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Right so we started looking at the way in which non-uniform distribution equalises becomes

uniform as a function of time, essentially the diffusion problem in the context of the Boltzmann

equation and we have whole lot of symbols on the board, but let me go over it again and then we

will complete where we were getting at. So if you recall, we want to look at the distribution we

want to look at f of r, v, t on the timescale where the velocity has essentially formalised that is

where the diffusion regime is okay, although we are not explicitly saying so.
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So we would like to ask what happens if the velocity distribution is Maxwellian essentially but

the  positional  distribution  is  a  function  of  time,  starts  with  some  initial  given  prescribed

distribution and then it obviously is a function of time, due to diffusion it equalises. We are

trying to understand that process and understand the timescale which appears in the problem

when you try to find out how it goes to this equilibrium situation. So the equation we wrote for f

was Delta over Delta t + there is a v dot Del and that is definitely present, this term Del r is

definitely present because we are trying to find out how this function of r changes okay.

So this time f + an external force but that is 0 there is no external force so F over m dot grad v

this term acting on it, this term is absent. And this is equal to on the right-hand side – 1 over Tau

times f of r, v and t – whatever it relaxes to, whatever the system relaxes to. Remember that

when we look at the Langevin problem in phase space one part of phase space, I said that beyond

the diffusion time the joint probability density in phase space factorises into a portion which was

essentially Maxwellian times the portion which satisfied the diffusion equation. I did not said it

is equal to constant, it satisfies the diffusion equation we are trying to see that emerges here okay.
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So that is the point that you raise and that is what we are looking for, we are trying to find out

what happens. Just to recall to you we had a row there we had a row of r, v and t and we said that

when t much much much greater than Gamma inverse in the Langevin model in this case, this

went to some probability distribution r, t times Maxwellian so in the velocity. That is that is the

one that  that  is  what  we discovered  in  the  diffusion limit  and then  we found out  what  the

equation satisfied by this quantity, so it is in that way that this is being done.

(Refer Slide Time: 4:53) 



So what we need here is an n of r, t times W of v which is the Maxwellian distribution. So just to

set your normalisations remember that f uhh of r, v, t, if you integrate this over r and v, you end

up with the number density finally. So this quantity here f equilibrium this goes to f equilibrium

of v that is the absolute uniform distribution in space, so this is equal to n a constant just the

number density at constant times W of v which is the Maxwellian, the Gaussian distribution in v

with a variant which is proportional to k t okay. So that is what is setting here except that it is not

the equilibrium distribution we are going to, we try to find out what is this distribution, so target

is actually to find out what this point is.

Student: (())(5:21) if t tending to infinity.

Well if t tends to infinity in the solution of the diffusion equation, everything becomes 0 in an

infinite volume. Here everything will become uniform distribution, 1 over the volume it is not

very interesting uh. We are trying to find out what is the mode by which what is the timescale

that is really what we are trying to do. So we put in a timescale here and we are trying to see how

this timescale is going to play a role in controlling the timescale on which things equalises okay.

But of course we must also look at another fact which is that when you have a nonuniform

distribution and you do a Fourier transform in space, you have all wave numbers so you can

resolve it into sinusoidal fluctuations on all link scales on all wave numbers, right?

Now the question is, how does that play a role? So clearly the relaxation time is going to depend

on the wave number itself, so there cannot be one relaxation time right. There is going to be a

dependence on the wavelength, so a disturbance which is very long wavelength disturbance is

going to take different time to relax then one which is a very short (())(6:40) that is what should

come out. So although we put in one constant here,  we are going to get a whole family of

constants, a continuous family of constants so it is going to depend on the wave number of the

fluctuation and the question is how okay yeah.

Student : (())(7:00) velocity reaches the equilibrium distribution position.

That is right, exactly.

