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So let's resume our discussion of the velocity process for Brownian particle in a fluid. And

just to recapitulate very quickly what we discovered, we found that when the particle obeys

the Langevin equation then its velocity process, this random process driven by white noise,

Gaussian white noise is exponentially correlated. 

So we discover that this quantity v of t naught, v of t naught plus t was a function only of

time difference t between these 2 arguments and this was essentially equal to k B T over m e

to the minus gamma t in this fashion. So I might as well set 
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t naught equal to zero and write it as v of zero v of t equal to k B T over n e to the minus

gamma t. 
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Now we also saw, I am not sure if we proved this but we also saw using stationarity that this

very trivially implies, if I subtract minus t from each of these arguments, this also implies that

v of minus t v of zero, I set t to minus t here is going to give us modulus there. So in general,

it is clear that this quantity satisfies this expression, 
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Ok. 

So it is a symmetric function in t and it dies down exponentially on either side of the t axis,

Ok, in equilibrium. We further that as a consequence of this, by the way this implies that

there is a time scale in the problem, gamma inverse which we could actually estimate by

using the fact that we put this particle in a fluid with viscosity eta for instance and it has a

radius r, then we saw that m times gamma was equal to 6 pi r eta where this is the viscosity of

the fluid and this is the mass of the particle 
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and if you estimate this mass to be of the order of 10 to the minus 15 kilograms, gamma turns

out to be of the order of 10 to the minus 6 or 10 to the minus 7 second inverse, so gamma



inverse turns out to be about 10 to the 6 or 10 to the 7, r micron sized particle 10 to the minus

6, eta is 10 to the minus 3 in SI units, Standard International units, newton second per meter

square or something like that. 

Then  we  discovered  that  there  is  a  time  scale  in  the  problem which  is  of  the  order  of

microseconds or tens of microseconds and we must compare it to the other time scales in the

problem. The other time scale we have is actual interaction time between molecules and that

is of the order of 10 to the minus 15 seconds or less and then there is a time scale between

collisions of particles. That is of the order of picoseconds or less and this time scale is another

6 orders of magnitude higher. 

Now of course you can consider times much, much greater than gamma inverse and that's the

diffusion regime in which the mean square displacement of the particle goes linearly in time

with the diffusion constant, this coefficient D given by k T over m gamma; 
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the diffusion coefficient of this massive particle in the fluid, not of individual molecules. 

We also discovered as a consequence of this expression, we could actually write down what

the displacement is, the mean square displacement is, and we found that if you define an X of

t to be equal to little x of t minus x of zero and you computed the 
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mean square value of this quantity X squared of t, not the conditional mean but the actual

mean of this quantity, computed the full equilibrium average value of this quantity, then this

turned out to be k B T over m gamma square times gamma t minus 1 plus e to the minus

gamma t. 

That was the exact expression and all we needed was to use the fact that the position is the

integral of the velocity and that's it. So with that we immediately got an expression which

went like this. This of course goes for gamma t much, much greater than 1 to twice d t where

d is given by this expression 
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here. In other words that's the diffusion regime. 



But for all times it is exactly equal to this, in this model as far as this model goes. Now you

can ask further questions of this. You could ask what does this quantity itself do for instance

and what's its average value and so on. I am going to leave this as an exercise, just one step,

first step for instance if you compute what is X bar of t, this is the conditional average, the

conditional average for a given v naught and a given x of zero, then this is easy to find. 

Notice that a simple integration immediately gives you x of t is equal to an integral from zero

to t d t 1 v of t 1, 
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and we know what v of t 1 does, the conditional average, this quantity v of t 1 bar is equal to

v naught e to the minus gamma t plus the portion that depends on 
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the initial, depends on the random force, the eta and that averages to zero. 

So if I compute this integral here, this thing becomes equal to, all that I need to do is to plug

this in, v naught over gamma 1 minus e to the minus gamma t. All I have done is to substitute
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this expression here and compute it here and this is equal to X bar of t. 
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So the average value, conditional average of the displacement is this quantity here, Ok.

