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So we have looked at the icing universality class of systems for which we wrote down a

Landua energy functional and from which we got the equilibrium configuration. Now I would

like to do that in slightly more general context and show what happens when you introduce

fluctuations on the one hand and the idea of inhomogeneity is on the other and there will be

relaxation to the equilibrium state. 

(Refer Slide Time: 00:53) 

So to recall to you we begin right away with the order parameter m of r the magnetization or

whatever the order parameter be and if (I) if you recall the Landau free energy is not exactly

the Hemoltz or the Gibb’s free energy.

We saw that we constructed a functional in such a way that you got the correct equilibrium

value above and below the critical temperature. This free energy L let me just call it L this is

equal to an integral the in D dimensions of R and then the terms inside, first of all the absence

of an external field there is no linear term, but if you put in an external field there is offcourse

a term proportional to that. So let’s put in a field H or r so this is minus H of r, M of r there is



such a term and the next term is a quadratic term but if you recall it had a coefficient which

was proportional to T minus T c.

So that it  would give you the right critical  behavior so that term let me call  it  A tilda m

squared of r and this A tilda is a positive coefficient A times T minus T c over T c, just A

times T, little t was this difference between this T minus T reduced temperature T minus T c

over T c and in the magnetic case there was no cubic term but only the fourth order term and

the temperature dependence of that term the coefficient was irrelevant.

 It  just  had to  be positive  so that  you would have stability  about the equilibrium,  stable

equilibrium. So this was B times m to the power 4 of r and then to include inhomogeneities

cause just by the fact that you have an H of R but in general. You have a term which include

gives you the gradient energy when you have inhomogeneities in the magnetization and this

was of the form one half that half is just for convenience, some coefficient times gradient of

m of r Mod squared ok. So that was the Landua free energy.

(Refer Slide Time: 04:05)

The  equilibrium  solution  is  found  by  minimizing  these  free  energies,  so  equilibrium

configuration given by delta L over delta m of r equal to zero, and we also have to ensure that

it is a minimum rather than the maximum but the structure of this makes it clear that it will be

a minimum. 



(Refer Slide Time:  04:57) 

So what is that equal to when we use the rule for functional differentiation make this R prime

everywhere and use the fact that the functional derivative of m of r with respect to delta m of

r time, this is equal to the delta function D dimensional of r minus r prime, that is the basic

rule.

Then offcourse the only non-trivial term is this and I argued that the function derivative of

gradient m of r mod squared r prime say divided by delta m of r that is what you going to

have to differentiate out here. So if you make all these guys R primes, yeah I need to do the

integral as well but let me, look at what is going to happen here, this is going to be twice so it

is going to give you a twice gradient of m of r prime times derivative D or whatever it is of r

minus r prime times the functional derivative of the gradient itself.

But the functional derivative because it is got to be a vector right, so this is times dot-dot it to

delta over delta m of r gradient m of r prime ok and this you do integration by parts yeah.

Student: (())(06:56)
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Only one? Oh yes so you are right, gradient of the delta function, thank you, yeah. I used this,

gradient with respect to r prime, yeah so this is r prime. But what I really have is in integral

over d d r prime so really you should insert this d r prime on both sides and when you do that

and you integrate by parts this delta function is going to five and this gradient is going to

operate on this factor here. So you got a delta or del and then you have del squared.

This already half so just gives you minus del square ok. So let’s cut that short and write this

whole rule as delta over, so once you put that in we can write the solution down. So let’s just

do that. 



(Refer Slide Time: 08:27) 

So this configuration is given by minus I want to write this properly. So 2 A tilda m of r prime

plus 4 b m cubed of r sorry the r everything is r, r prime is gone minus h of r minus c del

square m of r equals 0, that is the equilibrium configuration.

So it is a solution to a partial differential equation in space like the ordinary equation. But

there is a non-linearity here, there is an inhomogeneous term which is not the series, but if

you add just this term would be nice be linear but unfortunately there is this non-linearity ok

which you can’t get away from. So the equation the thing from the start it is obviously a non-

equilibrium situation, a non-linear situation ok alright.

