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Right, so today we will look at the fluid magnet analogy in a little more detail and I will

introduce the so-called mean field critical exponents. So just to recall to you quickly what we

have said, we said if you have a collection of spins each of which can point in one of 
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two directions,  up or down in the simplest  case then we had the simple formula for the

magnetization in an applied magnetic field H and the magnetization per particle, I denoted it



by m and this quantity was equal to tan hyperbolic mu H over k Boltzmann T when mu is the

magnetic moment, magnitude of the magnetic moment 
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of each particle. Pardon me? 

(Professor – student conversation starts)

Student: 0:01:13.3

Professor: I defined it as M over N mu, yeah. 

(Refer Slide Time: 01:18)



That was equal to this. And now of course, we can plot this m versus H diagram, so here is H,

here is m. So here is H, here is m. And it runs from between minus 1 and plus 1 in this

fashion. 
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And the isothermal susceptibility, it is the derivative at zero field out here, this quantity kai T

was equal to delta m over delta H at constant T at H equal to zero, this quantity was equal to

mu  over  k  Boltzmann  T.  It  is  proportional  to  1  over  T  which  is  the  Curie  Law  for

paramagnets, 
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right? 

(Professor – student conversation ends)



Now the question is how are you going to include interaction between these various magnetic

moments leading to the phenomenon of ferromagnetism itself. But while we do that, and I am

going to do that in the theory called Mean Field theory, let me qualitatively draw graphs and

show you what the actual results are. So that you can see immediately where we are headed

for, Ok. And the graphs are as follows. 

Again the so-called fluid magnet analogy which said 
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that  for a fluid,  you had P versus V and these isotherms were things like this  below the

critical point and then you had a critical isotherm of this 

(Refer Slide Time: 02:59)



kind. And above the critical point you had things like that. So this point, this inflection point

is V c P c and of course, for T c. So this is T equal to T c, isotherm, this one 
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thing. Corresponding to that we have the m versus H diagram here in this fashion.

So this region above T c corresponds to these isotherms here, Ok. Then let me just say what

the result is. This critical 
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isotherm T equal  to T c  with an inflection  point  corresponds to  what  is  called  a  critical

isotherm here, like this and this is for T equal to T c. This is for T greater than T c. 
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Just as this is for T greater than T c and this is for T less than T c. 
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Of course you immediately see a difference which is that while the pressure here at the co-

existence region changes with the temperature, that does not happen here. They are all at the

same point here and now you can ask what happens if you go below T c for this system here?

This model will not show anything because it is equivalent to the ideal, classical ideal gas. In

other words there is no phase transition. P V equal to R T there is no condensation because

there is no interaction between the molecules assumed. The moment you put in interaction

between molecules,  then condensation can happen if there is an attractive interaction and

there  is,  we know in real  life,  an attractive  interaction  at  long range and that  is  what  is

responsible for condensation below T c here.



The same thing happens here and we will see this explicitly. What happens actually is you

come acro/across, come till here, and then you discontinuously jump out here. So this is an

isotherm, this thing here for T less than T c. 
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And all the isotherms for T less than T c are of this kind. They have a discontinuity on the H

equal to zero line, and they jumped off. So in a sense, all these points, these flat portions are

all compressed on to one line, Ok in this case.

So  this  is  the  connection  between  those  two  fellows.  Now  you  can  ask  what  is  the

susceptibility. Well I defined it, delta m over delta H at H equal to zero; you could ask is a

there susceptibility in the ferromagnetic phase? Now why do I call this the ferromagnetic

phase? Because even I switch off the field, there is a remnant magnetization.  That is the

characteristic of a ferromagnetic phase. So if I switch off the field from the positive direction,

then at that temperature, the system will show this magnetization. But if I switched it off from

the negative direction, from opposite sense of the field, it would show this value here, Ok. 

Just as out here, if I decrease the pressure to this point, you would be here. 
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If I decreased it on the gas phase, you would be here in exactly the same way. So it looks like

the analog of the liquid phase and the gas phase here, it does not, it has more symmetry. It is a

magnet with the magnetization positive versus a magnet with a magnetization negative here.

The analog of the fluid homogenous phase out here is the paramagnetic phase when there is

no magnetization at all. Ok. Now this become

(Professor – student conversation starts)

Professor: Yeah

Student:  Inside  the  thermal  noise  0:06:50.1  suddenly  starts  doing  something  when  the

temperature is less than T c? 

Professor: Yeah, so we will have to see what this T c is and what the difficulty is. We are

going to see this in some detail,  Ok? What happens is, in a nutshell,  his question is does

thermal noise start doing something at T c or below T c and the answer is yes. 



(Refer Slide Time: 07:11)

It is the other way about. 