Of  course  if  I  take  a  full  average  now over  v  naught,  it  will  vanish  as  it  should.  The

displacement should vanish. Having got this, you can now ask what's the variance of this

quantity. Not of this quantity itself but the deviation of this quantity from its mean. So the

natural definition of delta X of t, capital X of t would of course be X of t minus the average

value, the conditional average of X of t. 
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That's obviously the natural definition of the deviation from the mean of the displacement,

not the position but the displacement itself. 



And then one can ask what is delta X of t whole square, the full average? You have to take the

quantity, square it in the usual way and take the full average. If you use this fact, what we

need is information about this X bar of t obviously in this expression. We use that information

in, then it is not hard to show that this becomes equal to d over gamma times, oh incidentally,

we could also have written this as d over gamma times gamma t minus 1 plus gamma e to the

minus gamma t, I would substitute d equal to k T over m gamma here. 

So if I do the same thing here for this variance, then this is equal to, this turns out to be equal

to, not sure if I remember this expression completely but let's see if I can mentally write this

out, 2 gamma t minus 3 plus 4 e to the minus gamma t, yeah I remember that part of it, minus

e to the minus 2 gamma t which comes from squaring this fellow, Ok. 
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So you get some expression like that for the variance of this displacement itself. 

Of course as t tends to infinity, this will go to 2 d t as it should, Ok. So if you are interested in

the  displacement  rather  than  the  velocity,  we  have  this  expression  here.  Now  what's

interesting is that there is no simple equation as there will be for the velocity process, there

will be some kind of equation. We will talk about this equation. We shall give the distribution

and probability of the conditional density, the conditional, probability density of the velocity,

we are going to write that down shortly but there is no such equation for this. 



However the very fact that the velocity is just, the position is the integral of the velocity helps

you to find these things, these quantities here. You could in fact go on to find delta X of t 1,

delta X of t, delta X of t prime, it is a messy expression of some kind. So we can play with

this, find all these moments explicitly. 

But let's come back here, backtrack a little bit and say alright this is very nice, can we say

something about  the probability  density  of v, the actual  distribution  of  this  velocity  as a

function of time? The conditional distribution. Starting from the fact that it, t equals to zero, it

is some delta function v naught and in t tends to infinity, it  should go to the Maxwellian

distribution. Can we write this distribution down? 

We are going to do that a little later when I show you that there is a correspondence between

the  Langevin  equation  for  the  variable  itself  and  an  equation  called  the  Fokker-Planck

equation  for  the  conditional  probability  density.  There  is  a  complete  one-to-one

correspondence in certain cases and we will exploit that. But right now I want to write the

answer down and introduce you to this distribution which you would have seen in other

context perhaps but let me show you what this distribution is. We can simply write it down in

this particular case and it is as follows. 

So remember what we know about velocity. We know it is a stationary process in equilibrium

because it is a function of t alone. In fact you can show that it is stationary in the strict sense,

in other words, all its densities, joint densities are independent of the origin of time you can

shift to time. At this level it is only the correlation, the two point correlation that has been

shown to be so but this is true for all its joint distributions. 

We know for instance, that v of t average is v naught e to the minus gamma t, the conditional

average 
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for a given v naught. We know that v square of t average; we had an expression for this

quantity. We know that it is v naught square, 1 minus e to the minus 2 gamma t. 
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If I take its, sorry, this average, if I square, if I take the average with respect to v naught, there

was an extra term here, you have to remind me what this term is, there was an extra term

which also had this plus… 

What was the actual expression we found out, otherwise I have to go back and start 
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working out the algebra. What was the actual expression? As t tends to infinity, so perhaps

this was correct. Average of v naught square is k B T over m. So that's Ok, 
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that's what it was explicitly, Ok, right? But we also put in, I am a little unhappy 
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about this, what I would like to know, what I would like to do is write down what is the

variance of this quantity, the conditional variance. What was the actual expression for this

quantity? Is this correct as it stands? 

(Professor – student conversation starts)

Student: No, there was a plus gamma like capital gamma and...

