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Right, so we will tie-up one of the loose ends that was left in our discussion of the langevin

equation  and Fokker-Planck  equation  and  related  matters  and  this  had  to  do  with  the

possibility that the force on the Brownian particle maybe velocity dependent. And one of the

formalism is quite general, we do this in this specific case of magnetic field because that is is

directly accessible, experimentally accessible situation. And we have studied in the past as



well,  so let  us look at  how to obtain the phase space density  for a particle moving in a

magnetic field using our correspondence between langevin Fokker-Planck equations. 

So let us say particle in a magnetic field. 

It is just a regular langevin and not just…

This is just a regular langevin equation and I am going to apply uniform steady magnetic field

B throughout  and put  this  particle  in a thermal  heat  bath temperature t  and ask how the

Brownian motion of it is affected by the magnetic fields. So as usual all we have to do is to

write down the langevin equation, the pair of langevin equation for the phase space variables.

So we could start with r dot equal to v as before. But v dot is equal to the friction term, we

usually friction term, so this is - gamma times v on this side. 

+ this time there is a force given to the magnetic field with, which is the (())(2:02) force. So +

q over m v Cross B, that is the systematic part of this force and this is the usual noise. Now

this noise term, we have been writing it as a white noise and that is the same noise we are

going  to  assume.  But  now  let  us  ask  ourselves  physically,  you  have  a  set  of  particles,

Brownian particles in a magnetic field some other field does no work on these particles at all

because the ticket and is velocity in the field are perpendicular to each other and therefore as

you know the kinetic energy of the particle does not change, only the direction of its velocity

changes and it goes in a cyclotron orbit. 

So we expect that whatever be the phase space distribution, we expect that asymptotically as t

tends  to  infinity, the  condition of  probability  density  of  the  velocity  for  the phase space

density, as far as the velocity part is concerned, it is going to be Maxwell here at the same

temperature.  So  given  that,  we  ask  what  is  the  condition  necessary  for  the  Maxwell

indistribution, again we know that the average kinetic energy must be half, 3 halves Kt or

whatever it is in this situation. And so we put that in right from the beginning. And how was

that implemented, it was implemented by saying that the sense of this noise is related to this

dissipation coefficient  by this  relation which we have already written down many times.

Gamma is equal to able 2m gamma K Boltzmann t. 

So we will put that in as we have been doing in all our examples, in which case this becomes

a +, square root of, we put that in, is equal to gamma K Bozeman t divided by m because it

was mv dot equal to whatever it was on this side and this was square root of capital gamma,

so one M cancels and we end up with this times this noise Zeta of t. And this zeta of t is a



vector valued white noise is 0 mean, so its properties are Zeta i of t equal to 0 and of course

Zeta i of t, Zeta ij of t prime, is equal to Delta i j, Delta of t - t prime. So each Cartesian

component of this Zeta is Delta correlated, stationary Gaussian Markov process. Okay. 

So this is a set of langevin equations, okay. So that immediately tells us what the Fokker-

Planck equation should be. The fact that you have a velocity dependence force here, means

that you cannot write it like a Smoluchowski equation with the potential and derivative of the

potential and so on. But of course we can still take this into account because I call this part of

the drift. This whole thing is deterministic, the noises here, no one else. So I have general

formalism which tells me what I should do when I have some arbitrary non-linear drifts and

some arbitrary multiplicative noise. But this is a much simpler case, the noise is still additive

and the drift is linear, even though it is velocity dependent, does not matter at all. 
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So given that we can identify all the quantities, even in the Fokker-Planck equation. Let us

write it out for the velocity alone, so let us look at the velocity distribution alone. This is

going to be, now this equation of motion we can simplify it a little bit, write it in components

and we will not be done this earlier. So if I write any one component vj dot equal to - gamma

vj + and let us put the field in some given direction, so B equal to B times unit vector in some

arbitrary direction M. So this becomes this QB over M which is a cyclotron frequency, that

takes care of this factor here and then v Cross B, which is epsilon jkl, vkll. I have just written

out the components, the jth component here and the crossproduct in terms of epsilon symbol

+ this fellow here, 2 gamma K Boltzmann t over M Zeta at j of t, this fashion. 

