, then there is a component of a along the unit vector n, multiplied by the

unit vector n, so it gives how much of that vector points along the direction of n. So you have

an arbitrary vector a and this is your unit vector n and this fellow is actually measuring this,

this quantity is measured 
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here, right? 

So this is the projector, it is the projection operator n n. If you took 3 orthogonal directions

and projected them out, then you get the identity operator because when you apply that to any

vector, you have taken all the 3 orthogonal components of this vector and added them up, so

you get the original vector itself, right? 

If for instance you took this, e x, e x plus e y, e y plus e z, e z that's the projection operator

which when applied to any vector will give you the vector itself. So what should this be? This

should be equal to the identity operator. 
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In any linear space you sum up all the projection operators and you get the identity operator.

This is like saying that if I have an abstract space with eigenvectors, with an orthogonal basis

phi n phi n over n, this is equal to the identity operator. In Dirac notation this is the way it is

written. 
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But it is the same statement out here. 

So it is clear that written in tensor form, this fellow is being written as n i n j in tensor form. 
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And the complementary part of it, if you for example, take n to be e x, the rest of it is this

fellow  which  is  1  minus  this  guy  here,  so  1  minus  n  n  is  the  projection  in  the  plane

perpendicular to n of any vector, the transverse components which you may further resolve



into 2 orthogonal components, but it doesn't matter. This is the complement. This multiplied

by that must be zero. 

When you project in some direction and when you project in the orthogonal direction, when

you operate the two, it must be zero. So this fellow written in tensor form is of course delta i j

minus n i n j. So that's what we have been doing all along. So this part is a longitudinal part,

this is the transverse part. Now it is crystal clear 
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immediately. So this is the longitudinal part, and this guy here is the transverse part of this

tensor, 
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So in 3-D free particle, free particle, free Brownian particle namely no, for this fellow the

conditional density v at time t given an initial velocity v zero, this is just the generalization of

the Ornstein-Uhlenbeck distribution written component-wise and multiplied together, three

Gaussians and you end up with m over 2 pi k Boltzmann T, 1 minus, you have minus 2

gamma t, that is how the variance goes, this whole thing to the power 3 halves, exponential of

minus m into v minus v naught vector e to the minus gamma t whole squared, that is how the

mean drifts  to the origin.  There is a vector here,  divided by 2 k Boltzmann T times this

quantity for the variance. 

That's the 3-dimensional Ornstein-Uhlenbeck distribution, Ok. Now the question is what is

this in the presence of a field? 
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What would this be? 
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I am already telling you that this remains a Gaussian, that the asymptotic distribution is still

the Maxwellian, that the dissipation is taken care of entirely in this factor gamma t; that this

will not change. This doesn't change. None of this changes. How does the field show up?

What will it do? 

(Professor – student conversation starts)

Student: k B T by m … 0:30:32.4

Professor: So think about this in this fashion, whatever be v naught, this distribution is finally

going to go with this kind of square, Gaussian in this fashion here. So when you start with

some vector, this velocity, and as t tends to infinity, the average velocity is going to shrink to

zero. This is the mean, instantaneous mean for the given v naught. So clearly this vector is

reducing in length due to dissipation. 

That  feature  0:31:10.4  is  still  going  to  be  true,  right  but  as  it  reduces  in  length  due  to

collisions, this mean value, what else will it do? It will rotate round the direction of the field,

Ok. And how does it do so?

Student: omega c

Professor: So it will rotate with a cyclotron frequency about the direction of the field, right?

And how do you implement that? I already wrote down an expression when we derived this

correlation function. I already told you that we exponentiated the generator of this rotation

matrix which was m omega c t and that is how it relaxed and that gave you terms proportional

to cos omega c t, sin omega c t etc. So in the presence of the field exactly the same thing goes



through and this is now intuitably clear. Whatever I am going to write down will be intuitably

clear. 

(Professor – student conversation ends)

p is present then p of v t v naught is equal to the same thing but you don't get this here. You

get a certain u here which will of course depend on t and v naught and then there is e to the

minus gamma t. That's the effect of the dissipation, 
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Ok. And this u of t v naught, at any instance of time, it is rotating round the direction of the

field.  It starts at v naught at t equal to zero and rotates round, precesses round along the

direction of the field. 

So that comes about by e to the power M omega c t acting on v naught. Take this to be a

column vector and take this  rotational  matrix  and since it  is time dependent,  there is  a t

dependence here and that's it. That will tell you how, 
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if you started with v naught, this vector and this is the direction of the field, how this vector

precesses around it. This is what this 
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portion does. 

Simultaneously its length is coming down according to this factor. So it is this thing here

squared, and that's the answer. 
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But we can write this down, because remember M cube was minus M, so the exponential can

be computed and not surprisingly this is equal to the identity operator plus M sin omega c t

plus M squared cos omega c t acting on v zero 0:34:35.0, Ok. 
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So that's what, and you can work this out, I leave you to figure out, simplify this, and write

down what it is. I am not 100% sure about the factor here plus or minus but you can check

this out, I believe this is M 0:34:59.0 but you can check this out explicitly. Is it  1 minus

omega c t? I think so. 