Professor: Yes

Student: We have 2 terms one involving 

Professor: Yes

Student: It was v naught square minus gamma upon 2 m square gamma times e power minus

2 gamma t

Professor: v naught square 

Student: minus

Professor: v naught square e to the minus 2 gamma t 

Student: Minus, yeah, plus 

Professor: plus 

Student: Capital gamma upon 2 m gamma square, m square gamma into 1 minus 

Professor: 2 m square gamma

Student: No v naught square in that

Professor: No v naught square, yeah

Student: Gamma upon 2 m square gamma into times 1 minus e power minus 2 gamma
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Professor: Good, that's it. So this is equal to, we wrote this as, by the way this quantity we

know there is a fluctuation dissipation relation so it k T over m. So it is k Boltzmann T over

m plus v naught squared minus k Boltzmann T over m e to the minus 2 gamma t, good. 
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So that was the expression. So let's kill this and this was v squared of t average, exactly,

exactly. 

(Professor – student conversation ends)

Now we argued 
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that if you let t go to infinity for a fixed t naught to start with, for a fixed origin on time, then

this term goes away and it reaches the equilibrium value. On the other hand if you average

this quantity with respect to the Maxwellian distribution in v naught then this gives you a k T

over m and that kills this and there is nothing to average here, so it remains k T over m. This

was our consistency condition, right. 

So now given these two, we can compute what's v squared of t minus v of t average squared,

this is equal to conditional variance of v and what is this equal to? What we need 
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to do is take this and subtract from this square of this quantity and that kills this term here. So

this is equal to k Boltzmann t over m 1 minus e to the minus 2 gamma t, 
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Ok. 

So we have the conditional mean and we got the conditional variance. Now if, and this is a

big if, this process is a Gaussian and remains Gaussian at all times, we know what t equal to

infinity, it’s a Gaussian, it is the Maxwellian distribution, right? If it remains Gaussian at all

times, then we can actually write the distribution down and what distribution would that be?

It's the conditional probability density so, p of v t given v naught, this is the conditional P D F

of velocity. It is conditioned upon this specific initial condition, starts with the delta function

v equal to v naught. As t tends to infinity, it goes to the Maxwell distribution in v and now the

question is what is it actually equal to? 

Well, if it is a Gaussian, if it is a Gaussian, then mean and variance determine the distribution

completely. A Gaussian is determined by its mean and variance completely, right? So if that is

so, then apart from normalization factor, if is a Gaussian, we have to show this but we will do

so later on, then p of v t v naught is actually equal to, apart from a normalization factor, e to

the power minus v minus v naught, e to the minus gamma t the whole square, that is the

Gaussian up there, divided by twice the variance, so it is minus m over twice k Boltzmann t 1

minus e to the minus 2 gamma t, that's the exponential 

And all we have to do is to normalize this exponential which is m over 2 pi k Boltzmann T 1

minus e to the minus 2 gamma t to the power half exponential of this whole thing in bracket,

so let me write down neatly, this is exponential of minus m v minus v naught e to the minus



gamma t whole square over k Boltzmann T twice k Boltzmann T 1 minus e to the minus 2

gamma t 0:19:22.0. 
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That tells you that this distribution in v, p of v t v naught, starts with the delta function v

naught, at any intermediate time, it looks like this, a peak at this point 

(Refer Slide Time 19:45)

v naught e to the 
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minus gamma t and the width that's growing all the time because as t increases, this quantity

decreases till at t equal to infinity it reaches its value of 2 k T, largest value of 2 k T, twice the

variance and then it becomes a symmetrical Gaussian up here 0:20:08.0, so it eventually ends

up with this at t equal to infinity. 
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This is called the Ornstein, Ornstein-Uhlenbeck probability density function, 
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Ok. 

And the general statement, which I made as a statement is that, if you have a continuous

stationary Gaussian Markov process then it is exponentially correlated and then it looks like

this  in  general.  We wrote  this  for  the  velocity  based  on the  Langevin  equation  and  the

assumption  that  it  remains  a  Gaussian  but  this  is  in  fact  the  Gauss  Markov  process,

prototypical Gauss Markov process, Ok. 

