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Right. Let us now today look at the correspondence between a stochastic differential liquidation

for a diffusion process and the corresponding Fokker Planck equation
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So let us call this the general stochastic differential equation and the Fokker Planck equation

correspondence. Just to refresh your memories, let us go back and look at what we had come out

with in the case of the ordinary equation. There we had V dot the velocity, one component was -

gamma V + the noise. This noise after I divided by M etc etc, this turned out to be square root of

2 gamma KT over M and then there was a  zeta of T here. I used the fluctuation dissipation

theorem divided by M and so on and then you have, you had a 2M gamma KT divided by M

square.

I put it inside the square root. So this becomes M. And this implied if you recall the original

Fokker Planck equation for the the  Ornstein–Uhlenbeck distribution like distribution.  So this

implied immediately that the conditional density of B satisfied this equation PVT divided by T is

equal  to  gamma  Times  Delta  over  Delta  V V times  P +  gamma  KT over  M.  This  was  K

Boltzmann  T over  M D2P over  DV. And  we  have  to  solve  this  with  some  specific  initial

condition, V not for instance. So the initial condition was P of V, 0 equal to a delta function at V

not.

And this led to P of VT equal to the Ornstein–Uhlenbeck distribution. That was the 1st Fokker

Planck equation we came out with, right? We also saw what happened if we assume the velocity

to be a delta correlated process. Then we were in the diffusion regime.
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So we saw that for T much much greater than gamma inverse which we could implement by

actually going back to this equation and then throwing out the inertia term and retaining just this

term here. In which case, we had a term, high friction limit or high friction limit, we had X dot,

that is V is equal to the same thing here but square root of 2 K Boltzmann T over M gamma zeta

of T because this term was negligible and I took this on this side and brought the gamma down

and we ended up with that thing which then imply here, just as this automatically implied it.

So similarly back here, you have delta P of XT over Delta T equal to K Boltzmann T over M

gamma D2P over DX2. This was the ordinary diffusion equation because this quantity was the

diffusion coefficient.
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So these are special cases of a more general result which I wrote down which was that if you

have an equation which says X dot + some matrix X, this is a higher dimensional process and

this is some, this quantity is an N by 1 column vector and the drift was linear in it. This here on

the  right-hand  side  was  equal  to  some  coefficients,  constant  coefficients,  not  a  function  or

anything  like  that  times  the  noise  of  some  kind.  So  there  was  some  coefficients,  constant

coefficients and we will make this precise in a minute.

And then there was a vector valued noise, zeta of T. So these are all N by 1 quantities and this is

an N by N drift matrix. So if you had a situation like this which is a special case which is a

generalisation of this fellow here right? So the reason we want that is because we want to be able

to write down Fokker Planck equations for the phase space density, joint density in X as well as

V together. So if you had a situation like this then this immediately implied that Delta over Delta

T and whenever there is a phase space density namely a density in more than one variable, I use

the symbol rho so that it is distinct from this little P okay.

So this quantity Delta over this quantity here was equal to K I J Delta over Delta X I XJ rho +

some matrix, constant matrix formed from these coefficients here and the natural thing to call it

is  a  diffusion  matrix  DIJ  D2  rho  over  DXI  DXJ.  This  diffusion  matrix  there  is  a  definite

prescription for finding it from these coefficients. We are going write it in a more general case.

So I do not I am not bothered about writing this down in need special case or anything like that.

Suffice it to say that just like in these cases, this was a constant, this was a constant, et cetera.



Essentially, it is square of this constant divided by 2. That is what it is but I will not make it a

little more systematic.
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So you end up with an equation like this. This is the Fokker Planck equation right? Now we can

apply this to the situation which we did earlier, namely the langevin particle in one dimension

and then we did this quickly for 3 dimensions. So in one dimension, this was of the form X dot

was equal to V. So X dot - V equal to 0 and V dot + gamma V, this thing here essentially we are

writing  this  equation  again,  is  equal  to  whatever  is  there,  square  root  of  2  gamma  KT K

Boltzmann T over M, in this fashion, zeta of T.



So the noise, the vector noise is 0 in the 1st row and it is equal to this fellow in the 2nd row. So the

coefficient, the matrix of, the column vector of coefficients is just this and this. But you actually

need a matrix here.
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So in this particular problem, let us write what these things were. K was the matrix 0, - 1, let us

then let us show this thing here. By the way the identification is X1 equal to X, X2 equal to V.