Student: We can always (())(7:09)



Yes absolutely yeah. We already saw what is the timescale in which this one, in this single mode

thing we already saw that this Tau is the velocity relaxation. So now we are looking at timescale

much bigger than that Tau but it will depend on what k is what the wave number is, so this is

what  we are  going  to  discover  right.  Essentially  we are  going to  find  the  whole  family  of

relaxation time one for each k, but how does it depends on k is a question okay. So this is the

target and now we are in business, so let me go through it quickly since we did this already last

time.
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I do a Fourier transform with respect to space and Laplace transform with respect to time so

essentially we are going to write f of r, v, t equal to well 1 over 2 Pie whole cube integral 0 to

infinity  dt  integral  d  3 r  e  to  the  – s  t  that  is  the Laplace  transform. And then the  Fourier

transform was e to the – i k dot r f tilde of k, v and s. Oh  (())(8:39) d 3 k and our Fourier

transform convention was Laplace sign for this case. I should write inverse transform, we should

not do that way.
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So let us write f tilde of k, v and s equal to integral from 0 to infinity dt integral d 3 r e to the

power – s t e to the power – i k dot r f of r, v and t okay. And inverse transform will have a 1 over

2 Pie cube v to + i k dot r and this is going to become + st over (())(9:40) whatever. So what is

going to happen here, d over dt of this guy but this fellow if I write it down it is going to pull on i

k dot r so let us write this down.

(Refer Slide Time: 9:57) 

So we have s time f tilde of k, v, s – the initial value. Now we made that the assumption that the

initial distribution f of r, v, t this is going to be is equal to some initial some initial distribution in



r  at  0  multiplied  by w of  v that  is  the assumption we have  made right.  So – if  I  take  the

transform, n initial tilde of k W of v that is the value of this guy after Fourier transform in space.

And then there is this term is going to pull v dot whatever Del r acting on this fellow is going to

put + i k dot v on f tilde of k, v and s. And this is equal to – 1 over Tau f tilde of k v, and s on this

side + 1 over Tau n tilde of k and s times W of v okay we got all the factors right now.

So I bring this, this and this to the left-hand side and I have s + i k dot v + 1 over Tau I think on f

tilde of k v, and s equal to so this term has been taken into account so has this and so has this and

move this to the right-hand side, this is equal to n initial tilde of k + 1 over Tau n tilde of k and s

times W so that they can solve this term and this term. Should not there be what?

Student : (())(13:03)

We are finding the Laplace transform of the derivative time derivative so it is the transform of

this function – the value of the function in time at t equal to 0 which is all I have written, but then

I did a Fourier transform in space and so let us move this fellow down here this thing divided by

s + i k dot v + 1 over Tau, let us multiply both sides by Tau so that it is Tau times this + just that

equal to 1 + s Tau + this i Tau k dot v and this goes that is it. Now of course we need to close this

set of this equation, so what we do, we integrate over v, we integrate over v and I get precisely v

n tilde of k and s once I finish integration over v because f of r, v, t if I integrate over v I get n of

r by definition.
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What we have is integral d 3 v remember that, so I integrate and Fourier transform so I am going

to get f tilde of K is n tilde of k, s if I take Laplace transform. So this tells you that n tilde of k

and s equal to Tau n initial tilde of k whatever that be + n tilde of k and s here in the bracket

times integral that integral is integral d 3 v W of v divided by 1 + s Tau + i Tau k dot v. I have to

integrate this over v along with that and it comes out.

(Refer Slide Time: 17:11) 

So let us call this integral something, let us call this uhh integral i some integral and it is a

function of k and s, the v is gone. So I have 1 – I k and s times n tilde of k s equal to Tau n tilde



initial of k let me write it properly equal to Tau n initial tilde of k times I of k and s, divide by the

factor 1 – I of k and s that is the solution okay. Now everything is known, we know this is a

Maxwellian, in principle if something the denominator (())(17:20) so once you do this integral

you know this function explicitly, it in both places and you know this from the initial distribution

so therefore I know the Fourier Laplace transform of n of r, t of this one and it is the one I am

trying to find out.

Of course it cannot be inverted and analytically, this is a terrible mess, this itself is bad and then

on top of it you are going to put that here and then invert both the Fourier and Laplace transform,

it is not a possible task okay. But what are we trying to get? We are trying to find out what

happens at  long times and what happens on long length scale,  the scale on which diffusion

occurs, the modes the longest wavelength the shortest wavelength the largest sorry the smallest k

which means longest wavelength, k is the wave number okay which is why the diffuser modes

are.
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So one way to do this is to expand this whole thing in powers of k, this is 1 + something and you

say k is going to be near 0, so expand this systematically in powers of K using the binomial

theorem and do the 1st order, 2nd order, et cetera terms. Now when you do that, you can see

immediately what is going to happen here so let us try to expand i of k and s equal to let us pull

this  out  of  the  denominator  and  then  do  a  binomial  expansion  in  powers  of  k.  So  that  is



independent of v so this is 1 over 1 + s tau and then an integral D3 v W of v times one I am going

to pull this out and take this denominator here, so it is 1 + something inverse and therefore it is 1

– i k dot v i Tau yeah.