So with statement in place and I tell you it is Markov then all moments are known, everything

is known about it completely. Later we will; a little later we will derive the Fokker Planck

equation or at least justify the Fokker Planck equation from which this, of which this is going

to be the solution, appropriate solution, Ok

(Professor – student conversation starts)

Student: For that initial condition...

Professor: For that given initial condition, yes, absolutely. So it is essentially telling you, how

does  the  probability  density  function  itself  relax  to  the  equilibrium value.  So  that  is  the

crucial point about this. Ok, having done that and talked a little bit about the displacement,

let's do the following. The next question to ask, the natural question to say, if you put this

Langevin model little further then we also need to be able to say what is the joint distribution

of the position and the velocity in phase space? Or the position and the momentum. 

(Professor – student conversation ends)



But I am not going to do that right now because it is a lot easier to do that in terms of the

distribution  function  itself  for  which  I  would  need  something  called  the  Fokker  Planck

equation corresponding to that 2-dimensional process, so its, I haven't justified that yet, we

haven't come to that yet, so meanwhile before we do that, we are going to do a lot of other

things. So let  me keep that in abeyance for the moment because it  will become easier to

understand later on and go back now and look at a three-dimensional case just to show you

that the velocity correlation function can actually mix up different components of the velocity

if, for instance you have a magnetic field. 

So let us look at this very simple problem, so actually quite a simple problem of a Langevin

particle in a magnetic field. That problem too can be solved quite exactly, a constant magnetic

field. And I want to look at the simplest case 
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where this particle is placed in a constant magnetic field in this fluid and everything else

remains  exactly  the  same.  Again  I  say  this  model  which  is  the  Langevin  model  for  the

particle,  I  write  its  equation  of  motion  but  this  time  including  the  Lorentz  force  on  the

particle, the v cross B force, Ok. 

So the mass is m, the particle mass equal to m, charge equal to q and the magnetic field

applied is some B which is in some arbitrary direction defined by some unit vector n, Ok. 
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We could, without loss of generality take this n to be along the z direction, there is no reason

to. Let's just look at it for arbitrary n, a little more algebra but it is helpful to separate than the

transverse and the longitudinal components easily, Ok. 

Now I am going to cut this story short and do it in the following way. We will use physical

arguments  here  to  make  certain  assumptions  which  are  actually  justifiable  completely,

rigorously. First of all, fluid is in thermal equilibrium at temperature T, Ok. Now this particle,

all the other assumptions in the absence of the field continue to hold good. So the distribution

of velocity of this particle in equilibrium is not going to be different from the Maxwellian. 

In thermal equilibrium nothing happens because the magnetic field does no work on this

particle at all. It doesn't change its energy and if doesn't change its energy, it remains in the

canonical ensemble; the equilibrium distribution is still going to be exactly the Maxwellian

distribution. On the other hand, if I start with some given initial velocity v naught in some

arbitrary  direction,  then  there  is  a  question  as  to  how  it  relaxes  to  this  equilibrium

distribution. How do the components, different components relax? 

We will  continue  to  assume without  or  with  some  intuition  that  the  velocity  remains  a

stationary process. The different Cartesian components of the velocity may be correlated, we

don't  know yet.  We are  going  to  find  this  correlation.  So  let's  compute  this  correlation

function directly. And let's do in the case of the magnetic  field assuming that the system



remains in thermal equilibrium and moreover this velocity is a stationary process. This is all

we need. 

Then we could have computed, in the absence of the field, by a slight shortcut, let me do that

with the presence of the field and you will see that how this calculation goes. So the Langevin

equation that I write for it is m times, let's look at some given Cartesian component j of t, v j

dot of t. j is one of the Cartesian components, runs over 1,2,3, Ok. This is equal to minus m

gamma v j of t, the same gamma, I assume the fluid is isotropic, gamma depends on the

viscosity of the fluid, it is completely isotropic, exactly the same in all Cartesian components.

