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Right, so we go resume where we left off, we left off at the magnetic equation of state for blazing

model in mean field theory and if you recall the magnetization particle in suitable units m this

was given by the magnetic field if you recall H k Boltzmann T we solve for it and we discovered

there was a solution of the form m minus tan hyperbolic m times Tc over T divided by 1 minus

the product of this two, oh yeah tan hyperbolic is transcendental of this was m Tc over T and Tc

was when we call  Tc was equal  to  it  certainly  was 2d and then there was a J  which is  the

exchange constant the coupling constant divided by k Boltzmann and I think that was it that was

all, right? 

So there is a dimensionality dependence here in this thing in trivial sense because it just includes

increases the number of nearest neighbors, right? So now we are going to look at it in the critical

region and from this we can extract all the critical exponent which we already saw in various

ways. 
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So critical region remember that in this problem the critical value analogous to Pc, Vc and Tc the

critical values are m critical equal to 0 because it takes off from 0 from the paramagnetic phase

to the ferromagnetic. 

Hc is also 0 because remember that H equal to 0 corresponded to this flat line ending in a critical

point in the H versus T plain. And of course Tc is non 0 it is some number given by this, so a

critical region says when m, H are small very near 0 and T is very close to Tc that is the critical

region. So let us see what this looks like to leading order this equation of state becomes H over k

Boltzmann T is equal to m minus tan hyperbolic x here tan hyperbolic x goes like x minus x



cubed over 3 the leading behaviors, so it is m minus m cubed Tc cube over T cubed in this case

plus etcetera times now this guy here already has an m out here and it is going to be multiplied

by another m, oh yeah m Tc over T yeah that is important otherwise I am not going to get the

exponents.

You see they assume I make no mistake so they got rid of this, I have to prove them wrong so m

minus m Tc over T plus m cubed Tc cube over T cubed dot dot dot times in the denominator you

have 1 minus because tan hyperbolic  is got be x minus x cube because it  comes down and

saturates so it got to be a negative and that becomes this divided by 1 minus m squared Tc over T

and then the next term is T m cubed here and there is a m here so it becomes the m4 we will

solve it out. 

So it is 1 minus m squared Tc over T inverse which is 1 plus dot in this fashion, so if you write

this out this is equal to m times this so this is 1 minus Tc over T that is this portion and then plus

m cubed times the first term is Tc over T and then there is minus Tc square over T squared from

this fellow and then this time here plus Tc cubed over T cubed dot dot dot, oh yeah there is 3

factorial, thanks.
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So this is m cubed over 3 in this fashion, okay so are ready to read off various results let us give

this some name let us give this Tc over T some name we use little t I am going to use little t let us

fix it is equal to T minus Tc divided by Tc so we could not principle write it in terms of little t

this whole thing but what are the things we want to see immediately well the first thing we want

to do first is to find this acceptability  remember that  kai T equal to delta  n over delta  H at

constant T and H equal to 0 that was our definition. 

So all I have to do is to differentiate both sides out here and this is m cubed already so it is clear

that the linear behavior comes from here, okay and it immediately says 1 over k Boltzmann T is

equal to if I differentiate both side with respect to H this is equal to kai T into T minus Tc over T

or kai T in these units is 1 over k Boltzmann T minus Tc so I diverges at the critical temperature

like 1 over T minus Tc.

Now this is for T greater than Tc so that this I positive I want you to show that the same result

obtains for T less than Tc, so show that kai T is proportional to 1 over Tc minus T for T less than

of the order of Tc just below Tc in that sense the constant of proportionality will not be this it will

be some other number some number possibly. So it is the same critical exponent both are to

power 1,  I  have used the fact  that  m is  yeah so I  have used the fact  that  this  quantity  is  a

ferromagnetic it is not a paramagnetic so it orders in the direction of the field in this acceptability

has to be positive, right? 