Student : (())(19:41) so we can choose a particular k.

Absolutely

Student: And then (())(19:51)

Oh yeah yeah yeah precisely, what you are saying is the first-order term in table will vanish, all

other things will vanish yeah, I just want to show you explicitly how that happens as you can see.

So this divided by 1 + s Tau, we must keep the next term because that is not going to be 0 so it is

1 + x inverse which is 1 – x + x square but then there is – sign here because of this guy so – Tau

square k dot v the whole square divided by 1 + s Tau square + dot dot dot.
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Now integral D3 V W of v is 1 because it is a normalised Maxwellian already so the 1st term is 1

+ now this term here has a k dot v, obviously you should use polar coordinates such that polar

axis is along v, then this becomes k v Cos theta and you do an integral on Cos theta from – 1 to 1

d Cos theta so that is an odd function and it vanishes, it is obvious from isotropy here. So the

first-order term is 0 and then this one is the first non-zero term uh and that is easily evaluated so



you have 1 – 1 over 1 + sorry, so this is equal to 1 over 1 + s Tau – Tau square k square divided

by 1 + s Tau the whole cube is 1 factor here and 2 more there times and integral D3 V W of v and

then v square out here times Cos square theta where theta is a polar angle.

I have assumed that we are going to polar coordinates spherical polar coordinates in these space

and chosen the polar angle polar  direction along that of k because that  is  the vector  that is

sticking out right, so you are going to get v square here and then a Cos square here + higher

orders.

Student : Anything better to do this (())(22:49)

Yes yeah I just want to do it in spherical polar coordinates because I do not want to get into

Cartesians and count different kinds of integral, there is only one integral to be done here right.

In fact, I am not even going to do the integral, I am going to leave it to you as a homework

problem it is a trivial problem, but what I want to do is to extract the temperature dependence of

this term that is crucial. There is temperature sitting there in W of v on the Maxwellian, I want to

know what it looks like that is the main point I want to get at right. So we should keep this, but

you see this term here what is it going to be?

(Refer Slide Time: 23:45)

There is first of all in the Phi direction there is 2 Pie, so first of all this fellow is n over 2 Pie k

Boltzmann t to the 3 halves that is the normalisation of this W of v – and then there is v square



dv and then there is 2 Pie from the Phi integration, this is v square and Cos square theta and Cos

square theta is integrated from – 1 to 1 so it is twice the integral 0 to 1 and then it is twice

integral from 0 to 1 divided 3 so it is 2 over 3 times 2 pie is 4 Pie over 3 that is why I mean it is

obvious you are going to get 4 Pie over 3 and all that is finishing then you are left with an

integral 0 to infinity d v there is already a v square and v square so it is v 4 e to the – m v square

over 2 k Boltzmann and it is a Gaussian integral with B 4 here so it is a trivial thing to do.

Change variable so m b square over 2 k t then you are going to get if you call that u or something

like that, there is going to be 1 over square root of u and then a u square so u to the 3 halves so

there is going to be Gamma of 5 halves but you can scale this fellow out completely, v square

scales like k t so this will go like k t whole square and then there is 1over square root of k t here

and there is this fellow sitting here, so (())(25:22) there is going to be a k t finally whatever be

that constant from k t over (())(25:31) okay I leave that to you as an as an exercise.
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Whatever it is, finally let me write down the final answer down, is a very well-known answer let

me write this down. This fellow after you put that in here and here and then keep to order k

square because it is the order to which you cut it off everywhere except this. So the coefficient of

whatever this is correcting this initial distribution has a term which is of the order 1 and in order

k square and so on and so. So if you do that, this term here becomes equal to it looks like the

following n initial tilde of K divided by s + function of s and we call it D of s times k square.
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Where I have used this D of s deliberately because it has dimensions of the diffusion coefficient,

this fellow has got dimensions of time inverse and this fellow is linked to the – 2 so this whole

thing  this  therefore  must  have  dimensions  L square  over  t,  which  is  the  dimensions  of  the

diffusion constant so I call it D of but it is a function of s where D of s equal to and now it is not

surprising, you are going to get the temperature dependence from here so it turns out to be k b T

Tau over n 1 over 1 + s Tau. You could have sort of guess some of these things, 1 over 1 + s tau

because that is appearing here goes with the k square so that is the solution.