So that is the langevin equation, this is the F part of it and that is the G part of it and so we

can write down what the actual solution is of this equation because it is a linear equation we



can solve it explicitly or we can write the Fokker-Planck equation as the case may be. Let us

see what, what this looks like a finite it out in terms of the matrix M which is a rotation

matrix.  So if  you recall  we introduced this  symbol mjk equal to epsilon j  Kl, this is the

definition, nl. It is a metric that takes care of rotations in 3 dimensions because it says that if

you have this velocity vector v, v0 in some direction and this is the unit vector M, then as you

switch on the magnetic field some all that happens is the component of v0 Along n does not

change and the perpendicular components presses around the direction of the field with the

cyclotron frequency. 

And that is given, it is stated by saying that v of t in this single deterministic problem v of t is

a rotation matrix acting on this v0, such that at time t you have gone through omega Ct as the

angle. So this is equal to e to the power M omega Ct v 0. And of course we know what this

thing is, we can exponentially this matrix M, we have done that in the past. We know that M

cubes turns out, the properties of M are very straightforward. Once you define it like this, this

implies  that  M squared jk  is  equal to n i  Nj,  sorry Nj,  NK - Delta jk.  So M squared is

straightforward enough. And M cubed equal to - M. All you have to do, so multiply once

again by M and we discover that M cubed is - M. 

So that is the property of this matrix M. What are the eigenvalues of this M by the way? What

are the eigenvalues of e to the power rotation, I mean if I define the rotation matrix about the

angle N, through the angle psi to be equal to, this turns out by the way, to be equal to M psi,

okay, we have gone through all the angular momentum generators, etc., put them all in and

finally end up with the rotation matrix written in this form, that is what it represents, simplest

way of remembering rotation matrix in 3 dimensions. What are the eigenvalues of this? At

least one must be an eigenvalue because if you rotate around the direction n, nothing is going

to happen to any vector, right which is along N. 

So this means that n itself is one of the eigenvectors and those vectors along N do not change

at all, so one is the eigenvalue, can you have another real eigenvalue? No because if you did,

it means that you have this direction of axis of rotation, say this and then you rotate, nothing

along this  axis  changes  but  all  other  points  and vectors  must  change.  If  you have  other

eigenvector value which was real, then it is bad news. 1st of all know eigenvalue can have a

modulus other than one because rotations is no distance is a change between particles. So it

must lie on the unit circle and you cannot have any 2nd real eigenvector. 
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And the eigenvalues are + or -, e to the power + - I psi. The 3 eigenvalues of this are 1, e to

the i psi, e of the - i psi, okay. All right. So this is going to tell you what the rotation does, this

process around this point. And of course if I expand this out, I am going to get a piece using

M cubed is - M, I am way to get a piece which does not change, a piece along N and a piece

along v0 cross N. Okay. So that is what this v of t should look like, it should be a vector. Now

if  you put this  in  a fluid,  this  comment particle come and ask what happens,  due to the

correlation, this velocity, average velocity goes to 0. 

So all that happens is that the average v of t in a fluid becomes e to the - gamma t times e to 

the M omega Ct v 0. By this I mean, right this is a 3 by 3 matrix, write this as a column 

vector then operate on it. So this is all that happens for a Brownian particle, we were 



deceived this. So let us see instead of trying to solve this problem explicitly, let us see if we 

can get a quick answer. So this is m jk… Pardon.

(())(12:42)

We want to write the FPA for this definitely. So what would the Fokker-Planck equation

would look like, this will be Delta over Delta t P of v t, we 0, let us forget v0 for a moment, it

is understood. The initial condition on this is v0, equal to, so what should I write on this side?

-, this is the drift term, this is the F here, right, so - Delta over Delta vj of - gamma vj +

Omega C M jk vk, this fellow on P. Okay. So that takes care of the drift part. And then +,

what should I write here? Clearly I should write, pardon me what should I write?