And then there is a portion, there is a random force as usual, but there is also a term which is

the v cross B term. So there is a q times epsilon j k l v k B l which is n l but let's put B

outside. I assume 

(Refer Slide Time 27:01)

you are familiar with the index notation and with this epsilon symbol, 
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which is a short way of writing the cross product, v cross B. 

This  quantity  is  equal  to  plus  1  if  j,  k,  l  are  in  the  order  1,  2,  3.  Or  permuted,  cyclic

permutations there are minus 1, if they are not and any two indices are equal, 
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it is equal to zero, right. So the technical way of saying it is epsilon j k l is plus 1, if j, k, l is

an even permutation of 1, 2, 3 in natural order, minus 1 if it is not permutation and zero in all

other cases, Ok. 



Plus it is the force here now, which is eta j of t. It is a vector force so I write this j curve on it.

And let's as usual divide by m, so it this is 1 over m, you have q B over m, this fashion, this

goes off, this goes off. 
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It is convenient to write this as minus gamma v j of t minus, this quantity q B over m has a

physical  interpretation.  It  is  a  quantity  of  dimensions  frequency or  inverse time same as

gamma. That's dimensionless, this is dimensionless, that's got dimensions velocity, now what

do you call this quantity? 

It’s a cyclotron frequency. So omega c equal to cyclotron frequency q B over m. So let's write

this as minus omega c m epsilon k j l n l v k, v k is the function of t, of course plus 1 over m

eta j of t. And let me define a matrix. Let us define 
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a tensor of rank 2, you can write it as a matrix if you like. Let's define M, define M k j l to be

equal to epsilon k j l times n l. l is contracted, so sorry, this 
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this cannot be, M k j. 

So the k jth element of this tensor of rank 2, or matrix, 3 by 3 matrix is defined to be k, j, l

and m. Therefore I can remove this and write this as M j k times v k. 
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Now to find the correlation function we assumed that the velocity, we are going to assume the

velocity is stationary process. Then a quick way of finding the correlation function is to write,

let's pre-multiply both sides by v i of zero, v j and take average, equilibrium average. 

We can go through the rigmarole of solving this equation, taking conditional average and then

taking full averages etc, showing it stationary and so on. Let's cut all that short. Just multiply

by v i of zero. t is greater than zero here. v j dot of t equal to whatever. This is equal to minus

gamma and then I go ahead and take averages, v i of zero, v j of t minus omega c, average

value of v i of zero, v k of t times m j k, notice that m is a constant matrix. All its elements

are constants. 

Plus average value of v i of zero eta j of t 1 over m. But this is zero by causality because for

all t  greater than zero, this thing is not, vanishes identically for all t greater than zero by

causality.  For  all  t  greater  than  zero,  this  thing  here  vanishes  because  the  effect  cannot

precede the cause, Ok. What the random force does at some time t greater than zero cannot

affect what the velocity was at t before zero. So that's it, this equation here. 

Now  unlike  the  previous  case  where  you  had  the  correlation  function,  now  you  got  a

correlation matrix because there is these symbols, i, j, indices i j etc. So let's define C i j of t

to be equal to v i of zero, v j of t. In fact, let's do the following. We know that asymptotically,

asymptotically if i is equal to j, this quantity here is going to die down exponentially. And at t



equal to zero, it is going to start with k T over m, the average value. It is going to start with

average value of v naught square which is k T over m. 

So let us divide by k T by m. We will define a normalized 
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correlation matrix by dividing by this asymptotically, this initial value k T over m. So 

(Refer Slide Time 33:28)

C i j of zero is equal to 1, by definition. So let's keep that in mind. If i is not equal to j, then

these two are uncorrelated at t equal to, at the same time, but if i is equal to j then you just get

v squared, 
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one component and that is equal to k T over m, the average value. 

So if I write this C of zero, C of t as a matrix, call it some matrix with component C i j, then

at t equal to zero the matrix is the unit matrix. That’s the delta function is just, these are just

the elements of the unit matrix. So that's useful thing to know. So now we can solve this

equation. We can solve this equation because it simply says d over d t, C i j of t is equal to

minus gamma C i j of t minus omega c M, we should be careful with commutation, M i k, C i

k, of t, M j k. Is that correct?
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(Professor – student conversation starts)



Student: M k j

Professor: I am sorry, we had M j k.