So implicitly I have assumed that T is greater than Tc you have to now solve for T less than Tc

and find the right branch in m as a function of H this happens to be the right branch for t greater

than Tc because this is the paramagnetic branch, yeah you have to solve that cubic, okay because

this acceptability if for T less than Tc is the slow at the point when m is not 0 but has finite

intercept and you have to find that root and then get back to this, okay either of the roots will do

because it was the graph looked like this it was like this and like this and we have discussing this

slope or this slope and that is going to go like this, okay so that is the good point I implicitly by

using this alone I said when near I am equal to 0 that is only above the critical point below the

critical point m is away the stable roots are m not equal to 0 in the absence of a field, okay they

are the spontaneous magnetization roots, okay.

That is the first result, then the second one is we can also see what happens at T equal to Tc so

we need this result to at T equal to Tc we want to get hold of this exponent so this is m versus H

we want to get this exponent here how does it behave what is the power law we would like to

find that.  So you set T equal to Tc and of course you immediately see that this cancels this

cancels this cancels and you are left with this guy.

So it immediately shows m is proportional to H cube, sorry H is proportional to m cube there is

cubic point curve here on the critical isotherm that follows immediately from this because this

term goes away and these two cancels and you are left with the leading behavior H proportional

to m cube at the critical isotherm you know the words this is a cubic curve. Then, let us ask what

happens to the spontaneous magnetization in the absence of the field.
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So we need to find out 3 at H equal to 0 now we are trying to find out here is T here is m m not

and remember that it goes like this is what we had said this is Tc and we are trying to find the

behavior here in this region having said H equal to 0. So this is equal to 0 and you have to solve

this equation for m not with this set equal to 0 the root m equal to 0 is always a root as we saw

but it turn out to be an unstable root we want the non-zero roots we want these roots not the 0

root here. So you can cancel out m for that and then I leave it to you to show this is fairly simple

you cancel this out you get m squared then you move it to this side and remember now T is less

than Tc so Tc over T minus 1 would be a positive quantity you move it to this side and that will

be equal to m square times something or the other here so you get two real roots show that m

goes like plus or minus square root of 3 times Tc minus T over Tc to the power this whole thing

to the power half, of course it is immediately obvious, yeah that is right yeah you have to be little

careful because this is similar term sitting here, exactly you have to check that is not 0 identically

that is a straight forward to do.

There are several ways in which you can show from the exact equation that it is going to be

square  root  singularity.  So  the  critical  exponent  is  a  half  now  these  are  exactly  the  same

exponents which you get for the (())(13:52) equation also in the critical region. 
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However  they  are  not  the  experimental  exponents  experimentally  what  happens  is  these

exponents are somewhat different, yeah I am going to do that that is exactly what we are going to

do experimentally we have a whole set of critical exponents there is rigorous way of defining it

but in realistic  way there are various power laws what happens in the critical  region near a

critical point.

Now this critical exponents have values which are universal for different universality classes so

called ising model universality class which is what we are dealing with here we started with ising

model you have one set of exponents for the Heisenberg universality class you have another set

etcetera etcetera. Now in the simplest instance and then you have what are called mean field

exponents these are mean field exponents here, so this specific heat is supposed to behave C is

supposed to behave like I am not specifying Cv or Cp I am not going to do that for a minute I am

not going to do that this diverges like 1 over mod T minus Tc well let me write everything in

terms of this little t out here this measures how far away you are from the critical temperature.

So this goes like 1 over mod T to the power alpha that defines the exponent alpha, then the order

parameter either the magnetization the one that distinguishes the two phases and we are going to

take typically one of them to be one order parameter in the high temperature phase to be 0 and

non-zero below just in analogy with the magnetization. This order parameter goes in the critical

region goes like mod T to the power beta in fact it goes like T minus Tc to it goes like Tc minus

T, so minus T to the power beta for T less than Tc while it is 0 for T greater than Tc, yeah Tc.