Now you have to tell me about what this is, and then I have to invert it with this weight and this

weight here. But now let us see, we are trying to ask how does the initial distribution whatever it

is how does it defuse out? Okay. It depends on the poles of this okay because when I do inverse

Laplace transform, 1 over s + Lambda has inverse transform e to the – Lambda t right, so it is

going to depend on k square. Therefore, the leading relaxation is going to be of the form for s

Tau much much less than 1 because we want long time or small s going to 0, you can neglect this

term.
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So this is going to look like n initial of K tilde divided by s + d of 0 k square. And now you know

exactly how it is going to relax because I can invert the Laplace transform it is therefore trivial

and it says finally, so it says n tilde of k and t let me leave the k still, it is equal to n tilde initial of

k e to the – D k square t, where D is k Boltzmann T Tau over n, so you see it is typical of what it

is exactly what we expect. Remember, in the Langevin model we have got k t over m Gamma

and the velocity correlation time was Tau Gamma inverse. Well, here the velocity correlation

time is Tau in this model and m is the mass of the molecule.

So the approximation has been sort of gross in that sense that it has become essentially the mass

of  molecule,  but  this  Tau  is  completely  arbitrary  completely  arbitrary,  we  just  put  that  in

mayhem. So that is the diffusive mode as you can see and you can see it is a Gaussian solution

because what is the inverse of Fourier transform of just this guy, if you make this it will give me

start with a Delta function for instant, then this fellow here is a constant. If you give me Delta

function in r, this m Tilde of k is a constant. So and then the inverse Laplace transform of e to the

– k square a Gaussian is of course e to the – r square again a Gaussian.

Now this Gaussian has a variance 1 over dt and in r it will have a variance proportional to d t, so

you have exactly the diffusive behaviour with this diffusion constant d okay. But it is giving you

a lot more information, this thing is telling you much more it is telling you how other modes

relax in principle. So even though it is a single relaxation time approximation, because of this



complicated way in which k appears and s appears, it is actually telling you much more, it is

going beyond this  diffusion approximation  okay. So this  is  how space  dependent  relaxation

appears.

So first we said the velocity itself how does it relax given a uniform distribution, we found that

was rather trivial it was like a Kubo Anderson process. Then we said what happens if we have

nonuniform spatial distribution, well it is diffusive this is called diffusive mode. Now let us ask

another question, suppose the distribution in space is uniform and I start with the equilibrium

distribution but now I switch ON an external force, then what is going to happen?

And let us in the simplest case let us switch ON the force, which is time-dependent but uniform

so that the uniform distribution in space does not change however, you put on a force external

force and these particles are going to get dragged, so I expect that the Maxwellian distribution

will be disturbed. And if the force finally goes to a constant force as a function of time then the

Maxwellian certainly will be distorted, sort of intuitively in the direction of that force right, so

that direction should be singled doubt, let us see how that happens okay.

Now we will play the same game, and it is quite an easier thing so let us do that. So till now we

were looking at problems where you were little away from equilibrium, you relaxed equilibrium,

but now I start with the equilibrium and I push it out of it and ask what is the new distribution to

which it goes?
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So constant uniform, so I have f of r, v, 0 the initial things is the equilibrium distribution which is

equal to n times W of v okay and it is a uniform force. So uniform force is not going to destroy in

initially uniform spatially uniform distribution, it is going to remain spatially uniform, so I do not

have to worry about the gradient term with respect to r acting on this thing at all. Then what

happens to the equation that we have, it has some force F of t, no r dependency.

We have data f over Delta t and there is function of r, v and t + F of t over n dot gradient with

respect of the velocity that is important of f of r, v, t, this guy is equal to – 1 over Tau f of r, v, t –

f equilibrium of v, so I want to know how f is moved away from equilibrium distribution because

that  is  what  I  started  at  t  equal  to  0  this  is  the  difference  in  the  single  relaxation  time

approximation, so this is the equation I have to deal with.