(Professor – student conversation ends)

The interaction tends to align things. Beyond a certain temperature the disorder effect wins

and the ordering effect does not. That is essentially, in a very crude way, what happens. There

is always thermal noise present, thermal fluctuations. The typical strength of a unit of thermal

fluctuation is in energy units, is k T. 

Now if the characteristic energy associated with ordering is much less than k T then you are

in the so-called high temperature regime which is disorder and if it is small compared to, if it

large compared to  k T then of course you are on the lower temperature  regime,  Ok.  So

ultimately as we will see today, the strength of the interaction decides where this critical

point, where the critical temperature is. There is always thermal noise of course.

Many other crazy things happen at the critical point and that is why it is so hard to understand

in  elementary  terms.  One  of  the  things  that  happens  is,  and  this  is  a  modern  way  of

understanding, the correlation length of the system diverges at the critical point and we will

in fact establish that. We will see how it diverges, today. Ok. So this picture has to be kept in

mind, the P V and the m versus H. 



Then the next one was, in the fluid case we had the, the fluid I am doing here so, we had the

T here and we had P and remember that this was liquid, this was gas and this is the critical

point. So this point is T c, this is the critical pressure 
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P c, Ok.

The question is what is the analog of that here. I have already said that the two phases, liquid

and gas correspond to magnet up and magnet down in this case and the fluid phase above the

critical point, the critical region corresponds to the single phase there, the one phase region

corresponds to the paramagnetic region here. So what does the analog of that graph look like?

Well it is like this and I will draw it here.

Of course there P and T are non-negative so only the first quadrant is involved. But here, you

certainly have P will run all the way from zero upwards but m of course can be positive or

negative, 
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H 
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can be positive or negative It is a function of this field. And the question is what is the analog

of the P T curve. It has got to be H versus T curve 
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here, Ok. So what do you think is the analog? 

Well, let us remember what happened here. We know that the slope, slope of co-existence line

d P over d T equal to delta S over delta V by the Maxwell relation, Ok. And then I argued 
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that generally delta V between vapor and liquid is very, very large. 

So you have large denominator and the slope is very small in magnitude. It is also always

positive because that stands for S entropy of gas minus entropy of liquid divided by volume

of gas minus volume of liquid specific volumes, then both numerator and denominator have

necessarily to be positive. And the slope is small. Here the same thing happens but now you



have the symmetry between up and down. Whatever you got here with a certain switching off

the field here, exactly the same thing with a minus sign appears here. This is reflected here in

this. This is completely symmetric.

You can see in this graph, that if you change the sign of H, you change the sign of m. So it is

completely symmetric in the situation. Therefore this graph has no choice but to be a straight

line here. It cannot be in any particular direction. Because if it were up, it would violate this

up down symmetry. So it has got to be like that and then at T critical. 
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And that is the coexistence line between a phase which is not liquid but ferro up, let me just

denote it by this. And this is ferro down.
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And on this side, just as you have a homogenous fluid phase out here, on that side you have

the paramagnetic phase. So you already see by symmetry that the slope here, d H over d T of

the co-existence curve must necessarily be zero. 



(Refer Slide Time: 12:35)

Ok, right? I just argued this by words saying that look, whatever happens up here, when you

reverse the sign of the field, the magnetization changes and it has got to be so. 

But we can now ask, no, no, no, let us just blindly apply the Clausius Clapeyron equation. Let

us just blindly apply the analog here.Then why should it be zero? d H over d T, 
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that graph must have a slope which is delta S divided by delta what? What is the analog of the

volume? 

(Professor – student conversation starts)

Student: Magnetization



Professor: The magnetization, delta m. 

(Professor – student conversation ends)

And if this is zero what does it mean? 
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Well, delta m is finite because this is m for zero field and this is m from the 
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negative  side.  So  delta  m,  the  denominator  is  finite.  It  is  this  difference,  Ok.  But  the

numerator is zero because, how after all do you get this graph? How do you get a point here?

You have a specimen like this in which everything can point only up or down, then if this is,

remember this is an average magnetization over the whole sample, so it is clear that if you



were at  absolute  zero  of  temperature,  you applied  the field,  infinitesimal  field  in  the  up

direction, everything would align in the up, you would be here. 

Similarly if you applied the negative field you would be here. The reason you have this gap

here that has not gone all the way up there is because of thermal noise, thermal fluctuations.

So what you have is large islands of up, up, up and then there are small regions of down,

down etc 
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as you bring the field down towards zero. This, on the average there will be more pointing up

than down and you have a net up magnetization. 

As you lower the temperature further it takes less and less field in order to align. So you are

going, this intercept is going to move up, ditto for the other side, move down towards minus

1. Now it is clear by this symmetry that the entropy of the system which is a measure of the

disorder in the system is equal on both sides, because whatever domain you had here for up

field and down domains in the up field, exactly the opposite happens in the case of a negative

field.