Student: It is M k j. 

Professor: What happened here? Did I define...?

Student: You flipped it to change the sign

Professor: I flipped to change the sign and then I brought this...

Student: You can change your definition of M k j

Professor: I should do that. 

Student: If you want...

Professor: I should really do that properly, j k l is Ok, n l

Student: So you just define that as M j k; because there is no error otherwise.

Professor: Yeah, there is no error so let's, did I get this right?

Student: Yeah

Professor: This was correct, this part is Ok. So this is M k j, Oh yeah, oh yeah, yeah! I wrote

this term, sorry, I wrote this term as minus omega C epsilon K j l v k and I define M k j as

epsilon k j l n l. So this fellow here 
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was an M k j.

Student: Yeah.

Professor: M k j, that's what it was. And this is M k j. You could do it 
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by defining it in any way you like

Student: But the last one is M k j.

Professor: But now it is consistent, yeah. This is therefore M k j, thank you, Ok. Or in matrix

form, 

(Refer Slide Time 37:00)

this is the same as saying d over d t C of t where this is a matrix, C of t is a correlation matrix

is equal to minus gamma times the unit matrix plus omega C times the matrix M, is that

correct...no, no, no C times the whole thing, so C times, yeah minus C times gamma times

unit matrix plus omega C times the M matrix. Yeah now we are in good shape. 
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Student: Is there a reason to having on the right side?

Professor: You should either have it on the left or right, that's all. Otherwise it doesn't matter

at all. But I should be careful where I put this C, where I write the solution. So this is minus C

of t times this fellow. This is 
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a matrix, M is a matrix; this is a unit matrix. This is a matrix equation. But this is a constant

matrix. There is no time dependence here, this fellow here. 

So this immediately implies that the solution is C of t is equal to e to the power minus, is

equal to C of zero times e to the power minus gamma times unit matrix plus omega C times

M times t. 
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I have to be consistent. This C is on the left of this thing here. So on the solution too, it is on

the left. In the present case it doesn't matter. Why is that? 

Student: C of zero is 

Professor: C of zero is the identity matrix. It commutes with everything, so we don't really

care. But it is just good discipline. It may not always be the case so we should just be careful

doing that. So that's the solution for C and all you got to do is to read off this matrix. But you

have the problem of exponentiating this. 

(Professor – student conversation ends)

So by the way, since this is equal to the identity matrix, the whole thing is equal to, this

implies C of t, implies C of t equal to e to the minus gamma t times e to the minus omega c,

minus M omega c t. 
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So we have to find the exponential of M times the constant. That's all we have to do, and then

the problem is solved. Now how do we go about doing that? 

This is a 3 by 3 matrix. If it were a 2 by 2 matrix we could write it in the Pauli basis, in terms

of Pauli matrices and you can read off what the exponential is, right? But it is a 3 by 3 matrix.

What should we do then? Yeah, there are several tricks to do this. One of them could be the

following. We could take this matrix M. It is a 3 by 3 matrix, right? Now it is clear that the

exponential of a 3 by 3 matrix cannot, you have to; you should be able to sum this thing

reasonably if this has got some physical meaning and so on, but writing down an explicit

formula may not be all that easy. 

You can write this exponential down because it's characteristic equation after all must be a

third order  polynomial  in  M, which means that  M cubed can be written  in  terms of the

identity matrix M and M square. Therefore M 4 can be written in terms of these fellows and

so on and so forth. But there will be a pain in the neck to try to combine the coefficients and

to compute what it is. Not doable in general, but this matrix is so simple that it is possible to

do it. 

Another way to do this would be to find its eigenvalues, therefore write its characteristic

equation down, the secular equation and replace lambda by the matrix itself, by the Cayley-

Hamilton theorem and then may be one can find out what M cubed is in an easy way. But



there is even an easier way. This is a rotation matrix. I hope you recognize it is a rotation

matrix. 