Now let suppose we have solved this in principle and now I ask the following question, if

there is a local fluctuation say due to thermal noise from this equilibrium configuration, how

does this  system comeback  to it.  So this  is  now in the spirit  of  our  old in-friend linear

response theory and we like to find out what is way that relaxation is going to proceed? Ok

and now this no rigorous way of doing this except in a specific model but you guess the

following exactly as we did in the very Langevin equation is, you guess the following.



(Refer Slide Time: 10:31) 

It’s a well a good assumption good be to say ok for a given configuration delta L over delta M

I am not going to write all the arguments, this quantity is zero in equilibrium and away from

equilibrium  for  a  non-equilibrium  configuration  this  measures  the  deviation  from  the

equilibrium. So a good way to find out what the relaxation is like a good guess, is to say delta

over delta T, a configuration m of r relaxes to equilibrium by minus this times a constant

times  this  deviation  from  the  equilibrium.  So  that  is  the  relaxation  equation,  a  typical

relaxation equation. 

Exactly in the same spirit as we saw relaxation occurs in the Langevin equation or in the

Boltzmann equation etc. But there is no guarantee that you give a configuration it doesn’t

relaxed to local minimum. So in general once you give me an equilibrium configuration of

this  solved by this  there  are  local  maxima and minima  and there  is  (())(11:42)  a  global

minimum which is a thermodynamic equilibrium state. But if you give me a model of this

kind with some initial condition in configuration there is no guarantee that it doesn’t tend to a

local minimum and stick there.



That  doesn’t  happen  in  actual  practice  because  if  you  plot  this  m  as  a  function  of

configuration variable it might have this kind of behavior and you, if you start here you might

relax some play to this point whereas you really have a thermodynamic equilibrium state over

there. So it is clear them as we some fluctuation which take you out of these local wells and

put you into the global minimum. Therefore to this you must add a noise term which mimics

the effect of fluctuations. But this noise must itself be inhomogeneous because the function of

r because you have got an order parameter which is a function of r now.

So it is a field plus eta of r and t. So this is thermal noise and this is exactly the structure of a

non-linear Langevin equation ok. So its solution is formidable because you have a stochastic

differential equation for a field and it is gotten non-linearities. It is space dependent so it is a

partial  differential  equation,  space  and  time  derivatives  are  on  top  of  it  you  have  non-

linearities.  So its  formidable and the only way you can make any headway with it  is by

functional integration methods.

But we need to specify what sort of noise? So we make the simplest assumption that it is

uncorrelated Gaussian noise.

(Refer Slide Time: 13:59)

So will start with by making this assumption that eta of r and t over all realizations of this

noise,  over  all  realization  will  say  that  its  got  assumed  that  it  is  got  zero  average  and

moreover here is a crucial assumption eta of r t eta of r time t prime over all realizations this

is proportional to delta functions. So we assume that the noise is uncorrelated at different



time points and at different times. So this is equal to some constant 2 D delta of r minus r

prime delta of T minus T in D dimensions offcourse ok.

This is not so obvious and I am slurring over certain technicalities here for instance if you

have what is called a non-conserved parameter then this is no longer true and consistency

demands  that  we should  Del  squared  over  here  acting  on  the  delta  function.  But  in  the

magnetization case that doesn’t apply, so this is ok as it stands. Then we need to specify the

probability distribution of this eta, so what would one do?

(Refer Slide Time: 15:39)

You would assume that the distribution of eta so let me call it P sub-eta the probable yeah

Student: (())(15:43)  

This is not quote -unquote dissipate about a parameter, it is magnetization unlike for example,

concentration,  that relaxes to an equilibrium configuration but there is no conservation of

total magnetic movement or any such thing ok. So there are two classes of problems and if

time permits I will mention the other class but in this case this is a consistent (tenure) ok. So

you have P of eta of some configuration m of (r) of eta of r comma t this probability is

proportional to e to the power minus some variants in because you got a 2 D here you need to

have a 4 D out here integral D d of r eta squared of r and t.

So that is the probability distribution of it is a Gaussian probability distribution generalized to

a field. This constant of proportionality whatever is out here is the normalization, it will be a



functional integral over all eta’s, so this there (should) be some constant and K inverse goes

like integral well D eta e to the minus whatever 1over 4 D integral etc ok. So I am not going

to get into we will not try to normalize that, we just need the assumption that it is a Gaussian

ok.