That is the identification which we are making to write this down. Then it is 0, - 1 and then a 0

here and a gamma here, this gamma. So it is a linear drift matrix. In fact, it is more than that. It is

even simpler than that. It is constants everywhere here and it is 0s along this which helps.

And DIJ in this case, let me call that matrix D whose elements are DIJ. I do not want to write V

alone here without subscripts goes I have used that for the symbol. I have used that symbol for

this quantity and we will stick to that. This thing here is a call to 0, 0, 0, K Boltzmann T over M.

So that is the equation obeyed by the phase space density and we have done this already. So let

us write that out and then we are going to new material.
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Now that immediately implies that the phase space density satisfies Delta rho over Delta T equal

to now we need to put this in KIJ, so the 1st term is with - sign as you can see and then you have

a K12, that is the only element which is present here which is - 1 and therefore it is Delta over

Delta X of V rho with a - sign. But V is independent of X, X2 is independent of X1. This is equal

to - V Delta rho over Delta X is the 1st am and then K21 is anyways 0. K22 Delta over Delta V

times whatever is sitting here, whatever is sitting inside here which is gamma okay.

So the next term is + gamma delta over Delta V times V rho. Delta over Delta X2 X2 rho and X2

is V. And then the only term present from the diffusion matrix is the 22 term. That is the only



term that is nonzero out here. So that gives us exactly what we had in the original Fokker Planck

equation, gamma K Boltzmann T over M V2rho over Delta V2. This is the question satisfied by

the phase space density rho of X, V and T. And you are supposed to solve this equation with

some given initial conditions.

So you are supposed to solve it the initial conditions, rho of XV is 0 equal to Delta of X - X not,

Delta of V - V not. It is a little harder to solve than the Fokker Planck equation for the velocity

process  alone  which  did  not  have  this  term  K.  And  then  we  got  the Ornstein–Uhlenbeck

distribution. Now you have to use this term as well and solve it. It is not such a trivial solution

but the solution is a general Gaussian in both X and V, a joint Gaussian in X and V.

And that  Gaussian  has  the property that  as  T tends  to  infinity, this  Gaussian goes  to  the  P

equilibrium in V, the Maximillian distribution multiplied by the solution of the diffusion equation

which  of  course  vanishes  as  it  tends  to  infinity  strictly  everywhere  but  we want  a  leading

behaviour. In the asymptotic regime, this is P of X, T and this satisfies Delta P over Delta T equal

to DD2P over DX2. That is the regime in which the velocity has lost its memory, gamma T is

much much greater than gamma inverse.

Gamma inverse is called the smoluchowski time okay. The correlation time of the velocity, this is

gamma inverse is called. So it sets a timescale in the problem. There is also a length scale in this

problem. There is no potential, there is no general external potential because if the particle were

moving in a potential like a harmonic oscillator potential or something like that, you could get a

length scale in the problem but here there is no length scale at all from the potential, no potential.

But there is still a length scale and what would that be? There is a characteristic timescale in the

problem which is  gamma inverse.  Well,  there is  a characteristic  velocity  in the problem and

therefore  there  is  a  carrier  or  a  speed  and  therefore  there  is  a  length  scale.  What  is  the

characteristic speed in this problem? There is one quantity of dimension, speed. The mean square

in equilibrium from this right?
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So this V square equilibrium is  K Boltzmann T over M. Square root sorry. This quantity gives

you a speed, characteristic speed. Therefore there is also a length scale. What would you do? You

divide by T inverse X? So you, so this fellow here, put this in is characteristic length scale in this

problem. This is LT inverse, this is T inverse. So it is an L. You can compute what it is. You can

compute what it is. For the Brownian particles we are talking about, we know what the masses

are between 10 to the - 12 and 10 to the - 15 kilos, we know what the temperature is, 300 Kelvin.

So we know KT, we know what gamma is because gamma is related to the viscosity of a fluid,

take water at room temperature for instance, then gamma is of the order of 10 to the - 6, - 7

seconds. Therefore we know what this quantity is. We can compute what this length scale is. It is

indeed very tiny. It is very very tiny. All right. But we keep at the back of our mind, that there is

such a length scale even in the absence of an external potential okay. So having got this far, we

would like to know what happens next.