So these would become down and these would become up here. So it is not surprising that the

entropy is zero, change in entropy is zero. The moment that happens the slope here has to be

zero. Because the denominator does not vanish, the numerator vanishes by this symmetry.



Ok. So that is a rigorous argument that this curve, coexistence curve between up and down

has to be flat here. 

It is a good thing it is flat because you see otherwise look at what will happen. Out there, if I

start with a liquid at atmospheric pressure say, 
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and I heat it. I increase the temperature; it will boil once you cross 100 Celsius. So it will go,

cross, so it will certainly boil, because you can go across this line out here. You could also get

it into gas form by dropping the pressure down this way or anywhere across which cuts this

line here.

On the other hand, if you start here with ferro up and you just increase the temperature, it is

going to go up like this. It is not going 
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to transform into a magnet down without changing the field. You have to change the field to

do that. On the other hand, you can boil water, you can boil water it becomes gas without

changing the pressure but you cannot make an up ferro magnet down ferro magnet without

changing the field just by increasing the temperature.

So that itself tells you that this graph has to be flat by symmetry.

(Professor – student conversation starts)

Student: That is really for para to ferro which are going to discuss here.

Professor: We are now going to talk about para to ferro that is a different matter out here,

what is going to happen here. For that I need the third of these graphs. And the third graph

was of course, in this case, in this case, it was the density, sorry T versus rho graph and it was

roughly like this. This was the coexistence region. This here was the gas phase, this is the

liquid phase, this is the critical point, Ok. And this region was the coexistence region.

(Professor – student conversation ends)

In the van der Waal's isotherms 
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if I quench something suddenly to a point here, it would phase-separate into a part liquid and

part gas, saturated vapor above it. And the exact ratio how much happens can be found by so-

called lever rule which I am not getting into here, but the fact is the two coexist here. On the

other hand there is no coexistence region here at all because let us look at what the analog of

that graph is. 

So on this axis I draw temperature, I draw magnetization here and since m can be plus or

minus, I draw this. Then here is T c. First 
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let us look at what happens if I have zero field. Then depending on whether I switch it off

from above or from below, above T c I have zero, at T c you are just about taking off from 
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zero and then these intercepts go towards the saturation value. So this means that they are

going to go like this, Ok.

And this branch corresponds to the other part of it. So let me call this m naught to show that it

is the remnant magnetization in the absence of a field. So m naught is either this or this at

different temperatures. 
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As I go towards absolute zero, this tends to 1 in the units we have chosen and this tends to

minus 1 out here, Ok. 
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The reason we call it the continuous phase transition as opposed to a discontinuous phase

transition is that when you, when you boil liquid here the density changes discontinuously. 
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There is latent  heat given to the system and there is a discontinuity perhaps in the order

parameter. But that discontinuity disappears as you get to the critical point. In exactly the

same way, this intercept for m naught starts off 
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smoothly from the origin and goes up. 
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But it is zero outside, in the ferro magnetic phase, in the paramagnetic phase but in the ferro

phase it starts from this point, then it jumps suddenly and then it goes up. And that is the

other branch, going down here. 

Now you could ask, suppose I looked at these intercepts 
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for small positive values of the field. I do not switch off the field. I keep it very small and

positive. Then out here of course you would have, for large thing, you would have for this

field you would have this much magnetization. As you lower the temperature you are going

to get more and more of it and you are not crossing any discontinuity or anything like that at

any point.

So this would in fact start like this 

(Refer Slide Time: 20:41)

and go up like that. It cannot be more than the saturation value therefore it saturates. On the

other hand, in a perfectly symmetrical way on the negative side it would do this out here. 
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As you come down in the field to zero and then go towards negative fields, the magnetization

jumps discontinuously to 
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this point and goes here. So you have a jump from here to here. And then it goes for the

down, Ok.

So there is no coexistence region here. This region does not, what happens essentially is that

the  free  energy,  if  you  plot  the  free  energy  will  have  an  unstable  minimum,  unstable

extremum at that point, Ok. Since we are going to talk about Landau theory let me say that

right away. If you plot the free energy, the corresponding free energy F as a function of m,

magnetization 
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then in the so-called paramagnetic region, this is in the absence of an external field, so F a

function of m, H, T and now I set H equal to zero. 
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Since at H equal to zero, the only stable solution is zero magnetization for T greater than T c

and that is the stable thermal equilibrium state, this free energy must look like this for T

greater than T c, 
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Ok. On the other hand when you come to this point here, 
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the critical region, this free energy, you still have zero as a solution, so it gets extremely flat

in this fashion, in fact the leading term starts with the fourth power rather than the second

power, so it is not a parabola 
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but it has got higher derivatives as zero as well and when you come down below T c it does

this. 