(())(13:57). 

You, it is not tell squared, it is not Dell squared because this thing is a Cartesian component,

right and this is a scalar, this quantity here. So what should it be there, it is the diffusion

matrix, does not, obviously, you will not have a diffusion matrix, so this will be some, let us

use, let us use D, D I j, D2 p for Delta v, let us call it jk, jk vj. And what is D jk, this quantity

here?

(())(14:47). 

What should it be? We need to compute this quantity, we need to compute this quantity, we

are not at home yet, we need to compute this quantity. So what you have to do to write this

thing in terms of G, Gv transpose, workout what that is and then compute this. 

G is Delta (())(15:10). 

So I am using bad notation here, let me for the moment, since when velocity is let us use this,

let us use D jk. And what is this fellow here, this is gamma K Boltzmann t over M Delta ij.

Because  the  different  Cartesian  components  of  this  noise  are  appearing  with  the  same

strength, so the diagonal matrix, more than that it is actually a unit matrix times this. So half

the square of this guy is what this is, this is what the diffusion matrix is in velocity space, in

velocity  space.  Now  it  is  a  simple  matter  to  see,  it  has  an  equilibrium  distribution  or

stationary distribution, etc., it will turn out to be the Maxwell indistribution was again. 

We can solve this equation is by the way, this is like, it is a linear quantity here, so apart from

the small complication is a different components are mixed up, this is (())(16:18) distribution,



is a solution for this problem. And it is a (())(16:23) distribution with a mean which is given

by this. So it is e to the power - v - this vector whole square divided by the variance 1 - e to

the -2 gamma t and so on. Asymptotically it will go to the Maxwell indistribution. So that

part is quite straightforward. The next question is what is the phase space density going to

look like, rho of r, v. 

Well, now it is a little more intricate, you have a 6 dimensional phase space, so these objects,

this drift matrix and diffusion matrix will become 6 dimensional, etc. But, it really does not

matter because you will have this matrix, 6 dimensional fellow will be of the form, there will

be 0 here, 0 here, 0 here and then it is going to be just this, that portion is going to have this t

matrix here. So it is not, no sweat, I mean you will write down the big solution in this case,

the full solution can be written down. Okay. But now we have an interesting question, what

about positions space, what happens in positions space, what does the diffusion of the particle

look like?
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We already know that when you start with the langevin equation phase space, if you go to the

diffusion regime which means t much money greater than gamma inverse, or take the high

friction limit in which you neglect the inertia term in favour of the dissipation term and then

pretend this  is  a  langevin  equation  with  a  velocity  that  is  essentially  white  noise,  Delta

correlated, then you can ask what does this Fokker-Planck equation looks like, look like and

it gives you a diffusion equation with a diffusion tensor. There was another way in which

which we did this, we solved this entire problem, I am going to retain some of the stuffs, I do

not need this. 



We solve the same problem in another way, we said look the displacement X, we call  it

capital X, X of t, X squared of t average, goes as t tends to infinity, we said that, we called it

R square in 3 dimensions. This goes for t much much greater than gamma inverse, this goes,

like the diffusion constant, this fellow here will have some D Ij, etc., etc., right. But we found

that the diffusion constant was different in the X and Y direction, X, Y direction as opposed

to the Z direction here. Okay. Now how do we get that? Well it is obviously arises from the

following, it arises from the fact that the positional probability density P of R, t will like,

Delta over Delta t this fellow here, satisfies a diffusion equation which is not a homogeneous,

which is not an isotropic effusion equation but must be of the form, now let us see what is the

ordinary D, D Ij, d 2P over dx I, dex j. 

And then you are guaranteed that R square goes like the sum of X square will go like D11

times 2D11 t + 2D t and so on. We need to find this, what did we do, we use the Kubo

formula in this case and argued that this quantity D i j is equal to integral from 0 to infinity

Dt, vi of 0, vj of t equilibrium and that probably gave us what this diffusion tensor was. And

we discovered that  in  the  longitudinal  direction it  was  not  affected,  it  was  KP over  and

gamma, but in the transverse direction, it was moderated by a factor which is dependent on

the relative side of gamma and Omega C, the cyclotron frequency. 
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I want to derive that results by starting here and just using this going to a Smoluchowski

equation, okay, so let us see how to do that. In the high friction limit…

Somehow (())(21:02). 