Which means you are in principle know all the joint probability distribution as well. Once

you make this assumption that this delta correlated it is like noise, this is the sort of special

space dependent extension of white noise that we did in the Langevin equation ok and we had

now talking about the probability distribution of whole configurations of eta at every point r

for a given for each given T. 

(Refer Slide Time: 18:28) 

Then not surprisingly one can actually write down a corresponding Fokker-Planck equation

because we need to know what is the probability distribution of m, what is the probability

distribution of the configuration m of r at any time T, given this. So it is the old question

exactly that in the same as what we solved in the case of the ordinary Langevin equation.

Given a Langevin equation this statistics of the eta the fact that it is Gaussian etc, how did

you get the Fokker-Planck equation from it?

Now I just made the statement that we have a in the original in the other case that we have a

Fokker-Planck equation we look at its equilibrium and so on. But one can make this a little

more rigorous. One can make this one can do that fairly easily as follows and we want to do

this  in this  functional  case.  So lets  go about it  in the following way. This  quantity  must

obviously be equal to by definition the expectation value of a delta function generalize delta



function of m of r T minus m of r for a given configuration minus the M that you get from the

Langevin equation.

So let me write it as m L E by solving the Langevin equation for each value of the noise each

realization of the noise and then averaging over all noise in realizations. So if I call that m L

E this is the function of r and t over eta. In other words the average is of this delta function

(over)  weighted  with  P sub-eta.  That  is  by  definition  the  probability  distribution  of  this

configuration in m ok.

(Refer Slide Time: 20:45)

Where n L E of r and t equal to m L E of r and 0, you give me the initial configuration and

then you have to solve this equation. So it is just minus gamma times integral 0 to T dt prime

delta L

Student: (())(21:13) 

This is what I give, there is no need for L E it is whatever initial configuration give minus

delta L over delta n, I won’t write the argument here plus integral 0 to T dt prime eta of r t

prime ok. That is the formal solution offcourse this quantity here involves that derivative with

respect to L so that is the formally double non-linear object but in, so it is not a solution, it is

just a representation of this m L E and you have to put that so everywhere here in bracket the

argument is m L E itself consistent way offcourse, so I should really mark the argument this

is L of m L E ok.



And then I have to take this delta function multiplied by P of eta and integrate to overall

realizations sum over all realizations right. So that is the way one won’t do this and you could

start by saying we don’t write the solution down I find the derivative of this with respect to

time.  So I  am going to  head towards  a  Fokker-Planck  equation  and for  that  I  need  the

derivative with respect to time that will give me a derivative of this quantity. So it is a theta

function to start with and then this going to be derivative of this. 

So all the T dependence is sitting here and for this quantity I go back and use the Langevin

equation here. So that is way you derive the (Langevin) Fokker-Planck equation for a given

Langevin equation. Even in the ordinary case the finite degrees of freedom case. So the sum

and substance is that you end up with the following Fokker-Planck equation. 

(Refer Slide Time: 23:32)

So here delta over delta t P m of configuration at anytime t, this quantity is equal to not

surprisingly you are going to get gamma times integral d D of r prime times gamma times

that is the drift term.

There was a minus sign in the Langevin equation and remember in the drift term you get

another minus sign so that gives you a plus out here, plus and the way we normalize this with

a 2 D here you have to do one over this guy. So this becomes plus D times delta P n over

delta  n  ok.  So  there  is  a  second  derivative  term  because  the  noise  in  this  case  in  not

multiplicative it is caught pure delta functions, no r dependency here by assumption. So it is

D times that which is what we expect plus this guy here. This is the drift term.



The only difference is it is not linear, this thing is completely crazy it is not linear equation at

all. But we can write down what is the equilibrium value, what is going to be the equilibrium

distribution. That is found by putting this equal to 0, which is equivalent to putting this equal

to 0. 

(Refer Slide Time: 25:53)

So the solution the equilibrium solution lets write it down, the equilibrium configuration it is

not a function of time, this fellow is obviously apart from normalization constant its E till the

minus gamma over D because essentially its equating this to zero (right).

So it is E to the minus gamma over D times integral d (d ) r prime of r lets say the function of

r here I am little confused here because at the notation, no it will be L because I wanted to

check of this equation is valid or not right.