That is the way this parabola of this single maximum, single minimum 
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it breaks up, finally it degenerates into a curve which is not a parabola anymore near the

origin but a fourth power, it starts and then for T below T c, even below T c this higher order

minimum splits into two minima and a maximum in-between them, Ok. This is the 
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m equal to zero solution, that is unstable so you see this becomes unstable, this solution.
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But you have 2 stable minima as solutions. They correspond respectively to this point and

this point. 



(Refer Slide Time: 23:34)

Since this happens smoothly and continuously as you cross T c it is called a continuous phase

transition. There is no discrete jump, finite jump in the value of the order parameter in the

magnetization.

(Professor – student conversation starts)

Student: 0:23:49.5

Professor: Pardon me? Yeah, this is at H equal to zero so it must be m naught 
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plotted with that...

Student: Minima is the m naught. 



Professor: Pardon me? Well, Ok I am being a little loose here. In principle what happens in

Landau theory is that you write it as a function of the thermodynamic variable, phenomenon

logically and then you say that thermal, thermodynamic equilibrium state corresponds to an

extremum of this F. So I have written a functional relat/relation, as a functional of this m and

said that the minimum is at the average value which you already have here, Ok.

Student: That means the m naught should not be there in the axis.

Professor: Yeah, that is why I put an m there, right. 

Student: No what I meant is that at the minimum you can...

Professor: Ok, I mean

Student: Because you are... 
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Professor: Yeah I know. I should put expectation value or something. We will do that. When

we need it, we will be careful with our notation, Ok, alright. So those 3 figures and these 3

figures are sort of one-to-one correspondence. 

(Professor – student conversation ends)

Today what we will do quickly now is I want to show you, this is a square root type of

singularity. That is this curve here in this region; the m is like the square root of T minus T c,

exactly the same thing in this case, parabolic 
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in this case. Then I want to show this graph here 
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corresponds  to  the  reduced  pressure  being  a  cubic  function  of  the  reduced  volume.  So

remember I already defined P minus P c over P c equal to p and V minus V c over V equal to

v in a little abuse of notation here 
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and I said in this region, focusing on this region and expanding it, it looks like this, v p I will

just write modulus, 
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Ok

Cubic curve, I just want to show exactly the same way that at this critical isotherm I would

like to show that H is proportional, it goes like n cubed on this critical isotherm, the curve

that goes like this. 
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3 is a critical exponent and I want to show that in both cases, Ok, especially in this, alright.

Now the point about critical phenomena is that these exponents, this 3, this half which we

have still got to establish, we will also establish that this is not the correct formula; that you

will get a susceptibility which goes not like 1 over T but 1 over T minus T c. So this is going

to be changed to something which goes like 
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1 over T c minus T, this quantity as you come down 
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from the paramagnetic region. 

There is an exponent 1 here. In exactly the same way, the analog there is the compressibility.

That will also diverge on this graph like 1 over T minus T c, Ok in the critical region. Now

you could ask one question which is what happens to the compressibility as I go from below

the T c, below the critical temperature? Well nothing much happens there, it still diverges at

that point. The question is can I define a susceptibility in this case at all?

Can I define, because the function is discontinuous? Remember it is defined in this fashion.

So just to get it clear, I just draw 3 graphs now. In the para phase you had no problem. In the

critical isotherm, you had this and I said 
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that it diverges, it blows up. It should because this is not linear, it is a cubic curve. So slope

becomes infinite at that point. But below the critical point, my isotherms look like this. The

function becomes discontinuous. 

Can I still define a slope and a susceptibility for it? The function is not continuous. Can I

define a susceptibility? Why not?

(Professor – student conversation starts)

Student: You cannot take derivative there

Professor: Why not? I can take a right derivative here; and I can take a left derivative here. 
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Student: Right and the left derivatives don't match.

Professor: We are not sure they will or not. But if there is symmetry in the problem they do.

In this problem, there is, m to m, H to minus H there is, yeah

Student: Inside it is not there.

Professor: Yeah, so it is perfectly alright. You can therefore define a susceptibility. So here is

an example for function as a finite discontinuity, it may still have a derivative at that point.

They have a left derivative and a right derivative and they may even be equal, Ok. So it is

perfectly alright in this case, alright. So this is, these are things which we have to deal with

now. 

(Professor – student conversation ends)

So what we will do is, while we have a model here we need to improve this model. So that is

what I am going to do now. So we are going to take this  model here and write in more

sensible fashion and see whether we get the results we want or not. Now here goes.

In  all  of  condensed  matter  physics,  magnetism is  always  served as  a  kind  of  paradigm,

especially  spin  models  served as  a  kind  of  the  basic,  fundamental  paradigm for  various

modeling all sorts of phenomena. And among them the simplest model is the so-called Ising

model which has served as a model for not just magnetism but binary alloys plus a whole lot

of, today a huge number of physical phenomena can be modeled by the Ising model, Ok. 