Exactly,  exactly,  yes.  Okay.  In  the  high  friction  limit,  you  are  going  to  neglect  v  dot,

neglected in comparison, in comparison with gamma R. So we go back to this equation and

say let us neglect this term compared to that, okay. And I bring this to the left-hand side over

here, so what does it say and that it as a vector equation, so it says gamma time the identity

matrix - omegac times M, + this matrix acting on v, okay, is equal to this guy, is equal to on

the right-hand side, square root of 2 gamma K Boltzmann t over N Zeta of t. Pardon?

(())(22:22). 
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So that is the matrix equation, there is no v dot, but this is this crazy matrix acting on v. And

this part of it is coming from the magnetic field. So formerly this is R dot equal to square root

of 2 gamma K Boltzmann t over M times gamma i - omegac M, the inverse of this matrix

acting on Zeta of t. Okay. This is also noise, this guy is also noise and this part does not

involve  the  velocity  of  the  dynamical  variables  at  all.  So  is  this  additive  noise  or

multiplicative moist, if this is dependent on the dynamical variable, it is multiplicative noise,

otherwise it is additive noise. So it is no drift, no drift and additive noise, okay. The only t

dependence is from this white noise and this fellow is Delta correlated. 

So if  I  call  this  whole  thing  some noise,  some eta  of  t,  it  is  also Delta  correlated,  it  is

guaranteed to be stationary because that part of it comes from here. Okay. So it is stationary

Delta correlated, it is not isotropic, I mean this fellow is sitting here, so you have to be careful

about it. But if you call this G, the F term is 0, if you call this G, then we know immediately

what the Fokker-Planck equations in this case looks like, it is exactly this. And what is D ij,

so this equation implies this with D i, j, equal to, one half j times j transpose and the i jth

element of it. So this is equal to one half and the half cancels against the 2, so it is gamma K

Boltzmann t over M, this matrix times its transpose, when you want the ijth element of it or j,

Kth element of it. 

So what is that equal to, this is gamma I - Omega C, M inverse, gamma i, no, no, what do you

see that?

The next one is transpose, so transpose of (())(25:19). 



Oh yeah yeah, sure, it I have written just G, I have to write G transpose. So the ijth element is

this times ik and then Kjth element of the transpose, so this is again equal to gamma i -

omegac M inverse transpose jk. Okay. But this matrix M is an antisymmetric matrix. Epsilon

i jk, NK is antisymmetric in i and j. And what is the transpose of this guy, it just is the

transpose of M because the unit matrix does not have any change. And that makes it a +.

Okay. So permit that I can write this as a + and I have taken the transpose, so now we can

simplify things, the whole thing is essentially the inverse of gamma i + Omega CM, gamma i

- omegac M inverse and then the i j element of it. 
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I interchange the order, it  does not matter in this case, this turnout with each other but I

interchange the order because this was on the right, the inverse 1 st and now we go to the next.



But M and i, is with each other, and therefore this is just gamma square i - omegac square and

M square. So this is equal to gamma K Boltzmann t over M, gamma square i - Omega C

square  M  square  inverse.  Let  us  pull  out  this  gamma  square,  incidentally  what  is  the

guarantee that this one has an inverse to start with? What is the guarantee, M does not have

an inverse, what is the guarantee, M does not have an inverse because 0 is an eigenvalue. 

But what is the guarantee that this value has an inverse, what is the guarantee that this inverse

exists?

(())(28:20). 