So the order parameter is 0 and then it branches off in this fashion and we are talking about what

happens in that region to the stable root, the order parameter there are many ways of defining

there is no uniqueness about in order parameter you could take other things as well I mean in

magnetization example you could ask why did not I take magnetization to the power 3 or 7 as the

order parameter no reason why not but the most convenient and simplest one.

Now there is no reason why it should be a scalar, for example in not the ising class but the

Heisenberg class the magnetization is a vector then there are situations where it is a planner

vector no matter how many physical dimensions you are in for the lattice the magnetization itself

magnetic moments can only move in a plain set that is the so called xy model. In the ising model

they move only in one direction up or down so it is a scalar otherwise a two dimensional vector

otherwise a three dimensional vector maybe in n component object in very complicated systems

like in nothing like liquid crystal animatic liquid crystal for example it is an axis, liquid crystal

animatic liquid crystal consists of rod like molecules which are arranged every which way in the

disorder phase and if you lower the temperature these guys get order so on the average they all

point in this fashion, of course there will be small fluctuations about it but on the average they

point along this (())(18:23).

But there is no distinction between the head and tail so it is not an arrow unlike the magnetic

moment and it is a very perform consequences follow because it is not an arrow but only the line

and that implies that the order parameter is not a vector but an axis here. So in this case it turns

out to be a tenser of rank 2, okay because that will specify an axis, okay headless vector it is also

called a director, I did not named it, right? 

It reproduces a line field and it’s got defects because it is a line field and so on if you look at your

sum for instance I should not get (())(19:16) but if you look at your thumb you got words like

this the thumb print and then at one point there is something like this this is a defect a topology

defect on the surface here you should really look at it as something a point a line defect really but

in two dimensions it is point defect here and the directors are supposed to be like this etcetera

such a thing cannot happen if you had arrows because then it means that you are going like this

then what happens on this line it is a point defect but happens on this line it is indeterminate

completely.



So a 2 dimensional ferromagnet cannot have a point singularity of that kind but a liquid crystal

can it is called a 180 degree declination and it is got physical affects and so on very real thing. So

we are all  carrying topological  defects  on our thumbs,  okay. So this  is  a  complicated  order

parameter if you go to more complicated substances like liquid helium super fluid liquid helium

in helium 4 then the order parameter is a wave function of what is called the condensate a super

fluid condensate that is now as you know a wave function is a complex number.

So it is a modulus and a phase that is the order parameter a complex number if you like, if you

look at helium 3 we are the rare isotope of helium consist of fermions that too can become a

super fluid and it is got all sorts of magnetic properties and so on that order parameter is pretty

complicated it is SO3 cross SO3 cross O2 so it is some 9 by 9 or whatever fluids says some 18

dimensional object. So it is got a lot of physical information buried in it, but the order parameter

can be very complex in the reaming cases you could ask what is the order parameter in a liquid

gas as we said it could be the difference in densities between the gas and the liquid but what is it

in the a crystal as opposed to a liquid because the liquid and crystal have practically the same

densities most substances when they freeze they all  become very much more dense in ice it

actually expands the other way but they are equal to each within 10 percent.

So what would be a good order parameter in a crystal? Something that reflects the nature of the

order namely that atoms only sit at regular intervals and so on. So it would be if you take the

density of the crystal the local density wherever there is an atom there is a big spike and then

there is nothing etcetera and you do its Fourier transform then it will have components at all the

wave vectors corresponding to the reciprocal arties that set of amplitudes would be your order

parameter, okay.
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So it is not a trivial job finding the order parameter in many case in some cases but we know it

when we see it and the order parameter exponent is called beta in mean field, so whatever we

have done is called mean field theory this alpha is 0 it turns out that it mean field theory specific

heat is predicted to mealy be discontinuous a finite jump and not divergent this says it is infinite

as  T tends  to  0 when alpha  is  positive  this  becomes  infinite  on the  other  hand you have a

discontinuity. The order parameter beta is a half in this problem then the so called susceptibility

order parameter kai this goes like 1 over T to the power gamma for T greater than Tc and goes



like 1 over T to the gamma prime for T less than Tc 1 over minus T to the power gamma prime,

okay.