Now clearly it is sensible to call this something else, equal to some g of r, v and t. In particular I

want  to  compare  the  answer  we are  going to  get  here  with whatever  we know from linear

response theory, remember in linear response theory we found the average velocity divided by

the applied force with constant applied force per unit applied force was the mobility. And in the

case in which the force was constant timing dependent, we got static mobility so we want to see

what happens now in this case, but this is completely kinetic. We do not need to carry the r

dependency because there is no term with respect to this guy so we forget about it completely, it

is uniform everywhere.
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So let us make this f of v, t and that is it, no r dependency. The statement is, you have a force

which is uniform time-dependent but uniform, you start with a initial uniform distribution, there

is nothing which is going to make that distribution non-uniform in space okay, so this is what we

got to work out this fellow here. And now let us put that in here so you get Delta g over Delta t +

f of t over n dotted with gradient with respect to v of f equilibrium that is equal to f equilibrium v

+ g of v and t because f is f equilibrium + g (())(37:40) okay. This is equal to – 1 by Tau g of v, t.

We want to compare, now that is an exact equation right, however we have to compare with what

happens when the external force is weak that is the whole idea that you want to compare with

linear response theory. Now it is clear that this g is going to depend on the external force, there is

no force, this g is 0 identically, will remain in equilibrium. So g is going to have a 1 st order term

then have second-order, 3rd order, et cetera, et cetera, but if  you are going to work to linear

response level then this term f times g is already of 2nd order in g right, this is a correction which

is proportional to f and higher powers.
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And this is already an f here so I am going to drop this with respect to this okay and then we get

Delta g to first order in F of t, where equation is Delta over Delta t g that is this term + F of t over

m dot gradient with respect to V of f equilibrium of v equal to – 1 over Tau. Now of course one

brings this to this side and that is the same as saying that g of v, t equal to e to the – t over Tau

times something else let us call it h of v, t let... Just removing this integrating factor. So the first

term is – 1 over Tau times g itself and that cancels and then you have e to the – e over Tau Delta

h over Delta t equal to – F of t over n dot gradient V f equilibrium v.

(Refer Slide Time: 40:49)



So move e to the t over Tau to the right-hand side, now what is the initial condition? Well the

initial condition on this f was that to start with it was not the equilibrium distribution so g of v, 0

is 0 therefore, h of v, 0 is 0 this is the initial condition and we have a formal solution. What is the

formal solution now?

(Refer Slide Time: 40:59) 

It says h of v, t equal to – 1 over m integral from 0 to t dt prime F of t prime dot gradient V oh

(())(41:25) e to the t prime over Tau times F of t prime dotted with gradient with respect to V f

equilibrium of v that is h, so it says g therefore, is e to the – t over time Tau times is that so this is

e to the – t over Tau times and that is the formal solution for g, F however is f equilibrium + g, so

it says f of r, v, t equal to f equilibrium of v – this thing and that is the solution.

We would like to see what happens at longtime if I put a constant force, so what I need to do is

switch on the force by whatever means I like and a typical way to do this just to get an idea what

asymptotic behavior is, is to do the following, it is called antibiotics switching and you do this in

quantum mechanics for example. When you do participation theory, you switch ON the force

slowly and not suddenly so that all the energy levels do not get giggle up but the same spectrum

remains but gets slowly perturbed okay.
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In the same way, here is the way to switch ON the force. So let us suppose that was the time axis

you have here F of t magnitude of whatever, you want to make it go to a constant value, this

value is f and let us say you start switching it ON at t equal to 0 because we took at t equal to 0

the system to be in equilibrium. And typically what would happen is that you would switch it

ON, it would do this, you can choose any forces you like, but I would like to see what happens at

longtime. So a simple model would be to say that F of t equal to it should start at 0 and should

end up with capital F which I have to put in the end, so 1 – e to the – t over some time scale

whatever you call let us Tau 1 F okay.
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I mean this is typically Tau 1, the time scale on which this fellow essentially reaches 1 over its

saturation value or something okay. So that is one way to do this, you put that in here when you

integrate okay. So this fellow here becomes this term this term alone, let us look at what happens

to this, let us look at the whole thing so this implies that f, there is no r... f of v, t equal to f

equilibrium of v and then what? – e to the – t over Tau that was the relaxation time over m and

then the time integral is a essentially integral 0 to t dt prime e to the – t prime over Tau 1 – e to

the – t prime over Tau 1 and then there is outside there is an F dot grad v of f equilibrium of v,

this fellow is independent of time just comes out and it is a trivial integral this whole business.