What happens if I put the system under an external force, under an applied potential? Like the

harmonic bound particle, suppose there is a potential present, X dependent potential, what would

happen to these equations? Well, the 1st thing that would happen is that your langevin equation

would become different. Co-incidentally we also saw what the three-dimensional generalisation

of this was. We wrote this three-dimensional generalization. This becomes V dot gradient with

respect to R rho, this becomes gradient with respect to V dot, the divergence of V times rho with

respect to V here.



And then this is  the Del Square with respect  to V. So that  part  is over. And in general,  the

solution  is  some kind of  Gaussian which  would  asymptotically  become something like  this.

Writing it down in 3 dimensions is very messy but in one dimension, one can write the explicit

solution down okay.
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By the way one important point in the three-dimensional case, whatever we wrote here in terms

of that drift matrix, K and so on is still true but in that case what would happen is in 3D for

example, this matrix K would become 0 - the identity matrix 0, gamma times the identity matrix

where I is a 3 by identity matrix. So this is fairly straightforward. This is 6 by 6 object. So the

generalisation is kind of trivial. The reason I am emphasising this is because we would like to

what did we do in the original langevin case?

We actually solved the equation of motion, the langevin equation and then started taking velocity

averages  and  so  on.  Now  you  have  a  matrix  equation  to  solve  which  will  involve  the

exponentiation of this matrix. You will have to do in E to the power K. Just as we found E to the

gamma T, we have E to the KT. That would be your integrating factor if you like. But E to the

KT, this matrix has interesting properties and therefore you can find immediately the eigenvalues

are 0 and gamma, so you can actually find the exponential quite explicitly and write the rest of

the solution. All right.
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So now let  us turn what happens when you have a  potential,  it  is  a Brownian particle  in a

potential. And again, let us do the one-dimensional case 1st. So you have as before X first let us

do the phase space distribution and then we will come back and do the positional distribution. So

it will be technically a little easier because you can see what are the approximations involved

because we need to now know what is the diffusion regime, we need to know that 1st. So let us

look at the phase space problem.

X dot equal to V as before and V dot is - gamma V same model as before. But now there is an

external potential, some F of X and I divide it by M. So it is - 1 over M V prime of X. This is

some potential in a potential, V of X capital V of X, is that term present and then the last term is

exactly as it was before + root 2 gamma K Boltzmann T over M  zeta of T. This consistency

condition to keep the system in equilibrium is going to remain in any case. No matter what V of

X does, it would still remain because what happens is that the velocity will still thermalise and

there is the external potential acting on the particle.

We  do  not  care  about  it  but  the  velocity  will  thermalise  and  of  course  the  distributions

themselves will become very different. There is no reason why now if I solve, if I write down the

phase space density, why the solution should be a generalised Gaussian? No reason at all. The

introduction of this V prime of X makes the equation of motion non-linear. Earlier in all the



cases, we looked at the equation of motion was linear in the dynamical variables, there was an

external noise. But now that is gone.

Student: Unless V of X is…

Professor: Unless V of X is  either a constant or a quadratic,  is  either  a linear  function or a

quadratic function. If it is a linear function, then this becomes a constant like gravity for instance.

If this thing is a quadratic function, it is like the oscillator problem. But in all other cases, the

equation of motions themselves become non-linear in the dynamical variables and that will going

to make it complicated. Okay. Now what is the way in which we write down the Fokker Planck

equation? We cannot do what we did earlier because we have this fellow which is a non-linear

term right? So the general correspondence goes like this. We do not care how many, what the

dimensionality of our phase space variables is. It could be N dimensional in general.
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So let us write the general langevin equation. General diffusion process has a stochastic equation

which is X dot equal to on the right-hand side, some possibly non-linear function of the variables

and this is also vector value. So this guy here, X is N by 1 column matrix and this is an N by 1

vector force, there is a force for each of these components and thats in general a function of all

the axis, all the coordinates. We have still not taken the most general case where this could be

explicitly time-dependent but I said, we are not going to look at those problems at the moment.



+ a G of X, this is multiplicative noise in general. But you look at times the noise, but look at

what happened? So this is some zeta of T. In general, this is some matrix acting on this column

vector but look at what happened in the earlier case? The equation X dot equal to V did not have

any noise on the right-hand side. But V dot equal to something on the other hand a noise because

we wrote an equation for a random force on the particle. So the dimensionality of this noise may

be lower than the dimensionality of your phase space variable.