In mean field theory I just showed that gamma is one and gamma prime I asserted was also equal

to 1, so the susceptibility exponent is 1, then you ask on the critical isotherm what does the

critical  isotherm curvature look like so critical  isotherm this  is delta because we found H is

proportional to m cube P is proportional to minus v cubed and so on in mean field theory. In

general this is some delta and in mean field theory this delta so alpha equal to this beta equal to

half gamma equal to 1 equal to gamma prime delta equal to 3 there are two more there are

actually a few more there are two more which I will introduce very shortly.

So we sort of extracted whatever we want from this thing here as much as we can but I must now

we must now go back and ask where is all this coming from what about corrections to it etcetera

but first some experimental facts in real life if you look at magnets like the 3 dimensionalizing

model or the real liquids for instance then these exponents are very different, for example alpha

is for liquids very close to 0 some small number 0.1 or something like that or less. In the case of

super fluid helium, sorry in the case of 2 dimensional ising model alpha is 0 but the specific

diverges logarithmically, so there is a log divergence there.

Now the specific heat itself depends on what is kept constant, it is either Cp or Cv or c with a

constant field it depends on this system that we are looking at so that is why I did not specify

which one it is for instance for the (())(26:50) model for fluids Cv continues to be that of an ideal

gas in the critical region but Cp diverges and it is related to the divergence of a susceptibility in

that case the compressibility.

So various possibilities this can happen, in 3 dimensional liquids data is not of the order of half

but nearer 0.321, 0.325 something like that. This exponent gamma is of the order of 1.25 is larger

this delta is of the order of 4 to 5 4.7. 5 something like that. In the 2 dimensionalizing model it is

a  very  special  model  again  exactly  solvable  all  the  exponents  can  be  shown to  be  rational

fractions exactly, for instance this turns out to be a log discontinuity 2D ising alpha equal to 0 but

it is a log divergence log mod T minus Tc then beta is equal to one eighth (())(28:11) gamma is

seven forth delta is what eclipse of the I mean I do not remember what is delta and I frantically

trying to find the relations I mean there are relations between these exponents I am trying to see



given this can I find the, for instance alpha plus 2 beta plus gamma is equal to 2 and the other are

alphas here but it works here as you can see alpha plus 2 beta plus gamma is equal to 2 it will

work and works here too but I am trying to think of what is the simplest, it will come back, okay.

But that is because it is dimension dependent the 2D ising model the 3D wants a much closer to

real life on various cases. Now I want to get straight to the point that what is underlying this

whole business and you will see in a minute where it comes from is the divergence as I said of

something called a correlation length so we have to define a correlation length and that will give

us a big handle on what to do next, okay. 
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So let me define that what is that I mean by this correlation you see let us go back to the ising

problem the magnetization or the moment at each side that is side is your is measuring the order

parameter the average value of this moment, okay but you could ask in a thermodynamically

homogeneous medium in equilibrium at every local side you do not have something which pints

on the average, it is fluctuating all the time.

So there are fluctuations and you could ask given the average what is the next mean square what

is the deviation look like from the average some kind of generalized co-variants you ask for and

what would it be in the case of the spin problem you see if you recall we said that the affective

field at every point and if you recall we wrote the Hamiltonian again I go back to this as minus J

summation over ij Si Sj minus H time summation over i Si we started by writing this and then I



said look this could be written as minus this field plus J times summation over j nearest neighbor

of i Sj summation over i Si.

