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Right so we had started thinking about simple component substances for which I draw the phase

diagram and then I started mentioning something about magnetic model correspond with it. Now

just to recall to you what the problem is, uhh and this is the primary problem we want to focus

on. If you look at the phase diagram in the P-T plain for a simple substance and you look in

particular at the liquid-gas coexistence curve, it endS in a critical point here.
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Now across this line you have a phase transition which is said to be discontinuous in the sense

that the quantity that characterises the difference between the liquid and gas would be put a

homogeneous  media,  both  are  isotropic  so  what  characterises  is  the  huge  difference  in  the

density. So if you take that to be the case, this difference slowly vanishes till you get to the

critical point but across this gap here the difference is discontinuous, there is a discontinuous

change  finite  but  discontinuous  change  in  this  so-called  order  parameter  okay, or  whatever

quantity characterises the phase.

Now, the  reason  you  have  problems  with  this  point  here  is  the  point  of  singularity  that  is

something I would like to explain little bit that is the place where thermodynamics fails. And it

fails for several very interesting reasons, very deep reasons, took a long time person to appreciate

this and then once as I said earlier, the problem was really solved in 1970s starting with the

advent of what is called the renormalisation groove okay pioneered by Wilson about all. Now

what is the difficulty? The difficulty itself was recognised by long before this before 1970 and

the difficulty is as follows. This is a point where fluctuation becomes significant so much so that

thermodynamic itself fails.
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As you know thermodynamic is something which deals with average quantities assuming that the

fluctuations about this average are very very small, typically as we saw in very trivial model last

time 1 over the square root of the number of particles, that fails once you get to the critical point

because if that were so that for instance in the internal energy for instance, if it was so that Delta

E over E which is normally proportional to 1 over the square root of N tendS to 0 as N as N

tendS to infinity, this tendS to 0 and you are alright as far as thermodynamics is concerned but

we will see now how this breaks down at the critical point.

Another  way  of  looking  at  it  is  the  way  Ehrenfest  looked  at  it  1st so-called  Ehrenfest

classification and this argument was a follows. This argument was to start with thermodynamic

quantities of 2 kindS, there are so-called state variables and the so-called field variables, so there

are intensive variables the film variables like temperature, pressure, chemical potential and there

are the state variables which are the response variables such as volume, number of particles, the

entropy of the system at, et cetera. So once you start with that description of thermodynamics

then the derivatives of the thermodynamic potentials with respect to thermodynamic variables or

other thermodynamic variables.
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Just to give you an example I called E the internal energy dE, this quantity is T dS – P dB + Mu

dN so if you for instance took the derivative of this with respect to S keeping the N constant, you

get the temperature. So did imply function that T equal to Delta E over Delta S keeping V and N,

et cetera okay. Or take another example if you took the Hemoltz free energy dF, this is – S dT – P

dB + Mu dN and this will imply for instance that S equal to – Delta F over Delta T at constant V

and N. And similarly P is equal to – Delta at constant F over Delta V at constant T and N, etc, in

this fashion.

So in this case what is happening is that you are getting some thermodynamic variables from

derivative,  every thermodynamic variable  from the derivative of the suitable  thermodynamic

potential  with respect  to  the  conjugate  to  the  variable  you want  okay. What  happens to  2nd

derivatives of these quantities? For instance, if you took this equation here and I differentiate it a

2nd time so this says Delta S over Delta T keeping V, N constant is – d 2 F over d T 2 keeping V

and N constant. And similarly Delta P over Delta V equal to – d 2 F over Delta V 2 keeping T, N

constant.

But what is the Delta S over Delta T? If I multiply this by T on both sides, so this is equal to – T

on this side, this is T dS differentiated with respect to T keeping V and N constant and what is

that equal to? T dS as you know is dQ this is the specific at constant volume so this is equal to C

v right, it is therefore a response function and that is typically the 2nd derivative of a free energy



of this kind. Similarly I could differentiate this, you will get this quantity here Delta P over Delta

V and that is related of course to the bulk modulus of the system right.