So we have to allow for that. So suppose this fellow is a nyu by 1 column matrix. So you have N

equations for the components of this but only nyu of them have noise on the right-hand side. And

what is the smallest value that nyu can have?

Student: 1.

Professor: 1. If it has 0, then everything is deterministic. We are not, we we do not even have a

stochastic equation.

1 less than equal to nyu less than equal to N because all N of them might have noise. We do not

care. Right? Then what sort of matrix has this got to be? This is got to be an N by nyu matrix. It

is got to be an N by nyu matrix. This on the other hand is an N by 1, this is N by 1 and therefore

N buy nyu and then a nyu by 1 gives you an N by1. That is the most general diffusion process

that we can write down. There is an N dimensional dynamic a set of dynamical variables and

then there  is  a  new dimensional  noise  on the  other  side.  And the  noise is  multiplicative  in

general.  And then value  of  the  noise  for  each coefficient  could  depend on all  the  variables

dynamical variables. You can see, this is very general out here.

The question is, what is the Fokker Planck equation corresponding to this? I am just going to

write it down. So this implies and is implied by a Fokker Planck equation which is Delta rho

over  Delta  T equal  to  -  Delta  over  Delta  XI FI  times  rho.  It  is  like  a  generalized  Del  dot

whatever, so it is a divergence term and then the next term is + D2 over DXI DXJ DIJ times rho.

There is a diffusion matrix but is not a set of constant coefficients because you have this sitting

here. So the question is what is this DIJ equal to? So it is clear that we have to be a little careful.

It is not just G square as it would have been in the one-dimensional case. This matrix D is one

half G matrix, G transpose matrix because this is N by nyu and that fellow is nyu by N. So the



product is N by N. D is a N by N diffusion matrix because the indices I and J run from 1 to N.

And there is a summation over repeated indices. So in explicit form, this implies that DIJ equal

to one half the summation from Alpha equal to 1 to nyu GI Alpha G J Alpha. That is what is

meant  by  transpose  here.  It  is  clear.  So  this  is  the  general  langevin  equation,  the  general

stochastic differential equation and this is the general Fokker Planck equation.

Notice notice that this set of coefficients is not necessarily constants because it depends on this

function  G inside  here  it  gets  differentiated.  It  is  inside.  So this  is  fairly  complicated  here.

Likewise, no matter how non-linear the force is, this drift term is, it is inside here. So given that,

lets try and ask what does our equation look like here for this situation in the one-dimensional

case?
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So we want an equation for Delta rho over Delta T where this rho is rho of X, V and T. So this is

equal to well X1 is X and X2 is V. So we want - Delta over Delta X1 and then F. So let us 1st

write his F matrix. In this case F equal to this fellow is a column vector and the 1 st one is a just V

out here it is clear. And the 2nd portion is - gamma V - 1 over X V prime of X. That is this

column. And what is D, the matrix D? Well, it is the same as before because you can see that this

thing here is acting oh in this problem, what is N equal to? 2 of course and what is nyu equal to?

1.



That is trivially true. Only one of these equations has noise, the other one does not. So this is a

very trivial case but the reason I wrote this down is because I am now going to require you next

to do this for the three-dimensional case when you have an external field, a potential as well as a

magnetic field which will make a velocity dependent force. So that is a little intricate but it is a 6

dimensional phase space but we can write the equations down given the general expressions.

Now what is this matrix equal to? It is obviously equal to 0, 0, 0 and half the square of this which

is gamma K Boltzmann T over M in this case. And now we are all set. All we have got to do is to

copy this and write the question down for rho.
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So this is, therefore rho of XVT satisfies the Fokker Planck equation Delta rho over Delta T

equal to -, there is a - here and then the V comes out because the 1st is Delta over Delta X times V

rho but V is independent of X as before. So this term is still present, - V delta rho over Delta X.

This  is  the convective  derivative  V dot Del  with respect  to the coordinate  and then there is

another term here and what is that? That is equal to + gamma delta over Delta V V rho this this

portion takes care of this and then there is a + 1 over M delta over Delta V of V prime of X times

rho but V is independent of X. So V prime of X comes out.