But I will try to motivate it in the simplest manner possible. What we start by saying is that, if

you apply  an external  magnetic  field  on a  system of  magnetic  moments,  these  moments

would try to align along the field.  Lowest energy configuration is along the field.  But in

addition  to  that,  the  moments  may  be  interacting  between  each  other,  Ok.  What  is  the

simplest interaction between 2 magnetic moments? 

If I have a moment mu 1 and a moment mu 2 in this fashion, you have to ask 
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what is the potential  energy of interaction between them. Now this is not a trivial  matter

because  this  is  going to  depend on not  only  the  distance  between them,  these  are  point

dipoles. So you must imagine they are, their physical extent is actually atomic in size so it is

very small.  But it not only depends on this thing here but it also depends on the relative

orientation  of  mu 1  and  mu 2  with  respect  to  the  vector  joining  them.  And  you got  to

construct a scalar. 

Now one term 
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in that scalar if you remember from electrodynamics would be of the form mu 1 dot mu 2

over r cubed. And then there is another term which goes like mu 1 dot r, mu 2 dot r divided

by r to the power 5 with a different coefficient. So in general, it is fairly messier quantity. But

we are now concerned about situation where you can only point upward down. Nothing more

than that. We also want to ask 
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what leads to magnetism, what leads to ferromagnetism.

On the face of it, it looks like this kind of interaction cannot lead to ferromagnetism because

when you have 2 dipoles, this and this, then north pole and north pole, they would tend to

align like this because that is the lower energy configuration. So on the whole when you



average you are going to get zero because plus and minus would just cancel out, right. So

dipole  ordering  generally  tends  towards  the  state  of  zero  magnetization,  anti-ferro

magnetization at best, certainly not ferromagnetism. 

The origin of ferromagnetism is much more subtle and this is what Heisenberg discovered,

one of his biggest discoveries. He discovered that purely due to the fact that electrons are

fermions and obey the Pauli  Exclusion Principle,  when you bring 2 atoms together  their

electronic clouds would tend to repel each other. There is a statistical repulsion and you can

now ask what happens to the energy levels of this combined system here.

Then you can write down after a lot of rigmarole, an effective Hamiltonian which tends to

favor under suitable conditions a parallel alignment. It is purely a quantum mechanical effect.

It is called the exchange interaction, Ok and this exchange interaction depends on the overlap

of wave functions of electrons belonging to neighboring atoms if you like, and depends on

other details  of the system. There are situations, there are some substances for which the

ordering  tends  to  be  anti,  the  ordering  is  anti-parallel  for  lower  energy  but  most  of  the

ferromagnetic substances it is always plus up here.

So essentially an s 1 dot s 2 kind of interaction with a minus coefficient which tells you that

the parallel ordering is favored leads to ferromagnetism, Ok. It is not a direct dipole-dipole

interaction. Because it is classical, that is long range, that dies down in this fashion etc. This

exchange interaction comes about because if you have one atom here with an electron which

has got a wave function like that, and another one with an electron like this, this overlap

integral leads to that effective so-called exchange constraint. 

Since these are bound electrons the wave function dies down exponentially with distance. So

this interaction which leads to ferromagnetism is a very short range interaction, essentially

acts only on nearest neighbors in a lattice for instance. 
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It is exponentially short in range but that suffices to produce long range order. In a big crowd,

if each person acts, suddenly one person starts looking in one direction and he or she can only

affect his neighbor and he starts looking this way too, then this short range interaction can

spread over the entire crowd and soon everyone gets aligned. 

So short range interactions, if sufficiently strong, can lead to long range order, Ok. That is an

important lesson and that is what happens in ferromagnetism. So to cut a long story short, in

our  model,  in  the  Ising  model,  the  Hamiltonian  looks  like  this.  Now we start  writing  a

Hamiltonian,  then we write a free energy and so on and so forth. So we assume that the

system is on some kind of lattice for example, so lattice with sites labeled by i, j etc, these are

site labels 
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and we are only interested in the magnetic properties so I write down only the magnetic

degrees of freedom here. 

I write the Hamiltonian only as far as the magnetic moments are concerned. That is all that

we are concerned with. So the Hamiltonian H is equal to minus, I put an external field H and

then a summation over I, let us say S i is of the spins or moments, 
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from now on I am going to get rid of this mu, little mu, I am going to subsume it in whatever

parameter you, so this is going to be a pure number which I am going to take to be plus or

minus  1,  the  mu  has  gone  into  this,  out  here.  The  temperature  is  going  to  come  out,

externally, separately. 



So all that has been done and I have chosen proper units etc etc. It just makes the notation

much simpler. So I have this, minus, this is under a uniform magnetic field H across the entire

lattice minus a term which describes the interaction, which is nothing to do with the external

field at all. And we are interested in ferromagnetic ordering so that is minus 2 summation j

which depends on 2 sites at a Time:, the spins of 2 sites at a Time:, so i and j, j i j, the strength

of the interaction or overlap integral depends on this i and j out here and then S i S j.