So the field that this guy is seeing this moment at the ith side is this this is exact in the ising

model.  In the mean field case we replace this  fellow by its expectation value,  okay in other

words we wrote this field as equal to minus H plus J summation j nearest neighbor of Y there is J

summation over i Si well it is not very elegant notation so let us summation over i Si so this is

the effective field seen by the ith spin this guy times Si I added this instead of this so I got to put

that back, right? So plus summation over i summation over J J Sj minus Sj, okay you could put a

J ij here just in case it is in homogeneous etcetera.

So this term cancels out and I get back to this term, okay this is also in Si the whole thing acting

on Si. Now this guy here represents the fluctuation about the average value of these variables

here and mean field theory drops this fluctuation that is all its done is just dropped it, but we

would like to know how important this is that is the fluctuation at every point. 
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So now let us define auto correlation let us define let us call it G ri minus rj it is a function of the

difference in position of ith and jth moments is equal to expectation value of Si minus average Si

Sj minus average Sj,  okay it  is  clearly  by translational  variance  in the thermodynamic limit

clearly a function of i minus j this is like delta Si delta Sj and it will be a function of i minus j of

course you can also write this as equal to Si Sj minus Si Sj you can also write it like that by



trivial piece of algebra, right? It is the generalization of the mean square deviation at some point

but it is now specially dependent on two indices i and j, okay.

Now let us go back and ask what are these expectation values the next target is to relate this to

the  susceptibility  that  (())(35:18)  give  us  the  static  susceptibility  formula  and  you  will

immediately recognize linear response theory unit. 
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So the derivation I start with this again the density matrix, yeah expectations already there is no

averaging of an average we solved the average, right? So trace so Z the partition function is

traced either the minus beta (())(35:47) trace over the fact that each Si can be either plus 1 or

minus 1 that gives you all 2 to the power n for n of them and then you take thermodynamic limit,

okay.

So this is equal to trace e to the beta H summation i Si plus beta J summation ij nearest neighbors

Si the trace of this whole thing, okay. Now what is Si itself equal to, this is equal to trace Si e to

the minus beta H over trace e to the minus beta H which is equal to by the usual trick I want to

pull an Si out here, right? So what should I do? I take a derivative with respect to H, right? That

gives me the summation over i this guy, so let us do that equal to and there is a extra beta which

comes out, right? So I have to divide by this way, so 1 over beta Z delta Z over delta H that

summation over i Si because there is summation over i, right? 
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By the way you already know formula it is trivial you already know this from thermodynamics

because  you  see  let  us  connect  it  up  it  is  useful  exercise  because  remember  that  the

magnetization M will appear in thermodynamics through MDH like VDP, right? And it will be

equal to minus delta F over delta H keeping temperature constant. So m little this is capital M

equal to minus 1 over N delta F over delta H at constant T that is equal to minus 1 over N delta

over delta H of minus k Boltzmann T log the canonical partition function that is the formula for

the free energy minus kth log Z.

So this is equal to 1 over N beta delta so this is equal to 1 over N beta Z delta Z over delta H, that

is what I got here the same formula remember by translational invariance this expectation value

is independent of i and the n of this follows, so each of them is 1 over n times this that is your M

little m, so it matches this thermodynamic formula, okay. So all I have done is to write that show

how that arises directly by doing this but now comes the interesting part, what is this equal to?

What is summation over ij Si Sj equal to I do two derivatives with respect to H first I am going

to pull  down Si  second time it  will  put  down Sj it  is  not this  term because this  fellow the

summation over j is restricted to nearest neighbor of i for each i but this what I am calculating

here is over all i and j and that comes by taking this down and differentiating twice, right? 

And that becomes equal to 1 over each time I pull down a beta so it should be 1 over beta square

and then a Z D2Z over DH2, so now let us calculate our green function or correlation. 



(Refer Slide Time: 40:49) 



So the correlation function was G of ri minus rj this guy here summed over ij a sum over it this is

equal to summation over ij Si Sj minus, minus what? Minus summation over ij Si Sj this square

of this sum I call sum of ij Si Sj this (())(41:26), that is equal to what? Let us put this stuff N it is

equal to 1 over beta square Z D2Z over delta H2 minus square of this 1 over beta square Z square

delta  Z over  delta  H whole  square  that  is  this  guy this  correlation  or  if  you like  Si  minus

expectation Si Sj minus expectation Sj same here.