(Professor – student conversation starts)



Student: 1 minus cos omega t

Professor: Yeah it is 1 minus cos omega c t, that's right, for the same reason as before.

Student: i minus n, minus n sign, minus sign
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Professor: No, M cubed is minus M so that brings in the minus.

Student: e to power minus m omega t. 

Professor: Whether this is plus or minus?

Student: That was minus

Professor: This was a minus? Check this out

(Refer Slide Time 36:03)



explicitly but this is physically clear what is happening. This is the interpretation and that's

the way the Ornstein-Uhlenbeck distribution gets modified. As t tends to infinity, you can see

that  this  goes  away  and  you  are  back  to  the  Maxwellian.  So  this  is  a  very, very, very

appealing physical picture that in the presence of the field, the velocity keeps doing this but

because of the particles colliding against it, it damps out to an average value of zero while it

is, so it is some kind of helical motion which goes to zero, Ok. 

(Professor – student conversation ends)

We haven't yet written down the differential equation of which this is a solution. We do that.

We will have a general formulism to write it down and we will be able to write it down in the

presence of the magnetic field. It is not very hard, quite straight-forward so we will do that

eventually. So we will stop here with this. In fact we will stop here with the Langevin model

itself and now start with the formalism of linear response theory so that we can handle these

questions much more generally even without a specific equation of motion like the Langevin

model. 

So we will start now our study of linear response and again I have to say what our target is.

We start by assuming that, so our problem is the following. The general class of problems is

the  following.  We  start  by  saying  that  we  have  some  system  which  is  described  by

Hamiltonian, 
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which is time independent and the system is in thermal equilibrium at a temperature beta in

contact with the heat bath. So the system consists of, this is described by some Hamiltonian H

naught, unperturbed Hamiltonian and it is a function of some dynamical variables, qs and ps. 

We will 
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also look at the quantum case simultaneously. Whenever there is a quantum case coming up, I

will  say  so  explicitly.  But  we will  look at  both  these  simultaneously  because  there  is  a

formalism which applies to both of them. The only difficulty is in quantum mechanics, you

know that different observables are represented by operators and some Hilbert  space and

these  operators  don't  necessarily  commute  with  each  other.  And  the  whole  essence  of

quantum mechanics is in the non-commutativity of this whole business. Capturing that by any

classical  manipulation  is  not  possible  in  any  simple  way  at  all.  So  this  is  intrinsic

quantumness, if you like, the non-commutativity and we have to use operators to describe

that, Ok. 

We will  take  adequate  precautions  for  that.  But  to  the  extent  possible,  we will  develop

formulisms in the matched way, and the way to do this is to say, in classical mechanics, we

would write down Hamilton's equations of motion and then we deal with Poisson brackets

and so on,  in quantum mechanics we write  down the Heisenberg equations of motion or

observables  directly  and you deal  with commutators  instead of Poisson brackets,  Ok. As

opposed to the usual Schrodinger equation where you write down an equation of motion for

the wave function itself, for the state vector itself, that's the so-called passive picture. 



But when you do classical dynamics, you hardly ever do that. You hardly ever say in classical

mechanics, when you are looking at the particle or a body moving, you don't talk about the

distribution of probability density in phase space or anything like that. You write directly the

dynamical variables and write their equation of motion and all, the active picture. 

In quantum mechanics, the conventional way of doing it using the Schrodinger equation is to

go and look at the passive picture. So you make a statement about the way the state vector

evolves and the state vector is supposed to give you probability densities and so on with some

further manipulations. So you are making the statement about how the distribution evolves

and you say the dynamical variables themselves, the averages are computed with respect to

that  changing  distribution.  That's  the  passive  picture  which  is  very  natural  in  quantum

mechanics but it is very artificial in classical mechanics. But these are completely equivalent

to each other as we will see as we go on. So we will mostly use the Heisenberg picture in

quantum mechanics or the corresponding dynamical  evolution by Hamilton's equations in

classical mechanics. 

So the general problem I have is the following. You have an unperturbed Hamiltonian. But

this system is now in contact with the heat bath at a fixed temperature and is in thermal

equilibrium. So physical quantities are evaluated, average values of physical quantities like

some, let's call it some observable B which is in general the function of the qs and ps of the

system, it would have any number of degrees of freedom. This collectively denotes all the

generalized coordinates, all the generalized momenta, conjugate momenta, the average value

in equilibrium, to avoid confusion let me well necessarily write this outside, this is equal to,

in the canonical ensemble, it's equal to formally trace of a density matrix through equilibrium

B divided by trace of rho equilibrium. This is the average value in equilibrium. 