So the bulk modulus of the system if I write it up here this implies that n the isothermal bulk

modulus, it is equal to – V Delta P over Delta V at T, N that is equal to V Delta 2 F over Delta V

2 that is the volume at T and N. So we see that the response susceptibilities are related, these are

sort these are response susceptibilities they measure, they are related to the 2nd derivatives of

thermodynamic potential  okay, 1st derivative give other  thermodynamic  variables  and this  is

typical absolutely typical the structure of thermodynamics here.
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But we also saw something else, let us be careful my notation, so we saw that the internal energy

E internal  energy, which  is  by  the  way by definition  equal  to  the  expectation  value  of  the

Hamiltonian in the canonical ensemble for instance right. This quantity E was equal to – Delta

over Delta Beta Log the canonical partition function and Delta E over Delta beta was equal to the

variance of H is by definition is denoted as Delta E Square, this is equal to – Delta E over Delta

beta where this is the average energy right. Now if I want to write this in terms of temperature, I

could write this as equal to – Delta E over Delta T Delta T over Delta beta equal to k Boltzmann

T square Delta E over Delta T.

But what is Delta E over Delta T? You kept all other thermodynamic variables fixed in this, so

this fellow was a function of S, D and N you kept everything fixed including V and then you



differentiate it right. So this is the specific heat at constant volume, the derivative of the internal

energy with respect to temperature by definition is the specific heat at constant volume. So this is

equal to K B T square C v, variance cannot be negative it  is  got to be positive right,  so it

immediately says this is greater than 0. We therefore have the rigourous inequality which says

that specific heat cannot be negative at constant volume cannot be negative right. It follows the

fact that the variance of a random variable cannot be negative.
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But this poses a convexity condition on the corresponding free energy because this says now that

this quantity which was C v must be greater than 0 which implies D 2 F over D T 2 V, N is less

than 0. So it puts a condition on the kind of curvature that this function F can have, it has got to

be a convex function in the sense that it has got to be concaved on, looking from above it is

going to be concave right, the curvature has got to be positive. This is of course a function of

many variables V, T and N but as further its dependence on T is concerned, there is a strict

inequality which is dictated ultimately by thermodynamic stability which tells you that this this

quantity  is  now  this  thing  here  the  variance  being  positive  is  in  fact  an  expression  of

thermodynamic stability as you can see.

In exactly the same with the compressive the bulk modulus cannot be negative so this quantity

has  to  be  positive  this  2nd derivative.  So  it  tells  you  that  when  you  fix  one  variable  and

differentiate with respect to the other, what is the curvature going to look like of the surface



representing the free energy or some suitable thermodynamic potential? Our immediate interest

was in this statement here because now we know we know that E is proportional to the number

of particles N okay by extensivity we know this thing here, therefore right we argued this is an

extensive quantity that is how we got the extensivity relation.
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And we said that  E is  a  function of S,  V and N homogeneous function of degree 1,  which

immediately implies that this thing is equal to which immediately implies that E of Lambda S,

Lambda V, Lambda N equal to Lambda times E of S, V and N homogeneous function of degree 1

which implies this. Well, choose Lambda to be 1 over N, Lambda is completely arbitrary any real

positive constant will do, choose it to be 1 over N. So this says E of S over N, V over N, 1 equal

to 1 over N E of S, V and N. Or you can rewrite this as E equal to N times this quantity here.

Something being a function of 1 is irrelevant, you can get rid of it right, this is equal to Epsilon

of S over N entropy per particle that is the specific entropy right, let us use small s for it.
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V over N, the volume per particle specific volume, so let us use small v, these are densities, these

are concentrations if you like so they are all intensive quantities, the extensive part as sitting

right here so that is why I said E is proportional to N times some Epsilon so let us put Epsilon s,

v okay. Then he lets use the other result that we had, Delta E whole square is equal to – Delta E

over Delta beta, this is equal to K T square C v which is showed there.
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Therefore, Delta E divided by E the standard deviation divided by the average energy is equal to

T times square root of K C v divided by N times Epsilon of S, V but this is the specific heat or



heat capacity of N particles which is N times the capacity per particle so this is equal to T square

root of K c v little c v divided by square root of N times Epsilon s, v. And indeed this goes to 0 as

we have been saying all along as capital N goes to infinity because all these are finite quant they

have nothing to do with N except for one possibility uhh when is it that is relative fluctuation

will not go to 0 when N becomes large at a critical point.

We have  already  seen  that  at  a  critical  point  I  said  the  Central  limit  Theorem  fails  that

thermodynamic fails  because it  is  predicated on the assumption of extensivity which in turn

requires that the fluctuation will be neglected but that is failing here and when is that going what

is that going to show up to here, what is the only possibility? C v must diverge, must become

infinite, if this quantity diverges at some point in the phase plane then there is a singularity in C v

and then you can have the possibility that this quantity does not go to 0 as N tends to infinity

okay. So now we see the failure of Ehrenfest classification Theorem.