Student: (())(26:45) 

It is just going to be L, it is just L, right because it is very differentiated I am going to get

delta  L over  delta  m here.  But  we would  like  it  to  be the  Boltzmann  distribution  right,

remember this the energy density and you are going to have to integrate to get the full Landua

energy. So it is of the form E to the minus whatever the energy but we would like it to be the

Boltzmann, so this goes to the Boltzmann distribution which goes like E to the minus integral

d (d) L minus gone over K Boltzmann T provided D equal to gamma KT.



That is the fluctuation dissipation theorem right. that provides a consistency check ok. I am

sorry for using the same symbol D that we used for diffusion in the possession space earlier.

This is diffusion in the velocity space the analogue of that because it is the Fokker-Planck

equation for the analogue of the velocity. 

(Refer Slide Time: 28:40) 

If you recall what I was way back when it was m v dot plus m gamma v equal to this force eta

of t and we assumed the strength capital gamma for this guy here.

So we assume that eta of t prime was equal to gamma delta of t minus t prime and then we

got  gamma’s  two  little  m gamma  K t  but  more  important  remember  the  Fokker-Planck

equation for it we had delta o P of the P t over delta t equal to gamma times delta o over delta

v, v P plus gamma K t over m D2 P over D v 2. So this was the diffusion constant in velocity

space. Now the m has essentially by put equal to 1 there is no m sitting here. So it is not

surprising that you get t. Capital gamma plus the role of D capital D here plus over gamma

ok. So that is way the consistency thing works out ok. So we have some idea.

Student: key statement here is that, that exists a L from which that equation is coming.

Exactly, so there is specific L we model this L we took care of the n square term, the m4 term,

the gradient energy term etc such that you get the correct equilibrium distribution and we

impose this condition here. Now the next question is to ask how does it relax? How does it

relax to equilibrium? That is a harder question because you really have to go back and ask



look at the Langevin equation itself , but that is a harder question however one can do the

following.

(Refer Slide Time: 30:56) 

One can linearize exactly, so we won’t assume, so relaxation to equilibrium and lets do this in

the simple case when T is greater than T c because then m equilibrium of r this guy is equal to

zero I use this for the average itself so right. I should really put brackets here because I have

use this m in the Langevin equation without putting brackets but ok. So we write an equation

for this M if I go back to the Langevin equation I have delta M over delta t this quantity, little

bit away from the equilibrium is equal to minus gamma delta L over delta m which is equal to

minus gamma and now you have to tell me what all those terms were.

There was minus a minus C del squared M, so lets do it in the absence of an external field,

plus 2 A tilda M plus there was a 4 b M cube I am goanna throw this out, right, we taking the

average values not going to integrate with (())(33:00) especially. Everywhere there is average

so the eta term has gone away. So this is equal to gamma C del squared M plus 2 A tilda M I

am unhappy with the sign minus-minus delta m gamma ok.



Because there is a del squared term here and this m is spaced dependent the obvious thing to

do is to resolve it into Fourier modes take Fourier transform. Lets, let me put that tilda for the

Fourier transform ok. 

(Refer Slide Time: 34:08)

So it says delta m tilda over delta T for a given K ok, so this Fourier with respect to the space

variable R, special Fourier transform. This fellow is minus 2 gamma A tilda m tilda and then

this is going to give me K square, the del square with a minus sign. 

So there is going to be minus gamma C K square and I pull out the N tilda ok right. I do a

Fourier transform here I am going to get a minus K squared because it is I K the whole

squared and this is the m tilda. So this quantity is equal to leaving out non-linear term so for

small deviations from the equilibrium the linearize equation gives me this. Incidentally this

Langevin equation this relaxation equation the full non-linear relaxation equation is called the

time dependent Ginzburg-Landua equation in (super) when apply to super conductivity.

So just this alone with the full non-linearity is the time dependent Ginzburg-Landua equation

and then you add to it the noise term it becomes a stochastic differential equation and it helps

you to analyze the way fluctuations lead to state of equilibrium. In principle within this model

it tell you everything about the time dependent magnetic configurations. If you include the

external field then it tells you in principle everything ok.

But whether the original assumption this is valid or not is a different question. It is clearly

reasonable and plausible sufficiently closed to equilibrium because you are saying the rate at



which it relaxes to equilibrium is proportional to the deviation from the equilibrium. It is in

absolutely  a  linear  response  (theory)  statement,  just  like  fixed  law  of  a  diffusion  heat

conduction etc it is a linear response statement ok.