What happens if I differentiate m with respect to H? I should get kai, so it is clear that kai T

equal to delta m over delta H which is equal to 1 over N beta the derivative of this guy the field

appears here in Z out here, so the first term is 1 over Z D2Z over delta H2 minus 1 over Z square

delta Z over delta H whole square but this is just this guy here, isn’t it? There is an extra beta. So

it says you have to tell me where the beta goes, so this is equal to if I multiply beta so it is equal

to 1 over kT summation over ij G of ri minus rj, there is also an N somewhere there is an N

sitting where, 1 over N but this is a function of ri minus rj so I can fix the j in sum over ri fix the

i sum over j’s and then fix the next i sum over j’s we are going to get the same sum so I can

remove one of the summations and call this coordinates some relative coordinate the distance

between i and j and I can therefore write this as equal to 1 over k Boltzmann T it is not for the k

Boltzmann T summation over i G of Xi where Xi means you are centered at i and you are now

calculating all the distances to all the other later sets.



In the thermodynamic limit you could actually convert this to an integral, right? I may put lattice

spacing convert  it  to an integral and let  us do that in diddum by the this is called the static

susceptibility formula the fact that this guy here is equal to this correlation, does not that you see

this  measures  what  it  does  in  an  external  field  and  this  is  now  telling  you  what  the  auto

correlation is, so it is exactly like linear response formula let us precisely make that, okay.

(Refer Slide Time: 45:18) 

So now let us see what this does, so again we are on kai T is now approximately in the continue

limit 1 over k Boltzmann times T now we have lattice with lattice constant l in d dimensions,

denominator I think there is a beta square on top so that gives you, it is okay I mean I go back to



linear response theory it is beta times a dot of 0 because you know what is beta 1 over kT, okay.

So kai T is 1 over kT let us put a lattice constant l and it is in d dimensions and then you have an

integral dd of r G of r.

Now we need a formula for this guy we need something for this correlation which requires hard

work which requires little bit of work but let me state the result and if time permits we will try to

derive it (())(46:33). We expect this is going to die down as r increases the correlation between

the spin and spin is very far away is going to die down. Now it turns out that this fellow here for

r much much greater than some correlation length xi G of r goes like e to the minus r over xi and

this can be shown so I am going to assert the result and then we will see the consequence and

then try to prove later on, divided by r to the power d minus 1 over 2 xi to the power d minus 3

over 2 away from the critical region T not equal to Tc and that is kai, okay.

So now look at what is happening if I put in what I already know for kai goes like T minus Tc

inverse so it says T mod t upon minus 1 this guy goes like on that side this crazy integral this

does not do any harm we just replace this by Tc but you got to do this integral, okay. 
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So you have to do an integral only the radial coordinate matter so it is 0 only what happens near

infinity matters really r to the power dr r to the power d minus 1 e to the minus r over xi over r to

the power d minus 1 over 2 xi to the power d minus 3 over 2 and this integral is 0 to infinity this

guy some cutoff to infinity you do not need to, we do not care it is not 0 when this blows up.



So now there  is  a  paradox  you  have  this  fellow by assertion  I  said  that  G looks  like  this

exponentially dampt there is some powers of r floating around by the way this becomes d minus

1 over 2 this cancels against this, okay this is the phase space factor r to the d minus 1 and d

dimensions. Now this diverges as T goes to Tc by this equal to an integral which has got this very

strong converging factor here, what does it mean? Well xi certainly cannot go to 0 because if it

goes to 0 this will kill it faster than any power here I do not care, xi blows up xi has to blow up

so xi must tend to infinity as T tends to Tc this correlation between spins I already said the

fluctuation effect is going to become extremely strong at the critical region and so much so any

correlation length just diverges in an infinite system it goes to infinity itself, the question is how?