His classification said that you have an nth order fails transition when some nth derivative of

some thermodynamic potential  becomes discontinuous okay. The previous N – 1 derivatives

starting with the potential itself will be continuous but the nth derivative becomes discontinuous

yeah.

Student: It also says like C v should diverge at least as fast as root N or as fast as N, but here C

v...

Yeah yeah, we are going to see we are going to see what happens. No no no no no no it is not

that no no no it is not that at all, it is saying that you may have hit when you compute C v

whether quantity somehow for some special value of control parameter whatever they are, in this

case they are the function of S whatever this is the function of temperature and something else in

particular the temperature, there is a singularity, at that point thermodynamic fails.

Student: In fact this whole calculation...

This whole calculation fails right, and all these things become extensivity is gone completely, so

something very serious has happened, the whole formalism breaks down. If you do not have

extensivity  when even the equivalence between different  ensembles  in  equilibrium statistical



mechanics fails, it is completely predicated on I mean how did how did we start let me let me go

back. Just go back a few steps and look at the equilibrium statistical mechanics.

What did we start with? We started by saying here is a huge system in equilibrium isolated

system in thermal equilibrium, by that we mean that if you take longtime averages of physical or

microscopic  quantities  they  will  all  be  time  independent  completely  and  then  you  made  a

postulate which said that every accessible micro-states of this system is equally probable that

was it, that was the fundamental postulate. From that you drive all the consequences including

from fact that you can define the temperature as Delta Log Omega over Delta E and so on and so

forth.
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And then you said let us consider a small subsystem here which is so small that the fluctuation

driven into it by the bar are very significant but it does not react very much on the bar and

assumptions made were very obvious. When you construct a micro-canonical ensemble to show

that  field variables  were all  equal  on this  side,  the temperature have to  be equal  if  I  do an

imaginary partition, the temperature here have to be that here, the pressure here have to be the

pressure here, the chemical potentials have to be equal and so on.

What  was  the  essential  assumption,  that  the  number  of  micro-states  of  the  full  system is  a

product of the micro-states here and here, which means the number of degrees of freedom on the

boundary is negligible compared to both these guys and the energy is in some sense additive, the



entropy additive right, because we definitely said that the total number of micro-states of this full

system is a product of Omega 1 and Omega 2 here therefore, Log Omega 1 + Log of the total

Omega equal to Log Omega 1 + Log Omega 2, in other words the entropy was additive and then

everything else followed that was the extensivity led to additivity of these entropies, volume, et

cetera, et cetera.

That is breaking down, it completely breaking down here, so somewhere there is a similarity and

we need to know where. Now this is the reason why the Ehrenfest Theorem classification also

breaks  down  because  it  only  says  nothing  is  singular  some  some  derivative  certain  order

derivative of some free energy or some thermodynamic potential becomes discontinuous at some

point,  very  very  roughly  the  picture  was  as  follows.  If  you  have  2  phases,  again  some

configuration  variables  here  you  computed  some  free  energy  as  a  function  of  some

thermodynamic variables right.

And let us say in one phase it was like this and in the other phase it was like this, right. When

since  the  potential  has  to  be  at  a  minimum thermal  equilibrium,  this  phase  thermodynamic

potential is larger than this so the system moves along here but then when it crosses this point, it

jumps to this phase and therefore at this point the slope of this free energy is discontinuous and

you have what is called first order phase transition okay. But the same thing could happen not to

the free energy itself  but derivative of the free energy then you got  the second-order  phase

transition and so on, this was his original classification.

But we see that at a critical point that is not what is happening, is something far more serious is

happening, the whole mechanism the whole formalism is completely wrong it is breaking down

okay. The fluctuations  have become so large  that  you cannot  ignore  it,  this  classification  is

useless in some sense. So today we do not use this as a classification, we what we say is that is

there are 2 kinds of phase transition, there are continuous and discontinuous phase transitions,

then  there  is  a  concept  of  an  order  parameter  introduced  and  it  says  when  it  changes

discontinuously, you have a discontinuous phase transition also called first order and when it

changes continuously you have continuous phase transition which is  called the second-order

phase transition but it is loose terminology, we should really say discontinuous and continuous

right.
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And what is happening with going back to our original example going back to our liquid gas

example, which was this in the P-T plane ending in a critical point here. Definitely as you cross

this line along anywhere along the body of the line except here, does it change in the density

discontinuously? And yesterday I drew the diagram when I was getting confused between the

velocity the volume and the density, let us draw it in the way which is transparent. The way to

draw this would be to put temperature here and the density here, let us put the density alright.