Student: (())(37:04) 

Linear in the field, it is linear in the field not linear in the variable. In the order parameter no,

but it is linear in the field, that is what linear response does right ok. So in particular it will

give you some of the statement about the susceptibility because remember the susceptibility

is the derivative of the order parameter with respect to the field at zero field. So this thing is

equal to minus m tilda over Tau of K where the relaxation time is given by relaxation time

Tau of K is given by 1 over Tau of K equal to 1 over Tau of 0, that is this term plus gamma C

K square right.

Tau of 0 by definition this quantity here is 2 gamma A tilde. So the infinite wave length or K

equal to 0, the uniform background configuration, relaxes at this rate with Tau of 0. But this

is equal to 2 gamma A times T little, I shown to you it is T, T minus T c over T c and as T

goes to T c this goes to zero so 1 over Tau 0 goes to 0 and therefore Tau 0 goes to infinity,

that is called critical slowing down. So this is where critical slowing down comes.

(Refer Slide Time: 39:32)

Remember we are in T c greater than T greater than T c we started with that assumption. So it

diverges  goes  to  infinity  implies  critical  for  K  knot  equal  to  0,  so  finite  wavelength

fluctuations even at the critical point will be ok, they have to relax with the finite time, they



go like K squared one over Tau K goes like K squared ok. But as long as K this thing is zero

if K is zero then you have a divergence of the relaxation time.

But  the  finite  fellows  don’t  do  that  ok,  which  is  reasonable,  it  is  only  the  infinite  long

wavelength over all  background mode that makes that gets slowed down ok. The shorter

wavelength  one’s  will  have  finite  relaxation  time  because  those  are  controlled  by  this

quantity. As this becomes larger this is finite and therefore you have finite relaxation time ok.

So this helps us formulate  it is a start of something called dynamic scaling,  the dynamic

scaling hypocrisies. What we have therefore is the following and from here

Student: ((())41:23) 

Yeah the starting exponents will get related now will see when you have so let me call it

dynamic scaling. 

(Refer Slide Time: 41:33) 

Look at what Tau K did, Tau of K it went like T no let me use T for T minus T c over T c,

there is no time appearing explicitly anyway in this formula so it should not confuse, this

goes like T to the minus Y, Y equal to 1 for K equal to 0, right, and it went like K to the

power minus Z it is a standard symbols, Z equal to 1, and a 2, for T equal to 0. At the critical

point, the other modes the one over Tau K was exactly proportional to K square and therefore

Tau K is proportional to K to the minus 2 ok.



So have introduced two new exponents Y and Z here, now both these can be subsumed in one

relationship by again making a hypothesis that at  the critical  point this guy here is some

power multiply and that closed to the critical point this guy is some power-law in little T

multiplied by a scaling function exactly in the spirit  of (())(43:16) scaling right and then

experiment to will have to tell you that is correct or not ok.

(Refer Slide Time: 43:25) 

So one hypothesizes that Tau of K goes like T to the power minus Y is this in general even

when this kind of simple mean field theory is not valid multiplied by some function of K

times the correlation length, the old order parameter correlation length to the which is the

function of little t , and now we need to get these two from it for that you require since, so let

me write this fellow as the critical region T to the minus Y Phi of K times T to the minus Mu

apart from some constants, because this diverges like this exponent new if you recall which

was one half in mean field theory right.

So how is this going to be reconcile with that? If you put K equal to 0, you should have this

divergence here which is this term here already provided Phi of zero is finite. 
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So  we  require  of  this  function  Phi,  Phi  of  0,  must  be  finite  and  non-zero.  Some  finite

constant. But as T goes to 0 this guy goes to zero you want this behavior that means this thing

must be cancelled out, with a T to the power Y. So we want Phi of whatever its argument Phi

of X lets say Phi of X, Phi at X equal to 0 must be finite and Phi at X tends to infinity must

go like X to the power minus Y over Nu right.