That is easily seen from here because all you have to do so scale out by this so change variables

let us change variables to.
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So this integral goes like integral dr as xi du so there is a du then there is a xi to the power d

minus 1 over 2 E to the minus u and then divided by xi there is a xi d so there is that guy and

then d minus 3 by 2 from 0 to infinity which is xi to the power du over 2 minus half that is this

part plus 1 that is this part minus d over 2 that is this part plus 3 halves times a number, so this

goes like xi this cancels 3 halves minus half is 1 plus 1 is 2.

So we find that in mean field theory in mean field theory xi goes like mod T to the minus half

because I squared goes like 1 over T so xi goes like 1 over square root of T you know the words

the correlation length diversion like 1 over Tc minus T to the power half that there is a in general

xi goes like 1 over mod T to the power nu and the mean field exponent nu is a half in the



framework of mean field theory, pardon me? There is no effect of d as far as this is concerned but

we will see in a minute what really happens one could ask what happens at the critical point what

happens to the correlation function at the critical point, what does it behave like? 

I said this formula is true away from the critical point, so you could ask exactly at the critical

point what happens, this fellow becomes infinite and then what happens, is this formula still

true? This is the question we have to ask this is r over xi is r over infinity which is 1 this goes

away so there is a power law so the question you are asking now is there a power law which is

does it blow how does it blow up it turns out that you can show independently that at Tc exactly

at Tc G of r  goes like 1 over r to the power d minus 2 plus and exponent eta you have to

introduce one more exponent eta is not as bad as it sounds because everything is in terms of the

correlation function.

So the idea is that away from the critical point the correlation 2 function point correlation dies

down exponentially with a correlation length at as you approach the critical point that correlation

length  diverges  like  with  temperature  in  this  power  law fashion  and  at  the  critical  point  it

becomes an algebraic function a power law decay which is d minus 2 plus another exponent eta,

okay and all these exponents can be written in terms of eta and nu and I will write those relations

down.

In mean field theory nu equal to half  and eta equal  to 0, so if  you put those two pieces of

information N all the other mean field exponents that we got will jump out automatically. So

everything is now hinging upon the correlation a two point correlation and characterize by these

two exponents eta and nu, okay. How this happens how this  happens and how this  happens

requires more careful analysis we will try to do it, that is the starting point of the modern theory

of  equilibrium phased transitions  this  is  the starting  point  the fact  the recognition  that  what

happens at that point the reason thermodynamics fails is because the correlation length becomes

infinity you cannot neglect fluctuations, whereas thermodynamics neglects fluctuations it also

say something more than that even mean field theory does not work it gives a wrong exponents.

And now you could ask what is the region how close to Tc should I be in order to see the new

exponents this  is  given by a rule of thumb called the Ginsberg criterion which I will  try to

mention but it is not a rigorous statement means you have to take the case by case as you can



aspect because what is exact is the university class in each case, so it will give you values of

exponents but to tell you how good that value is or when the mean field starts becoming a bad

approximation depends on the system so it is not the universal in that sense, okay but there are

criteria which will tell you.

For instance if there are long range forces then mean field theory is very good, so if you ask what

about this normal to super conducting transition in metals, metals becomes super conductors in

the  suitable  conductions  then  it  turns  out  that  the  temperature  range  in  which  the  real

normalization in which you need to correct the mean field exponents is of the order 10 to the

minus 8 degrees which is negligible unless you hit exactly on the critical point it does not matter

so you can get away with mean field theory because there is long range coulomb force involve in

the property, okay but in other places spin models and so on it can corrections can start appearing

much more significantly.

So that is not a precise question but there is such a criteria for this. So we will take it from the

point in the next time I will introduce the relations between the exponents, scaling, generalize so

much in this functions. 