Then in the vicinity of this point close to this, as you know every point on this line coexistent

line  corresponds  in  the  Rho  T plane  to  a  region  because  that  is  the  full  coexistent  region

corresponding to every point here okay. Just to recall to you what is going on, if you plot the

isotherm is V versus P, these isotherms were like this okay. So point here would correspond with

this region here, point here would correspond to this region here, this point would correspond to

the place where you actually have just a single point an inflection point where the slope is flat.

This is liquid, this is Gas and this is the coexistence region with the sty line construction put in to

this.
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What is it look like in this figure? Well, as you can see this is going to look something like this,

this Rho c, this is T c, the higher density region, which one is liquid, which one is gas? What

does it look like? T versus plot T versus Rho that is the whole point of it yeah, it is easier to see

in this picture. So Rho c, T v here, the higher density is liquid, this is the gas, this width here is

reflected here in this picture. And at T c, the density between the liquid and the gas vanishes

okay and close to it here one would guess one would guess that in normal circumstances given

no other information, the naive guess would be that it looks like a parabola out there, you can

always fit a simple minimum to the parabola if you (())(27:45).
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And since you have shifted T by T c so this is really saying that T – T c is the vertical coordinate

measured with respect to this origin is going like since it is an inverted parabola, it is going to go

like Rho – Rho c the whole square with a – sign. Instead of this it is more convenient to take,

instead of Rho – Rho c it is more convenient to take this – that it would not make a difference to

us,  but let  us retain this.  Incidentally this  is  also telling us now that  modulus Rho – Rho c

modulus is proportional to T – T c to the power half that is the square root square behavior near a

parabola, this is what we would expect like, no we just said it in words, we have not proved it in

any sense okay.

So the fact that you have a singularity here is a serious matter as I said and we have to take a lot

of this, we have to redo the whole calculation. Now turns out that doing this there is a hard it is

not so trivial at all, the whole subject of critical phenomena depends on this but we need to keep

I need to introduce a little more standard material before you can get to this in a sensible form

okay, let me do that.

So let us make this let us let us make it fluid magnet analogy, what this says is that you have a

complete analogue of this phase transition, this continuous phase transition at this point with 90

system, and for everything that you say here you can make a corresponding statement there. The

system is characterized by pressure, volume and temperature, the magnetic system is similarly

characterized by not a pressure, but magnetic field which I called H, should be a vector but let us



avoid in  essential  complications  here.  The response if  you increase the pressure the volume

changes similarly, if you apply a magnetic field you have a magnetization and T, so this is the

one-to-one correspondence between these variables.

Now here you can have a P versus V diagram, you have an equation of state connecting these 3

variables; you can have a P versus V diagram which is an isotherm, a line which is an isotherm.

Similarly, you would have there an H versus M figure then you have a V versus T diagram as in

this case or a density versus T, you can have M versus T diagram here and finally you have a P

versus T which is H with T this place, let us see now let us draw all these 6 pictures and see what

would happen. But I need a model of a magnet to write the equation of state, I need a model for

the liquid gas system for which I can write an equation of state right the either case, let us do this

since we are more familiar with this, let us do this first.
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The model as we can see is the so-called Van Der Waal’s equation of state uhh. And we are not

going to write down the algebra idea but basically it is something like P + A over V square times

V – b equal to RT this is the Van Der Waal’s equation of state. You are familiar from elementary

physics  that  this  b  measures  the  so-called  excluded  volume,  this  A measure  the  force  of

attraction.

Student: Specific volume (())(32:26) intensive variable.



I need an intensive variable here because there is a V square here so... okay okay... I am not too

happy with this notation but okay, it has got a point it says after all this is an intensive variable

and that should be 1 2 you cannot add arbitrary and similarly for b, but let us do the following, I

am going to assume A in the suitable dimension suitable figure, I mean I am interested right now

in the in the dependence on V.

Student: I think you still need to write little v instead of V, there was an N, R, T, it is not... The

equation of state you write was for specific volume okay.
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Yeah okay he is right P + a over v square yeah I think that is the least harmful.