Yes, you can treat this as, gamma is an eigenvalue, gamma or omega C is an eigenvalue of

this fellow and there are no real eigenvalues. So as long as gamma and omegac are real, this

fellow can never, the inverse will always exist. Okay. There is no vector such that acting on it

will give you a real number times that. Therefore this quantity has an inverse, okay, is that, do

you agree, okay. All right. So let us pull out this gamma square and I will write it out as M

gamma and this goes away over gamma square. And then I want the ijth element of it, of this

inverse. Now the matter is very straightforward, so I have Dij equal to K Boltzmann t over M

gamma,  notice  this  original  diffusion  constant  as  emerge  here,  but  there  is  no  really

dependence on the (())(29:27). 
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So inside you have i + omega C square over gamma square, M square + or omega C square 4

over gamma 4, M 4 but M 4 is M cubed times M and M cubed is - M, so this becomes - M

square, + omega C6 over gamma 6, M6 but that is M cubed whole square and that is M

square, i jth element which is equal to K Boltzmann t over M gamma times, there is an i, it

goes and sits here + omega C squared over gamma C squared M square, you take that out and

then it is 1 - omega C square over gamma square + omegac 4 over gamma for -… And then

ij. 

This alternating thing says it is 1 over 1 + this quantity here. So this is equal to, equal to K

Boltzmann t over M gamma i + omega C square over gamma square and then 1 over 1+ this

squared  which  is  gamma square  over  omega C squared  + gamma squared  M squared  ij

element. Okay and we are home. This cancels out and M square we know, we know what the

elements of M squared are, so D Ij equal to K Boltzmann t over M gamma, that sits inside

and here the ij element of the unit matrix, of course Delta ij + omega C squared over gamma

squared + omegac squared times ni nj - Delta ij, that is it and that is the diffusion constant,

what you have been simplifying a little bit. Alright. 

So this tells you the transverse part and the longitudinal part, the coefficient of this portion

here projects along the direction N when the other 2 guys, the rest of the tensor will project in

the other direction. So that is a quick method, we do not have to do the velocity correlation or

anything, although it is completely equivalent to this. So it is a check of the fact that Kubo

formula is correct out here. So you do get this diffusion coefficient directly or it requires an

inversion, inversion on this matrix here, this rotation matrix. Okay. 



So once again in the presence of the magnetic field, the problem is completely solved over

explicitly, it is diffusive into normal sense in spite of this velocity dependent force. And the

diffusing  constant  is  not  the  isotropic  diffusing  constant.  Okay.  Right,  so  that  was  one

illustration, the right-hand side which we will not take up here. There is another aspect which

I wanted to mention and that is the following. We have seen that in all these cases we started

with a langevin equation and went to the Fokker-Planck equation. Occasional you may want

to do the opposite in order to identify the kind of stochastic differential equation that the

random  variable  will  obey  when  you  have,  there  would  be  a  probabilistic  distribution,

description of it in terms of the corresponding conditional density. Okay. 

(Refer Slide Time: 34:14)

 



So here is  a  lasting  example.  Let  us  look at  the problem of  diffusion  in  more  than  one

dimension, spatial dimension. You have no field and so on, so the diffusion equation in D

dimensions would look like this, let us do it in 3 dimensions to be specific. So you have Delta

P diffusion in 3 dimensions. So you have Delta P of r, t over Delta t equal to D del square P of

R, t. I am interested in asking what is the equation obeyed by the distance from the origin,

okay. I know what the equation is, what the equation, the langevin equation bring in this case

for each Cartesian component. But I would like to know what the distance from the origin

does, square root of X square + Y square + Z square, that looks fairly intricate but let us see

how we could answer that. 

So I look at the diffusion equation and I am going to look at the initial conditions which are

completely spherically symmetric. So we start at the origin, we start with P of our 0 equal to

Delta 3 of R and P goes to 0 as R goes to infinity in our direction. So this is the standard

diffusion problem in which the solution is known to us, it is Gaussian. So we already know

that, in the absence of boundaries, P of R and t is 1 over 4 pie Dt to the power 3 halves e to

the - R square over 4 Dt. This is the fundamental Gaussian solution in 3 dimensions to the

diffusion equation. 
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From here it follows that R square average is 6 D DM, so, okay, so I want to know what little

r does the distance from the origin. So my random variable is this, okay, it runs from 0 to

infinity and I want to know about its distribution, what it is stochastic equation is. This is a

fairly messy thing to do because while the noise is not correlated from different Cartesian

components, the moment you go to spherical, polar coordinates, the things become much



more complicated. While the 1st thing I do is to ask what is rho of R and t, this is the, sorry

little R and t. 