First is e to the whatever, it is the + I mean this is the + sign. So the 1 st term is going to give you

e to the t over Tau – 1 and when you multiply by this, it becomes 1 – e to the – t over Tau, the

second term has got a smaller term which is a positive term, so it is 1 over Tau – 1 over Tau and

if Tau 1 is much bigger than Tau for instance then this term is going to be positive 1 over Tau – 1

over Tau 1 but smaller than 1 over Tau. Therefore when you hitted with this, this integral that

part will vanish exponentially. So the someone substances the only thing that remains for t much

much greater than Tau and Tau 1 is f equilibrium of v – what remains?
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This is going to give you an e to the t over Tau leading term and it is going to kill this, so you are

just going to get 1 over m F constant dot grad v of as equilibrium of v, what is that going to be?

Student: f equilibrium.

(Refer Slide Time: 48:15)

Because remember that f equilibrium of v equal to n times this m over 2 Pie k t stuff multiplied

by e to the – m v square over 2 k Boltzmann T. Now what is the gradient of e to the – r square in

physical space in three-dimensional space? Just d over dr is going to appear and in the direction



of r, so the gradient of r square it is essentially r vector twice or whatever it is. Now when you

differentiate this, it is going to give you twice and that twice would cancel here and you get to m

over k t in the denominator looking starting to look like mobility as you can see and then there is

going to be a space which is essentially v right.

(Refer Slide Time: 48:54)

So this whole thing is going to look like f dot v apart from some constants, there are some

constants which I leave you to figure out and then f equilibrium v, so it is going to become

proportional to this.

Student : Constant is m by k v.

Constant is m over k v yeah, so there is 1 over k Boltzmann t and a ‘+’ sign because I am

differentiating a ‘–’ here, so and a ‘+’ so we can even write this down + so constant is m over k v

t, so this m goes away, but remember that when I integrate it to the t prime over Tau, I get a Tau

on top. So yes, so there is going to be Tau over k Boltzmann t let us write it properly, so that is

how it gets dragged in the direction of force okay, leading correction to 1 st order in F. We know

the answer should be proportional to it is going to be a scalar and the only other velocity you

have is v itself, it is going to be proportional to f dot v and times this, this gives you the constant

of proportionality okay.



Exactly, precisely F dot v is the rate at which power is supplied to the system, if a rate at which

energy is supplied to the system, a work is done on the system by the force, so that is the sort of

very  straightforward  interpretation.  Now  what  is  done  in  transport  theory  is  apart  from

publications  of  solving  the  Boltzmann  equation  in  various  situations  is  you  remember  the

collusion in variants we talked about, 1 and then the velocity itself which gave the momentum

current and then the energy to current itself. So what one does is to take each of these currents

and from that  one  can  extract  transport  coefficients  such as  the shear  modulus,  the thermal

conductivity, the electrical conductivity, et cetera, diffusion coefficient is already extracted.

So you have to construct, you can even construct heat current, the thermal conductivity because

there is mechanical portion which is the moment of all these things depend on taking this follow

here an integral of v times f of r, v, t times some something here some function of v as I put it,

these are the current and if this follows 1 you got the momentum current, if this was Kinetic

energy half m v square, you got the energy current and so on. So you take half m v square – the

average value 3 halves k t or something like that and that gives you the heat current.

You can go one step further and say, I will find out what thermal conductivity is, what is the heat

conduction equation, you can derive Fourier law for heat conduction equation here with a linear

response by using this local equilibrium approximation. We say that the temperature is different

at  different places,  but in a very mild way so you write t  as a function of r itself,  then the

derivatives are going to special derivatives will act on that t and in that manner you will end up

with Fourier law of heat conduction, which essentially says Delta capital T over little t partial

little t is – thermal conductivity times Del square of t, we will get the t.

You will get of, actually we will get the formula for the heat current, which says it is proportional

to the temperature gradient that is what will emerge automatically from this okay and so on. So I

am going to call halt from this portion of it which is Kinetic theory really and we go on now to

the current topic that is being current for a while, but it is still a very crucial one namely we will

do Dynamic critical phenomena next. For that we will start with some notions of equilibrium

critical phenomena, 2nd with Continue phase transitions, talk about Mean field to worry and then

we will see how time dependence comes in, so that is the next thing we take.