Student: (())(33:44)

Yeah I know it is a big mess okay, yeah in fact it is convenient to do it this way okay. This is the

volume yeah this is very convenient because this is really telling you in the naive picture it is

telling you this b is the excluded volume due to the finite size of each molecule right, and little v

the volume per molecule so it is only reasonable that this b has this interpretation, otherwise I got

a full round of number of particles everywhere good. Now this is a cubic equation for V that is

the reason you get those 3 roots and so on and let us see what is the interesting part of it is.
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So if I plot P versus V P-V diagram, we have already seen that you get below a certain critical

temperature you end up with 3 roots of which there is an unstable root in the middle there are 2

stable roots on either sides corresponding to liquid and gas respectively and you should draw

byline,  et  cetera  so  let  us  go  through  this  thing  again,  something  like  this,  et  cetera  very

schematically. Now in (())(35:04) how the hell you get this equation of state? Now throughout 19

centuries people had the feeling that there was probably some universal equation of state for

gases for real gases okay and they were trying to find it very hard.

And one idea was maybe there is some scaling here and then uhh with respect to some standard,

depending on each gas there is  a characteristic pressure,  characteristic volume, characteristic

temperature such that if you scale with respect to those variables you get an equation of state

which was universal okay. This program ended in failure, there is no such equation because these

quantities a and b in a sense are not symmetrical hard spear kinds of quantities, they are quantum

mechanical objects you have to compute what this is,  it  is due to the repulsive part  of such

intermolecular potential, this is due to the long-range attractive part and it will depend on the

nature of the molecules.

The force between 2 water molecules for instance is very different from the force between 2

Argon atoms and so on, so there is really no universal equation of this kind.



Students: But this equation is that way.

But this equation is that in some very very profound sense and it is as follows. How do you get

such an equation, while getting it from an actual intermolecular potential is a very nontrivial, it

requires many body theory and getting an equation in close form is next to impossible okay.

Instead what it does is the following, we know that physically if I plot r versus the potential

between 2 atoms the distance are apart, then due to Van Der Waal’s interaction even if they are

spherical and symmetric molecules, is a long-range attraction which goes whose potential goes

like 1 over r to the 6 and whose force therefore goes like 1 over r to the 7 this is the long-range

attraction.
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 At very short ranges the problem becomes much harder because quantum mechanics really kicks

in here and finally it is the (())(37:19) exposure principle which make sure that the 2 electron

cloudS do not sit in the same state at any instant of time so there is a short rates repulsion here

hard-core repulsion, effectively the potential of like this. Now doing any serious calculation of

the things like this especially because you do not know what is the exact power here if at all it is

a  power  is  very  very  nontrivial  but  you  can  make  an  approximation  to  this  a  very  crude

approximation.

And that is to say that this is approximated by something which is essentially infinite below a

certain distance and b plays a role of that distance and beyond it there is a 1 over r to 6 attraction



like this long-range attraction so you approximate this potential by that. And then you make a

whole lot of other approximations and then finally you end up with an equation like this okay.

Now the fact that this is 1 over V square is not very hard to understand because it is really saying

that each molecule is saying, you are asking what is the decrease in the pressure due to the fact or

the force that the molecules exert on the walls due to the fact that they attract each other, that is

why this goes to the right-hand side and it gives you a diminution of the pressure right because

you can write this as P equal to R T over V – b – a over v square. This part comes from the short-

range repulsion of the potential, this part comes from the internal energy of this gas because this

fellow these particles are not like an ideal gas they are attracting each other and therefore there is

a decrease in the force exerted per unit time per unit area on the walls of the container due to this

attraction which is this.

Now  why  1  over  v  square?  That  is  not  very  hard  to  understand  because  this  is  like  the

concentration, you put N in here, there is an N square over V square that is how you get the v

square here right. So each particle if you assume is interacting with all the particles around it

then the total interaction strength is proportional to the concentration in, but in unit volume there

are n such particles little n such particles therefore the total interaction energy is proportional to 1

over n square, which is the same and 1 over v square okay so this is called a Mean field theory

where you say that and we will see a better example of it or more transparent example of it in a

few minutes okay.
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Whatever it is, this part takes care of long-range attraction, this part takes care of short-range

repulsion, so it looks like a very typical equation of state. I am sure enough it produces for you

an  inflection  point  here  because  these  points  whose  coordinates  are  P c,  V c  and  T c  are

determined completely as you know very well from elementary physics by 1 equation of state +