Since I have assumed only one direction of magnetization, one axis everything is scalar here.

Otherwise I would have to put vectors, these would be operators then you have quantum

mechanical three dimensional problem for the spins which would be r and s. We are now

doing just what is needed; the essential part of the physics 
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as far as magnetism is concerned for our purposes at the moment, Ok. 

I will assume that each S i is equal to plus or minus 1, 
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Ok and I am going to take traces. Now if I have n of these spins, then since each S i is plus or

minus 1, I have 2 to the n possible microstates. Whenever I say trace, I mean trace over all

the possibilities, Ok and of course we will put in the Boltzmann factor very shortly here. This

thing is called an exchange integral and I have already said, that since this is a quantum

mechanical effect and the interaction range is very short, i and j have to be nearest neighbors

otherwise you do not have an interaction at all. That is generally denoted by putting a bracket

like this.

This means i… 
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Ok. How many nearest neighbors do you have on a line, on a linear lattice? 



(Professor – student conversation starts)

Student: 2

Professor: 2. What about a square lattice? Well a square lattice will have, so if this side has

the nearest neighbor 1, 2, 3 and 4. 
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A D-dimensional lattice, hypercubic lattice? 2 D. In three dimensions you have one on top,

one below, one behind, one front etc 
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so you have 6, so you have 2 D nearest. Whatever it is, it is a finite number, that is very

crucial. It is a finite number. Otherwise you are finished. You will see in a second, you will

see, if that is not true, you are finished. 



(Professor – student conversation ends)

Why do I say that, you are finished if it is not true? Because you take the expectation value of

this guy, you have to average over all the sides, over all the possibilities. This fellow will tell

you, for a given value of this j, i j, if both are plus it gives you a number 1. If both are minus

it gives you 1. If one is plus, the other is minus, it gives you minus 1, etc. And you have to

add over all these things. But the point is, if this is summed over all i and j, 1 to N, capital N,

and this is the interaction, some fixed number, let us suppose that it is the same number, no

matter what the range, what the distance between i and j is.

Then you see it is clear that this term is of order capital N squared. Because I pull out the j

outside, it is some finite number. I have to sum over i and j and it is going to be of the order

capital N squared. That violates the extensibility. This has got to be linear in the system size,

Ok.

So an infinite range interaction, with the same interaction strength is going to finish you off.

It has to drop down. It has to drop down. So that is not even a thermodynamic system. Once I

put nearest neighbors 
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there is no problem. It is a finite number. I go one step further and say this guy is a constant

across the nearest neighbors. 
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In other words, this interaction is the same as this, is same as this, is same as this, Ok.

And what is the job? The task is to say, Oh this whole thing is put in a heat bath and I am

going to find the partition function is trace e to the minus beta H. This trace stands for saying

that this set S i is equal to plus or minus 1. 
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Every S i takes values plus 1or minus 1 and I have to find this whole thing. Now is this such

an impossible task? By the way you can do this  in  one dimension,  on a linear  chain on

suitable boundary conditions but you cannot do this in higher dimension so easily, Ok.



Even if you switched of this field, you still cannot do it in higher than 2 dimensions, Ok. In

1944, Onsager solved this problem of finding this exactly, for this problem without this on

the square lattice.  It  is  a  brutal  force.  It  is  very, very complicated  proof  but  now it  is  a

standard proof. It is a long, it is a long derivation but it can be done explicitly. And then the

idea is to find out what happens when the number in infinite, N becomes infinite. As long as

N is not infinite, you can't get any singularity because remember, Oh...

By the way I should also say the free energy is minus k Boltzmann T log Z and once you

have 
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the free energy, all thermodynamic quantities can be computed, their variances everything

can be done in equilibrium statistical mechanics. What is the complication? The complication

is  this.  Because  you  have  that  interaction,  you  have  to  enumerate  all  possibilities.  The

possibilities of this will affect what happens here. But the possibilities of this will affect what

happens here and therefore here and so on. 

So  it  is  an  extremely  complicated  problem and  there  are  very, very  few exactly  solved

statistical mechanical problems. This is called the two dimensional Ising model, Ok. No one

has succeeded in doing it with the field present. And no one has succeeded in doing anything

beyond two dimensions, in three unknowns no one knows to do this. It is probably not doable

in this form anyway, Ok. Now our task is going to be much simpler.



We are simply going to argue that each magnetic moment in the ferromagnetic phase; we will

see an effective magnetic field due to the fact that all its neighbors tend to be aligned in the

direction of the field, Ok. So this term is going to be replaced by an effective term. We want

to eventually find the expectation value of this, to find the internal energy. Because that is the

expectation  value,  the  Hamiltonian  with respect  to  this  weight  function.  The expectation

value of this is essentially the magnetization what I called m. 