Because then this term will go like this will then go to T to the power minus Y K to the power

minus Y over Nu T to the power minus Nu to the power minus Y over Nu, which will give

me T to the Y which cancels this and gives me a one over K to the Y over Nu. So this goes

like K to the power minus Z where Z equal to Y over Nu. Because remember we wanted K to

the minus Z. so it is a simple trick it is the same trick being played all over N that you have

two different limits then forces the scaling function to have this behavior, that is the only way

which you can be consistent. So this will immediately imply or Y equal to Z Nu.



(Refer Slide Time:  47:09) 

So this implies that this Tau K goes like T to the power minus Z Nu Phi of K to the minus. So

we introduced a dynamic scaling exponent Z, there is one more exponent here. Now we can

relate this to the susceptibility. 

(Refer Slide Time: 47:38)



Because  what  you  need  is  the  formula  the  susceptibility  Chi  T,  now  we  do  a  Fourier

transform of K omega this follow here is the derivative of M tilda in Fourier transformed in

space and time and average taken with respect to delta H tilda ok.

So  we  can  now write  and  we  know  that  there  is  gamma  here  in  the  exponent  gamma

divergence near T equal to zero for the statics susceptibility right. so once again we can make

a statement about the dynamic susceptibility make a generalize scaling hypothesis here. So

essentially you will have to assume that this follows here is some power of t little t multiplied

by a function of K Xi and omega Tau knot that Tau knot is this (thing), the K equal to zero

relaxation  tank  right  and  that  turns  out  to  give  you  relationship  between  this  dynamic

exponent and the other exponents ok and so on.

Now this whole business can actually be generalized to much more general class of problems

including the way this is the beginning of the dynamic scaling theory which is now apply to a

very large number of problem, both in and out of the closed equilibrium and far away from

the equilibrium, such as the growth of surfaces (())(49:18) decomposition etc-etc ok. So the

wide variety the trick is again the scaling I haven’t talked this is the starting point of the re-

normalization growth approach to critical phenomena.

Which is where this comes into full play the power of this scaling arguments ok and you can

rigorously show what the relations are between various scaling exponents, what the upper and

lower critical dimensionalities are, what the nature of the critical point is in every case etc.

Student:  (())(49:57)its we got all  this static exponents by looking at just trying to we got

relations  when  we  try  to  write  everything  in  terms  of  the  object  which  came  from the

correlation Langevin, so now what we are doing is we have got from this, since we have got

something which is weighty correlation in length they took correlation time (Exactly) I need

only one more (Exactly).

So that is the whole point. Once you have a relation like that we got rid of this intermediate

thing Y, and we already know Nu and the time behavior is given this thing here will tell you

what dynamics.

Student: is it true for, it should be true for all. 



With suitable modifications, yeah with suitable definitions of a say etc yeah. The power of

the this whole thing is not apparent here because unless we do the re-normalization group

which is another way of saying that we use scale invariants near the critical point the system

becomes  scale  independent.  All  fluctuations  on all  lengths  scale  and time scales  become

equally important and the trick was as oppose to the original ways of tackling equilibrium

statistical mechanical problems where you tried to solve or trace over a fine partition function

to trace over all degrees of freedom simultaneously.

This divides and conquers. So it breaks things up depending on the K value or the wavelength

of the fluctuations  integrates  over variables  which either  varies slowly or very-very long

period in time long special extent and then or the other way about and then ask for a case

impose the condition that system will look scale invariant on all scales. So that forces you to

have certain relationships between various exponents among other things right.

It  also  gives  you the  calculation  method  of  computing  systematically  computing  critical

exponents outside the framework of main field theory ok. I use the symbol Y and Z here all

though in the case we have look at Y was 1 and Z was 2, but the whole idea is that you

hypothesis that these exponents can have different values other than these values ok and in

the D2. There is a closely related to this Langevin equation there is another one for growth of

random surfaces, growth for aggregation for instance call the K P Z equation the  Kardar–

Parisi–Zhang equation which again is like the diffusion equation with a noise term added to it

ok.

We saw the original diffusion equation was for a probability distribution but now we saying

there is noise added to a diffusion equation itself, in the same spirit as this, this is already

partial differential equations and on that we added noise as similar kind of approach there ok.

That leads to so called roughening exponents in similar results ok. So think I will stop here

with this topic and refer you to some texts for the rest ok. There are couple of (interested)

good textbooks on this many-many good textbooks on critical phenomena but I will write out

a list of these useful books and give it.