2 more conditions, one of them says that the slope here is flat so at that point you have this and

then you have Delta P over Delta V equal to 0 on the isotherm and it is an inflection point. And

as you know it is a very simple exercise in high school physics to compute what this P c, V c and

T c are in terms of these 3 equations. From these 3 questions all 3 are known, you can solve

uniquely for it when you get this.
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 Now we are interested in a critical region so we are really interested in what is going on here in

this region, we are not interested elsewhere this whole thing. So it is very convenient to shift

variables to this point and to define little p equal to P – P c and you make it dimensionless by

dividing by P c, similarly v equal to I am sorry for the bad rotation it is V – V c over V c, I use

this for specific volume but now I am using it for reduce dimensionless reduce volume okay. One

of the characteristics of theoretical physics says that they assume their  notations are  usually

terrible because they, the philosophy is those who understood it understand it, those who do not,

do not worry about it by context you know what I mean.

And you use I am sorry again t which now will be used for time, this is used for T – T c over T c

the reduced temperature okay. I leave it to you as a simple exercise, you could have done in

school to rewrite the Vander Waal’s equation of state in terms of these variables. So 1st you have

to solve these 3 equations, find out what P c, V c, T c are by the way V c is trivial maybe trivial

and then you have to work a little harder to find other 2, T c is also fairly simple but P c you have

to do little bit of algebra okay.
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And then you write you find that if this neighborhood in here you find not unsurprisingly, the

curve goes like this, it is an inflection point it is not linear it is an odd function so the next one is

a cubic dependence. You discover that in this region P goes like – v cube okay so it is the power

3 that emerges and I want you to show this okay, this is crucial it is called the critical exponent.

Well, you can also do many other things you can ask what happens if I take the same equation

and draw P versus V but I do the other variables right, the P versus V has these little horizontal

pieces out here, the P versus T we already know is a curve in the P-T plane which ends in the

critical point and then finally there is a T versus V the density thing, again I leave you to work

that out because you get that parabolic curve okay.

Now let us go to our magnet analogy, I am in a hurry to do that uhh. What is going to be the

simplest magnetic equation of state? Well, we want to look at the substance which undergoes a

phase transition from a non-magnetized or paramagnetic state to a magnetized or ferromagnetic

state.  Lots  and  lots  of  models  of  magnetism  and  it  is  intrinsically  a  quantum  mechanical

phenomena. 2 ways in which you can get a phase transition nontrivial behaviour, one of them is

to say that there is an interaction between the different constituents which leads to the leads to

phase transition.

If you start with an in this case if you start with an ideal gas, P V equal to R T and there is no

phase  transition  at  all,  you  need  the  short-range  repulsion  and  the  long-range  attraction  to



produce a liquefaction (())(46:11) and that attraction definitely to produce liquefaction, so some

interaction has been taken into account. In exactly the same way if I just start with a lot of

independent atomic magnetic moments, I do not get any phase transitions at all it  remains a

paramagnet which is magnetized when you apply a field and demagnetized when you remove the

field.

To get the phase transition to a state of permanent magnetisation I must include an interaction

between the different atomic moments, which turns out to be fairly complicated because you

need something called the exchange interaction. There is another way to do this which is to say

that  which is  to  do what  you did here,  this  term we did not  write  any explicit  inter-atomic

potential,  we just said logically the effect of this attraction is mimic by this reduction in the

pressure out here and you give a hand waving argument for why it should be 1 over v square and

not 1 over v cube or v 4 or anything like that right.

(Refer Slide Time: 47:53) 

In the same spirit one can introduce an external field an effective field an internal field in the

system, which says the effect of the interaction between spins is mimic by an effective magnetic

field in the medium itself and that plays the role of interaction, this gives you what is called the

wise molecular field theory okay, let us see how this works. Now we know that if you have a

substance with a lot of independent atomic magnetic moments pointing every which way, et

cetera, we ignore everything except the magnetic property, we do not worry about the Kinetic



energy we do not worry about any other degree of freedom, we are looking only at the magnetic

properties.