So M squared k j equal to M k j equal to epsilon k j l n l this is unit vector's component, so M

squared k j is equal to epsilon, it is equal to M k, k r M r j whre r is another index. 
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So this is equal to epsilon k r l n l epsilon r j s n s. 
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That's what it is, right? So this is equal to epsilon k r l, epsilon j r s, n l n s with a minus sign. 

I flip this once here 
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and then I use this identity, well-known identity when you take this epsilon symbol and you

contract one of the symbols in the same position, then it is just the product of delta functions

so this is equal to minus of delta k j, delta, no what did I do, no, no, no, this is equal to minus

epsilon r k l, epsilon r j s, n l, n s. So this is equal to the delta function of these 2 fellows, k j,

delta function of l s minus delta function of k with s, delta function of l with j acting on n l, n

s which is equal to what? 
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The first term, you have a delta k j, delta l s n s is n l, n l which is equal to 1, it's a unit vector

and another term is plus, wherever l appears, replace with j, wherever s appears, replace with

k. So n j, n k. So it is just n j, n k. You got the 0:44:25.3 the k j elements, so let's write it

symmetrically, n k n j minus delta k j. 
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That's the square. 

(Professor – student conversation starts)

Student: Aren't we done once you say it's a rotational matrix because....

Professor: How many people know that it's a rotation matrix? They are not going to believe

you or me (laugh) .It's a rotation matrix, we know. What do you think its eigenvalues are? It

is a rotational matrix in 3 dimensions. And it's got; it is rotation about the direction l, the

index l,  right?  So it  must, it  is clear that n l must be an eigenvector  of this  matrix with

eigenvalue equal to 1, got to be so if it is rotational matrix. 

(Professor – student conversation ends)

Then there are 2 other eigenvalues. Can either of them be real or must they be imaginary?

Well, suppose it's real. Then this means, if this eigenvalue is real, then there is a direction in

space which is also left invariant by this rotation. But in the 3-dimensional rotation, there can

be only one axis that can at best be left invariant, right? So the other two eigenvalues must be

complex. 

It  is  a rotational  matrix.  So this  matrix  is  unitary, it  is  orthogonal;  the elements  are  real

therefore it is ortho, unitary matrix with real elements. It is an orthogonal matrix. Because it

is an unitary matrix, all its eigenvalues must lie on the unit circle. 1 is already an eigenvalue.

Minus 1 is not an eigenvalue. Ok, why is that? Why is that?



(Professor – student conversation starts)

Student: Three dimensional 0:46:21.5 is not 

Professor: Yeah, if the product of all the 3 eigenvalues must be equal to the determinant of

this matrix which must be plus 1, so a proper rotation, right? So if minus 1 appears as an

eigenvalue, it must appear second time too because 1 is already an eigenvalue, right. So it

must be a repeated eigenvalue, Ok. It also means that there is again a real eigenvector. Real

eigenvalue will imply, I leave you to figure out why minus 1 cannot appear as an eigenvalue? 

So the only other possibility, some e to the i theta appears and e to the minus i theta

Student: 2 minus 1s.

Professor: Yeah? They have given arguments as to why 2 minus 1s don't appear here for a

real rotation matrix  in this case,  in this case in 3-dimensional  rotation.  So the only other

possibility is a pair of complex conjugate roots which lie on the unit circle. In this case, there

will be pi over 2, minus pi over 2; either the i pi over 2, it will be e to the minus i pi over 2. 

(Professor – student conversation ends)

Look at it this way. Once you have this direction n l, regard that as a z direction, then rotation

about it is rotation in the x y plane which is given by matrix of the form cos theta, sin theta,

minus sin theta, cos theta and it's eigenvalues are e to the plus, minus i theta. So that's how it

is, in this case. Anyway we are going discover the same thing in... So this is M squared k j. So

implies M cubed k j therefore equal to M squared k r M r j and that's equal to what, M

squared k r is n k, n r minus delta k r times epsilon r j l n l. 

What does that work out to? What is the first term? 
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n k n r n l epsilon r j l

(Professor – student conversation starts)

Student: Zero

Professor: Why is it zero? 