This is the probability density of the vector R, it is another matter that in this case there is no

theta  or  phi  dependence  because  I  started  with  natural  boundary  conditions  which  are

spherically  symmetric  and the  initial  conditions  which  are  spherically  symmetric,  so  the

solution is also spherically symmetric because the equation is spherically symmetric. The

differential operator del square, the initial condition, the boundary conditions, they all have

spherical symmetry, so the solution also has spherical symmetry. Now I want to know the

distance you are and that is of course the integral of this p probability density function over

all angles and that will just give me a 4 pie factor. Right. 

R square should come (())(37:47). 

And then there is an R square, because you are not bothered about the duration but only the

distance, so there is a phase space factor R square which is crucial, right. So this is equal to 4

pie R square over 4 pie Dt to the 3 halves p of R, t. Sorry, e to the -, e to the -, this is equal to

4 pie R square P of R, t, that is what we mean to say. This is guaranteed to be normalised

from 0 to infinity in R. So you integrate from 0 to infinity R times, DR times this and you get

1. Now what is equation satisfied by this row, what is the Fokker-Planck equation satisfied by

this row? You got to go back here to this and substitute for it. 
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So let us do that, we are interested in only the spherical symmetric part of it, so therefore this

del square I retain only the R dependent part of it, right. In which case the equation is Delta P

over Delta t, this fellow here, is equal to B times 1 over R square Delta over Delta R, R

square Delta over R of P. That is the equation be solved to get the Gaussian solution or

whatever it is. This is the, so the radial part of the del square alternative, right. And now let us

put t equal to, rho divided by 4 pie R square into this equation, okay. So this will imply an

equation for rho which is precisely the Fokker-Planck equation for rho. 

This is going to imply that Delta rho over Delta t, we get an equation for this guy here, by the

way if I put that thing here and take partial derivatives, notice that if I put P over rho over R

square, it is a partial derivative with respect to t, so the R square comes out, there is nothing

to differentiate them. And then it will cancel against things over here. So this thing becomes

relatively simpler, it becomes -, in this case I know the answer, Delta over Delta R 2D over R

times rho, okay, + D times D2 rho over delta R 2. Check this out, I am not 100 percent sure

but I believe it is correct. Whatever it is, this term is crucial, okay. 

So what will this imply backwards now? It implies a langevin equation for little R, of little R

which is square root of that crazy thing, this is going to be R dot equal to, this is F and G,

right. And there is this term here, so we want - this fellow here, so this is 2D over R + the

usual whatever it is, + the square root of 2D times white noise. Okay. So there is a drift, there

is a drift here which is tending to increase R and there is no external force, but yet you have a

drift. Where is this coming from? For the P there is no such thing, there is no drift, there is no

applied force, no potential, nothing and therefore this had no stable equilibrium distribution, I

just went to 0. 
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But here I have done nothing, I just changed variables. And if this correspondence between

Fokker-Planck and the stochastic differential equation is to be believed, you have a drift term.

Okay. Where  does  this  come from and  how do  we  interpret  this?  It  is  telling  you  that

independent of the noise, of course it is not independent drift, so notice that it is not like an

external force or anything like that because D is sitting in there, it is very much there, it is the

same D that is sitting here. So these are not unrelated to each other, we just changed variables

but what is the definition of this term?

You notice that, you started the origin, this term is very large close to the origin, definitely

push it away, R dot is positive, so it is tending to push it away. This means that if you do it in

2 dimensions, you see this immediately in the XY plane, this is like 2 Brownian motions



composed in the X and Y directions the forces are uncorrelated to each other and you have

this motion, particle doing Brownian motion. But if you start here somewhere in this place,

the tendency is to get pushed out, okay because this term is very large, it is going like 1 over

R. And the reason of course is very clear, it  says that if you start  in a sufficiently small

neighbourhood of this origin, then due to any fluctuation, R can only increase. 