Then I apply a magnetic field to this, if each magnetic moment is Mu in the presence of an

external field H magnetic field in some direction say fixed direction, the potential energy for

each magnetic moment is Mu dot H in the presence of a field with a – sign okay. Now I make a

further simplification, this of course says that depending on the direction of the field and the

direction of the dipole you get any energy you like from a maximum which is equal to Mu H to a

minimum which is – Mu H. Now I make a glorious simplification and say look I allow only 2

possibilities; either the 2 are parallel to each other or anti parallel to each other.

When  they  are  parallel  to  each  other  Cos  Theta  is  1  and  the  energy  is  –  Mu  H  so  this

configuration is the direction of H and this is the direction of Mu implies the energy is in – Mu

H, and this other possibility this is H, this is – Mu this is Mu implies Epsilon equal to Mu H

okay. They are actually substances which should behave in exactly this fashion and that is now

due to the quantum mechanical nature of this magnetic moment which comes in turn from the

spin of the particle and the spin sometimes it can be half in certain cases such as the electron and

then it can have only 2 possible projections along any direction okay.

(Refer Slide Time: 50:23) 

Whatever, these are the 2 possible energy states of any of these elementary magnetic moments

right. What is the magnetisation then if this is the case and they are not interacting with each



other? So what is the magnetisation, you can write this down trivially, the magnetisation is, since

they are all independent of each other and I have N of them it is M and we want the thermal

average. If you did not have the temperature, the whole thing was absolute 0 then the whole

system would go into its ground state, state of least energy which means that that all of them will

point along the field and the total energy is – N times Mu H that is it.

But now thermal agitation is causing them to flip back and forth and at any given temperature

you  can  ask  what  is  going  to  be  the  magnetisation  right,  you  want  to  know  the  average

magnetisation, so this is equal to N times the average value of Mu with respect to e to the – Beta

Mu H et  cetera.  But  this  is  now trivial  because  this  is  equal  to  N times  there  are  only  2

possibilities  for  each  one  of  them;  if  it  is  up  then  the  magnetic  moment  is  +  Mu and  the

probability  is  e  to  the power – Beta Epsilon which is  beta  Mu H relative probability  + the

magnetic moment is – Mu so we put a – Mu e to the – Beta Mu h divided by the partition

function which in this case is Beta Mu H because this factor divided by this is a relative is the

absolute probability that the moment is + Mu, this is the absolute probability that is – Mu.

So this is equal to N Mu Tan hyperbolic Beta Mu H let us write it as Mu H over K Boltzmann T,

this is my magnetic equation of state if you like for this trivial problem. It expresses the volume

analogue terms of the system size the number of particles with temperature and the pressure

analogue so it is the equivalent of P + N square A over v square times whatever it is V – M V

equal to N R T okay. But this is very trivial, we can now plot what this is, we want things in

terms of intensive quantities specific quantities so let us define m equal to M divided by N Mu.
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It has dual advantage it is magnetisation per particle and it also dimensional less because you

divided by magnetic dipole model. So we have m equal to Tan hyperbolic Mu H over K T and

they are all set now, the equivalent of the P-V diagram the isotherm is you fix the temperature

and you plot H versus M or versus H, the reason we chose P in the vertical axis, V on the

horizontal axis is because you have in mind the historical reason, historical idea that you had a

cylinder with a piston, you change the volume and the pressure got adjusted okay whereas, here

you normally apply the field and you measure the magnetisation so you just plot M here and H

here okay and isotherms are very trivial to write down in this case.

Just these lines that is the Tan hyperbolic function and Tan hyperbolic can never exceed – 1 or +

1 on this side or that side okay. Notice, it saturates when all of them have moved in the direction

of the field that is it, there is no nothing more possible as far as M is concerned and M cannot be

less than – – N Mu, in this case there is an extra symmetry present in the problem which is not

present in the P-V as you can see it is not overtly. And that is if you change the direction of H, M

changes so there is a symmetry present here and it is going to have implications. Now what is the

slope at the origin?

Well the isothermal susceptibility the magnetic susceptibility is defined as a rate of change of the

magnetisation with respect to the field at a given temperature, so it is equal to Delta m over Delta

H at constant temperature so this formula Kai is m over H is not correct because there is a non-



linear relation between m and H, it is only true near the origin where you have a linear region. So

you have to take that into account by writing here H tends to 0, so the suitability is defined as a

slope at the linear region of this isotherm okay that is trivial to find because what does Tan

hyperbolic x do as x goes to 0? It goes like x, so this immediately says this quantity is equal to

Mu over K Boltzmann T.