I presume you are familiar  with this formula. This is equilibrium statistical  mechanics.  Is

everybody familiar with this, comfortable with this? You could ask what's meant by trace. Of

course if I write the usual quantum mechanical sense where I write finite matrices for these

traces, for these operators then it is very clear, you take the diagonal elements and sum them

up. But what do we mean by it classically? 

What I mean by this 
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is this rho equilibrium is e to the minus beta Hamiltonian of q and p. That is the equilibrium

density matrix, density operator and this stands for integral d q over integral d p over all the

qs and ps, over all of phase space 
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times B of q p e to the minus beta the Hamiltonian H naught of q p divided by this fellow

here is d q integral d p e to the minus beta H naught of q and p. 

This is the normalization factor, average, statistical 
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average and the idea is that in the canonical ensemble the weight factor 
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in free space is e to the minus that Hamiltonian over k T. beta will always stand for 1 over k

Boltzmann T, the inverse temperature always. I will try not to use beta for any dynamical or

any other variable or parameter, 
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Ok. 

So this is what is meant by the trace in the classical case. All integral or all phase space this

fellow here, now this term, this fellow here is just in fact the normalization factor 0:44:02.4

for the probability. 
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So you could 0:44:05.0 in the density operator by saying this divided by this number here, is

in fact my probability distribution. Then it is a normalized probability density function. There

is a name for this. 



What  do  you  call  this  in  equilibrium  statistical  mechanics?  It  is  the  canonical  partition

function, this fellow here, this integral, is Z canonical. 
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It  is not a function of qs and ps because they are integrated over. It is a function of the

temperature,  this  parameter.  So  putting  a  system  in  contact  with  the  heat  bath  drives

fluctuations into it and we don't need to know what this heat bath is actually made up of. We

don't  need  to  know the  details,  what  are  the  degrees  of  freedom and  so  on.  The  entire

ignorance of heat bath is subsumed in a single parameter called the temperature. 

So this is the canonical, of course if you do this in a finite volume and things like that with a

fixed  number  of  particles  then  it  is  a  function  of  those  variables  as  well,  microscopic

variables. But we are going to look at the case where I put this equal to 1, so I put this trace

rho, I am going to put trace, from now on I take trace rho equal to 1. 
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I will redefine my density operator in such a way, if this is divided by that number so that the

whole thing is traced out to 1, Ok. 

Now remember that when we do quantum mechanics, I am not assuming that the system is in

any one pure state. So when it is in finite temperature, you cannot associate with it in general,

your state namely state vectors and Hilbert space. You can only associate a statistical weight

to it and that's given by the partition function Ok, by this, the density operators. So this is

what we are going to do. So this is what it is in equilibrium; and now for the problem. 

The problem is we are going to say this fellow gets perturbed, the perturbed Hamiltonian is

some H of q. p and possibly t which will in general be H naught of q and p plus a perturbation

which I am going to regard as small in some sense and it involves some operator A of q p

times the time-dependent c number force, so F external of t, then we explicitly say it is an

applied force here. And A is some dynamical variable pertaining to this system to which this

force couples, through which force is coupled to this system, system couples with the external

force, Ok. 

Now you could ask, why this minus sign? Suppose it were a mechanical force, right, then the

force on the object is F external of t. Then I associate a quote unquote a potential with it

which is minus x times this F external if it is one-dimensional motion. Then minus d over d x

of this fellow is supposed to give me the force and of course that will give me F external. And



this term has dimensions of an energy, quote unquote a potential energy even though there is

a time dependent force here. 

So to keep track of that, I have a minus sign here, no other reason. And to take care of the fact

that this could be a very general kind of force, not necessarily a mechanical force coupling to

the displacement, I have a form like this in general. So A refers to the, of course there could

be several forces, maybe I have A i, F of i, that is a generalization which is trivially taken care

of. 

So this is the general form 
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which  we  have  but  in  some  physically  measurable  sense  this  is  supposed  to  be  small

compared to that and now I want to know what happens to averages. So I take any other

quantity B and I ask B equal to what? This will of course be a function of t. 
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So I would like to know what function of t it is. So in general, this fellow is going to be of the

form B equal to B in equilibrium which is what it would have been using this rule, yeah, plus

a delta B which is going to be a function of t, some average value and the whole point is to

find this. 

So this is our target. We will choose all kinds 
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of As here, all kinds of Bs here. B could be A itself. You could ask what happens to A itself.

So that's the general problem. And we are going to work to first order in this perturbation, so

everything will be to first order in this external force, and then the assumption is, if this is



very small, first order term alone, then this is infinitesimal or first order alone which is why I

put a delta here. That's a rationale of this, Ok. 

And the target is to find this under very general conditions. This could be classical, this could

be quantum mechanical, this could be horribly complicated; we don't care. We are going to

try to find the formulism to tell me what this quantity is, Ok. So here onwards that's our target

to do this, so let's see where it takes us. Ok.