So let me write that down. 
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Definition,  in  the  units  I  have  chosen,  I  have  put  mu;  I  have  subsumed  it  inside  this

cons/constant,  inside the  field  etc.  So it  is  the magnetization  per  particle  which has  this

quantity  here.  The  internal  energy  will  be  the  expectation  value  of  this  guy,  which  is

expectation here and then expectation here, Ok. So the problem will arise because we do not

know how to compute this expectation. 

The m comes out here 
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and by the way, it is independent of i because in infinite lattice, every magnetic moment is the

same as every other moment on the average. But you have this quantity here and that is bad

news. Because it is correlated. So what this assumption of mean field theory does is the same

as the van der Waal's approximation in the gas case is to say this thing here, if you look at a

particular site i, I look at a particular site i, then j runs over all its nearest neighbors 
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and as far as this is concerned, I can replace this S j here by the expectation value of this S j,

Ok.

So if I make that approximation then, and then I take expectation values. But of course there

is nothing to take expectation value here because is already an average. It factors out in this



fashion. What has been the effect of that? The effect of that is to write this as equal to minus

summation i some H i S i, an effective field at every point with a minus sign where H i is

equal to external field plus J Time:s summation j equal to nearest neighbor of i S j. 
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So essentially it is as if I have put this spin here in a field which is not only the external field

H but also the internal field due to the fact that these guys have got a magnetization on the

average. So it has been put equal to S j here. So it adds to the external field, some effective

field, Ok. This is called the 
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molecular field approximation. This is the old famous Weiss molecular field approximation.

It is changed this field to this. 



But now we can go further. We have already said j must be nearest neighbor of i. So let us put

in, let us say we got, we are working on a D dimensional hypercubic lattice because one of

the  things  we  learn  in  critical  phenomena  is  that  things  are  very  sensitively  dimension

dependent.  How many spatial  dimensions  are  you in?  The effect  of  thermal  fluctuations

depends very sensitively on what dimensionality you are in. 

We will see, in one dimension no ordering is possible because thermal fluctuations destroy

this order completely. In two dimensions it is possible in this class of models. As you go in

higher dimensions, it gets more and more possible, Ok. So the power of thermal fluctuations

or quantum fluctuations for that matter to restore symmetry and stop ordering gets lower and

lower as you increase the dimensionality. Because the number of neighbors increases and

tends to order the system, Ok. 

See all our phase transitions is a competition between disordering tendency of entropy and

the  ordering  tendency  of  the internal  energy, Ok.  So you have F, this  is  just  a  heuristic

argument; you have 
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U minus T S. This will tend to order, that will tend to disorder. And the competition between

the two will decide the minimum of F that you are at. At low temperatures, sufficiently low

temperature, this is low and U win and the system has a minimum controlled by the internal

energy.



On the other hand, at sufficiently high temperatures, that wins and you have a disorder state.

That is really all that happening but that is saying it in very, very bare bones. The rest of it is

matter of details to work things out. But it is worth remembering this. So what does this

become? There are 2 D nearest neighbors and each of them has the same exchange constant j

and this is m itself. So this is equal to H plus 2 D J m, in this fashion, right?

(Professor – student conversation starts)

Student: Can we call it 0:50:33.8 H effective

Professor: Yeah, but it was for each side, so H effective. 

(Professor – student conversation ends)
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Now let us go back and put this in our model, Ok.

(Professor – student conversation ends)

By the way I wrote our model down by averaging the value of mu up and down using the

Boltzmann factor. We could have written  a partition  function  for it.  Each of them has a

partition function for t. Partition function e to the beta mu H plus e to the minus beta mu H,

the partition for the full system is that to the power N, that quantity is twice cosh beta mu H

to  the  power  N.  And  then  I  can  take  the  free  energy  minus  N  k  T  log  Z  and  found

thermodynamic quantities. We could have done that too.

So since you have Z equal to e to the beta mu H cross … 
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the magnetization equal to, it is after a Legendre transform. Remember that you have the free

energy which has S d T minus a V d P or P d V depending on which free energy you are

talking about, since we are using H as the control parameter, we are using P which is the

analog of the Gibbs free energy, so there is going to be minus m B H. Ok. 
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(Professor – student conversation starts)

Student: We have already worked out m equal to tan...

Professor: Precisely, so I want you to take this guy and show that this is, turns out to be tan

hyperbolic, exactly

(Professor – student conversation ends)

I just argued saying that if it is up, the magnetic moment is mu, if it is down, it is minus mu.

We took the average over the Boltzmann 
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factor and did it directly but you can go through the rigmarole here. By the way this is helpful

because we can write a formula for the susceptibility which we are going to use. So kai t

equal to delta m over delta H at constant T 
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and zero field, and zero field, so we can write it from this. We can write one more thing. 