This  theory is  the  law of  paramagnetism,  which says  that  the paramagnetic  susceptibility  is

proportional to 1 over the temperature right. Nothing much is there in this model because there is

no interaction, so there is nothing interested to do okay. Now the question is we know that in real

substances this is not what happens that the phase transition actually happens and if I plot it for

instance as a function of temperature T if I plot it M, in the absence of a field... Let us let us go

on this a little bit...

What happens in a real substance as I lower the temperature? As I lower the temperature the

slope becomes higher  and higher  right,  it  cannot  go beyond saturation so it  does this.  Now

ideally this is all this (())(57:52) then it will go on like this and the slope would become infinite

only at absolute 0 of temperature, but there is always an interaction between these magnetic

moments.  And if  you are  at  sufficiently  low temperatures  then  the  thermal  agitation  cannot

override those and therefore there will be some kind of magnetic ordering and sufficiently low

temperatures no matter how weak the interaction.

In the case of iron it already happens when you hit of the order of 10 to the 3 Kelvin because that

is the (())(58:28) temperature anything below that you will have permanent magnetisation. But

this is entirely a (())(58:33) system you are looking at to see if you get magnetic ordering or not

uhh.  So what  looks  like  high-temperature  or  low temperature  depends  on  the  characteristic

interaction energy in the problem between any 2 magnetic moments as compared to K T which is

the thermal interaction energy right?

If  you  look  at  substance  like  helium,  solid  helium  3  for  instance,  that  becomes  an  anti-

ferromagnetic,  a nuclear  anti-ferromagnetic at  some crazy temperature which is  of the order

millikelvins so for that material looks completely non-magnetic it is an inert gas, for that material

1 degree Kelvin is already very high temperature. If you look at very very high purity copper

which is a non-magnetic material at 50 Nano Kelvin it becomes a nuclear anti-Ferromagnetic so



for  that  material  microkelvin  is  a  very  high-temperature  as  far  as  magnetic  properties  are

concern. So this as Physics says we have to understand when you say low and high it is the

question of what scale you are talking.
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Now for most of substances what happens is that as you lower the temperature, there comes a

finite temperature at which the slope becomes infinite I mean the flat this becomes a curve, very

reminiscent of the critical isotherm except that it is tilted by 90 degree because I did not plot P in

the vertical axis, I did not plot H in the vertical axis okay. What happens if you lower it even

further? Well, in principle it would do this if you just believe in the continuity of all these curves,

you will believe that once it finish that then it is going to do this right, it just keeps bending

backwards so let us draw that and see what it does.
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So it should really do this right? I just draw 3 curves, one is and does that with a finite slope, the

2nd is when the slope has become infinite and the 3rd is when it does this. This reminds also that

Van Der Waal’s equation when you went down and up again and we said ha that is not true

because it is violating stability somewhere. Indeed that is true because in this region from here to

here dM over dH is negative except that is not a dimagnetic substance so this certainly cannot be

true at all, it violates again the convexity property of one of the free energy. Just as in the other

case the compressibility turned out to be negative and that violated the convexity property which

in turn came from extensivity that is similar sort of thing happens here.

So if you excise this portion then what the system does is come here, go down jump to this and

go off and on the other way back it comes all the way up to here jumps here and goes back. What

does that curve look like?

Student: Hysteresis.
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It looks like a hysteresis loop and indeed that happens except in the refrigerator it did not happen

but in the magnetic system hysteresis does happen all the time. However, if you have hysteresis

happen for other technical reasons, it happens because all the domains in the medium do not

reorient at the same time at the same field and that happens sequentially. But if you look at the

single domain ideal substance there will be no hysteresis and the curve becomes discontinuous.

At high-temperature it does this, at some crazy critical temperature it does this and below that it

does this, as you lower the temperature it keeps doing this cutting it higher and higher. Does not

this remind you of what happened in the sty line construction?

The only difference is, there for different isotherms you ended up with different sty lines but here

there is only one, all of them have become degenerative here.

Student: (())(62:58)

That is because of the symmetry which is not overly present in the fluid case, there is symmetry

but it is not immediately obvious. So we can see that we are leading up to this thing here, the

next thing to do is to do a trick which is to put an effective field there and show you that you get

a cubic curve here the 3 the exponent is going to show up then the half exponent which we got

for the density difference is going to show off in the magnetisation, so we will take it from there

and then go beyond that next time.