If R is sufficiently small in any fluctuation R can only increase, stately speaking at the origin

any fluctuation will push it away from it, right. But that is actually true even if you are further

away from the origin because suppose you are here at this point, you can go in any direction

with equal probability and the forces that are uncorrelated are in the X and Y direction. So if

you draw a little square like this, this is heuristic, a hand varying argument, right, now all

points on the square are equally likely so to speak. But there are more points outside than

inside, if you go inside it means R decreases and if you go outside, R increases. So that is the

drift that is appealing here. Okay. This is the reason why it appears correlated in this case. 

So you should not otherwise a priory you should not have such a drift but you do because of

this simple geometrical fact. So while noise has this rotation symmetric, the variable you are

looking at is spherically symmetric. Right. So you have a kind of drift effects even without an

external force or potential.  Similarly you could write down the equations for, if  you had

single variable, just X and it is undergoing Brownian motion, you can ask what happens to X

square, what does this look like? Or in higher dimensions, what happens to R square, so that

is an exercise, interesting exercise. 
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Find out what the stochastic equation satisfied by R square is. So consider R equal to, let R

equal to r square, find the Fokker-Planck equation and langevin equation for R without the

square root in this case. So it is all the question of changing variables and again you would

use  the  same  trick,  you  start  with  the  mass,  the  solution  of  the  diffusion  equation,  the

Gaussian solution, spherical symmetric Gaussian solution and rewrite that in terms of the

density of probability density function of this R, keeping track of all the jacobian and so on

and so forth. And then having got that equation can be a first-order term as well, can be a drift

term, go back and write the langevin equation down for it in this case, okay. 

By the way this thing here is easily generalised to D dimensions. What would happen if you

have D spatial dimensions, where little d greater than or equal to 2, this becomes d -1, this

becomes d -1 here, this factor, this factor for pie will change, it is a surface of the unit sphere



or whatever it is in D dimensions. So this will be some dimensionally dependent factors, but

it is relevant for our purposes here, this fellow however becomes d -1 outlet and the constant,

so let us write it  as proportional to,  P proportional to this guy. And what happens to the

laplacean? This is going to be Delta over Delta R and then this is…

2 will become d -1. 

Exactly, so this factor becomes d -1, this guy here becomes 2, sorry D into d -1 and this

remains R. I do not remember if this is going to change not but you can figure that out. This

constant but this one over R drift is still there, but this depends on this guy here. And of

course this should be like this because when D equal to1, the limit you just have, there is no

drift,  there should not  be.  Okay. Similarly you could ask about  what  happens to various

functions of Brownian motion, various functionals of Brownian motion like the exponential

and so on and so forth. And they have strong applications, there are many such applications

but since we are not discussing stochastic processes per se, I am not going to discuss those

here, okay. 

The next  thing  we have  to  do again  to  fill  up  a  gap is  the  following.  I  mentioned that

throughout the langevin equation is an approximation, we made some statements about when

it is valid and so on. And corresponding to the Fokker-Planck motion which is equivalent to

langevin equation is an approximation in the same sense, okay. Can we go back and ask what

a particle in a fluid is actually going to do? This is a very very hard problem it turns out, even

classically. One could make the problem much simpler and ask what is the particular when it

dilutes gas to? What happens if it is moved, knocked out of equilibrium and can be followed,

find out what it is time dependency is based distribution is, even the one particle stage, okay. 

It turns out that you can derive an equation called the Boltzmann equation to describe this and

from that you can find out what various transport properties are. You can make a connection

between the Boltzmann equation and the langevin dynamics that we have talked about here

and the specific assumptions but in a sense the Boltzmann description is more fundamental, it

exposes more clearly stomach precisely what are the statistical mechanical assumptions here.

So we will try to fill that gap, I will try to give a very short derivation of the Boltzmann

equation for it dilutes gas. That will be the next topic, okay. 