This is equal to minus 1 over N delta m over delta H so, Ok. The susceptibility cannot 
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be an extensive variable, it is intensive, it is like a bulk modulus or something, cannot depend

on system size. This fellow is an extensive variable that is why got an m here, this is an

intensive variable,  definitely. Ok. Like I promised the second derivative of a free energy

would always be some response function, in this case susceptibility. We are going to use that

in a minute. 

So we have this and let us it put back in our equation of motion. So it says, purportedly, m

equal to tan hyperbolic mu over k T H plus 2 d J m, Ok. That was our 
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magnetic equation of state. This is our van der Waal's equation 
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if you like in this mean field theory. 

First order of business let  us find out what is T c from this. Let us find out what is the

spontaneous  magnetization.  So spontaneous  magnetization.  What  are  those  intercepts?  m

naught is given by tan hyperbolic 2 d hey I got rid of this H mu, I subsumed in this in my

notation , 2 d contour 0:55:35.9. So let me write that 1 over k T. 
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So tan hyperbolic 2 d j m over k Boltzmann T, m naught. I put H equal to zero. By the way 
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this is an equation which is a transcendental equation.  You have a power of m here, and

algebraic function, you got a transcendental function. So you cannot solve it in explicit closed

0:56:07.4 form, only numerically  you can solve this.  But we can solve for what happens

when H is zero. That were those intercepts in the m versus H graph. Well, it is equal to this.

And the question is, does this thing have any solutions or not? 

So let us plot both sides. So I plot m naught. The left hand side is m naught itself, the 45

degree line 
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and this one is the tan hyperbolic guy. Now hyperbolic has a slope, tan hyperbolic x goes like

x  near  the  origin.  So  it  is  linear  near  the  origin,  saturates  to  plus  minus  1.  And  two

possibilities arise. One of them is the graph looks like this. Then the only solution is out here.
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But if the slope at the origin exceeds 1, then the graph would look like this. 

And then you have 1 solution, 2 solutions, and 3 solutions 
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depending on whether the slope is greater, or less than 1. So you have m naught equal to zero

is the only solution as long as the slope at the origin which is 2 d J over k Boltzmann T is less

than 1. 
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Or T greater than T c which is equal to 2 d J over k Boltzmann T. So we found the critical

temperature 
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in this problem. As you expect, it has got to be proportional to the exchange constant J, the

greater this is, the higher the temperature at which disorder will 



(Refer Slide Time: 58:15)

set in, and it depends on the dimensionality through the number of nearest neighbors, Ok.

If you have more of them in the higher dimensional lattice,  even at a lower temperature,

higher temperature you would still have order, Ok. Now it is easy to show that these two

solutions correspond to precisely those minima I showed in the free energy curve and this

corresponds to an unstable 0:58:46.9 here, Ok.

So we have our first formula which says T c is this guy here. 
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Now we put that back here. So I can write this magnetic equation of state as equal to tan

hyperbolic h over k Boltzmann T plus, now 2 d J over k Boltzmann is T c so m T c over T.



And now you see what happens when you lower the temperature further and further. This as I

lower the temperature this slope guy goes up more and more and these points are moving

further and further away and that is exactly what happens when you plot this m naught versus

T. 

They start at this point but they move further and further out towards plus 1 and minus 1. 
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So this is our equation of state, this is like volume, this is like, this is temperature and this is

like pressure. But equation of state 
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says p equal to something or the other. So we would like to solve for this and see what does

this thing look like. I want H as a function of m and T. That is not hard to do. So let us write

that. There is just one more line. 

Then we will resume from here. So this is equal to tan hyperbolic H over, or beta let us just

call it tan hyperbolic H over k Boltzmann T plus tan hyperbolic m T c over T divided by 1

plus tan hyperbolic H over ... 
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Just use the formula 
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for the tan hyperbolic of a plus b and so this is equal to m, so let us solve for this. It says tan

hyperbolic H over k Boltzmann T Time:s 1 minus m tan hyperbolic m T c over T, this guy



moved this there is equal to m minus tan hyperbolic...Ok, that is the solution. So you have, H

is tan hyperbolic inverse of this whole mess. Ok

When you see that is correct, 1 minus m tan hyperbolic, that is Ok. And that is equal to m

minus tan hyperbolic, yeah that is Ok, alright. So now we are interested in the critical region.

We have just seen exactly what happens at the critical point. Now I am going to stop here but

I am going to, tomorrow I assume that you have already done this algebra, so show that... 

As you approach T c from below, 
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show that it goes like a square root, Ok. Then... 
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On the critical isotherm, that you can do very easily by putting T c equal to T. Then all this

goes away and you have to show that H is proportional to T cubed, m cubed, the second... 
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with may be a different coefficient. 
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So all you have to do is to solve this self consistently in each case, Ok. 
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Now what this means is that the susceptibility will look like this, kai T versus T and this is T

c, this is susceptibility, it diverges at T c, Ok. 
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So we will start from this point.