Student: 

Professor: It is symmetric in r and l, n r n l but there is epsilon here which is anti-symmetric

in the two, so the first term is zero. So the second term tells you that M cubed k j equal to, the

second term is a delta where this is replaced here, so it is epsilon k j l n l minus M k j, minus

M k j. 
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So this implies that M cubed equal to minus M, 
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that's very simple. 

(Professor – student conversation ends)

By the way that also tells you the characteristic equation right away, if the Cayley-Hamilton

equation would be M times M squared plus I times M equal to zero, 
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that is the Cayley-Hamilton equation for this case because it is characteristic equation where

you replace the eigenvalue by the matrix. By the way this is the statement that M cubed is

minus M. Once I write it like this, it means that lambda squared plus 1 times lambda equal to



zero which means lambda is equal to, you have your 3 eigenvalues in this  problem, Ok,

alright, once...yeah? 

Once we have this, the exponential  is very easy. So now let's go back and do what's the

exponential, this case and now we can do this very fast. So this says e to the minus M omega

C t is equal to I minus M omega C t plus M squared over 2 factorial omega C t whole square

minus M cubed over 3 factorial omega C t cube plus M 4 over 4 factorial omega C t to the

power 4 minus dot dot dot dot. 

This is equal to I, 
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let us collect all these terms together, minus M omega C t, that is this portion and then M

cubed, but M cubed is minus M, so this becomes a plus out here, so this gives you M times

omega C t and this becomes a plus, so this has to be a minus out there. That term is going to

keep going in this fashion and then you have to deal with this fellow. 

Plus M squared over 2 factorial omega C t whole squared plus M 4 and what is M 4, it is

equal to M times M cubed, but M cubed is minus M, so this is minus omega C t to the power

4 over 4 factorial plus dot dot dot, this keeps going this way. 
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If I had a 1 here, then this would be a cosine. So let us add and subtract a 1.This came with a

plus sign right? So let's put a minus 1 here, and put a plus 1, this fashion. 
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This fellow is minus cosine of omega C t and there was a 1 here. That's the identity matrix in

this. So we have done the job. This here now, is equal to I plus 1 minus cos omega C t M

squared, but before let's write the M term first, I minus M sine omega C t plus M square, 1

minus cos omega C t, that's the final answer. 
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Therefore the correlation matrix itself, the normalized correlation matrix itself C of t equal to

e to the minus gamma t times this. And notice 
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as t goes to zero, this disappears, that disappears, you are left with this, times the unit matrix.

This is 1, Ok, right. So let me stop here since we have run out of time, but let's take it from

this point onwards. Now I request to write down what C i j is. It will of course start with the e

to the minus gamma t and then you have to write whatever is inside. What do you get from

here? 

(Professor – student conversation starts)

Student: delta i j



Professor: delta i j. What is this? epsilon i j l or i, j, k if you like, n, k, sin omega c plus m

squared but remember we have a formula for the components of M squared, this fellow here

was M i n j minus delta i j, 1 minus cos omega c t. This delta i j will cancel 
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against that delta i j. This n i n j will sit as it is here, and there is a delta i j which also

multiplies this. So what is this equal to? 

(Professor – student conversation ends)

We can also write this as e to the minus gamma t n i n j, that's the first term and then, so there

is plus, correct me if I am wrong here, delta i j, well, work this out explicitly, I don't want to

make a mistake in writing this expression, but you notice there is a portion which is odd in

time and a portion which is even in time. We will interpret this. We will interpret what this

whole thing is, all this for t greater than zero, Ok. 

So there is certainly a part which mixes up the component's velocity, this thing scrambles up

here and we will interpret each of these terms, Ok. So we start up with expression next time

and see where this gets. We will also try to see what happens when t becomes less than zero.

We can write it down from here using physical arguments. We will do this. Then the next step

would be to use the Kubo formula to get the diffusion tensor. So we do that and see what the

transverse  and longitudinal  diffusion  coefficients  are,  after  which  we will  take  up  linear

response theory and we will come back to this once you studied what the general formulism

is, a little bit. So we may stop here now.