That term sits there and then finally, there is only one diffusion term here which is + gamma K

Boltzmann T over M D2 rho over DV2. So that is the equation for the phase space density, the

one particle phase space density in the presence of an external potential, V of X for a Brownian



particle. That is the exact equation. There is no guarantee that the solution to this is a Gaussian, a

joint Gaussian in X and V because this term is a mess. This term is a mess. No guarantee at all in

general. It is some complicated non-linear function of X and there is no guarantee of anything

here  .  This  equation  is  called  the  Kramer’s equation.  Generalised  to  other  potentials  and 3

dimensions, maybe even velocity dependent forces.

So some generalisation of this, this is the simplest form of a Kramer’s equation. Now of course

you can recognise the oscillator case very trivially because the oscillator case goes back to the

old problem. So if  the oscillator  case potential  implies  that  this  term is  basis  M omega not

squared X, so this term becomes omega not square Delta rho over Delta V. Sorry omega not

square X delta rho over Delta V, this particular term. It is a linear term. So it could in fact be

combined with all these fellows.

It reduces to the old case which has already been solved but this is a little harder to solve in this

case because while the diffusion matrix remains the same, this will imply that this matrix K that

we had written down which was 0, - 1, 0, gamma in the free particle case, what would it be in

this case? Remember there is an extra force here. This is - omega not squared X. If you bring it

to the left, it is omega not squared X. X not V. Right? So the drift would have one more term.

This is still 0. X dot is - V but there is a term here.



(Refer Slide Time: 34:36)

It is omega not square in this problem. And that V would look exactly the same as before. This is

not so simple to exponentiate, although it is any 2 by 2 matrix can be exponentiated. Why do I

say that? Because with the 0 here, the eigenvalues are 0 and gamma and exponentiating this

matrix would have been trivial because K squared would have been proportional to gamma K or

something like that. But now that is not going to happen. There are 2 eigenvalues here which

depend on both gamma and omega not square. Not surprisingly, they would be precisely the

eigenvalues of this the 0s of the susceptibility the poles of the susceptibility.

So that  depends  whether  they  are  under  damped,  over  damped,  critically  damped,  et  cetera

definitely have that.  So the solution will be in terms of trigonometric functions and damped

exponential in the under damped case or hyperbolic functions in the over damped case. So it is

considerably more messy. Although you can exponent this. It is not hard. But this is where it

would change. You can write the formal equation down. Now what do you expect the solution of

such an equation to become for long times. I would still like to look at the diffusion regime and

see  what  happens.  In  the  free  particle  case  when  this  was  not  there,  recall  that  this  rho

asymptotically went to a product of the equilibrium Maximillian distribution in V multiplied by

the solution of the free diffusion equation in X right? Now what do you think will happen? Will

that happen in this problem as well?



Well, in general you have to look at what happens when T is much more bigger than gamma

inverse , the diffusion regime or gamma is very large, the high friction limit. So you have to ask

what happens to the solution in that high friction limit. But there is also will length scale in the

problem.
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So now the diffusion regime is defined as follows. Diffusion not only should you have T much

much greater than gamma inverse but also the force V prime of X must not vary too rapidly

within the characteristic length scale. So it is as if the force did not exist at all in that length scale

right or a constant or whatever. So within V square equilibrium to the half divided by gamma. So

that will be your criterion. You can compute this number and then ask, check whether V prime or

the force is rapidly varying specially or not. If it is a gentle potential of some kind, it would not

vary significantly.

Then how would you go to this regime? What would you do? You do exactly what you did for

the original free particle case. Namely you would say, I am going to throw away the inertia term,

look at the high fiction limit and ask what happens there right?
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So in that high friction limit let us write it down below this. So what happens is that this rho

tends in the diffusion regime, to P equilibrium of V multiplied by an equation for P of X, T where

P of X, T satisfies the Fokker Planck equation corresponding to setting the friction term, setting

the inertia term to 0 right?
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So essentially what you are doing is to take MX double dot + M gamma X dot right equal to - V

prime of X + the noise. And the noise was precisely the noise that we had in the original. So 2 M

gamma K Boltzmann T times zeta of T, this term and we are dropping this term, the high friction

limit. So this term dominates right? So that gives us an equation which says X dot equal to - 1

over M gamma V prime of X, that is the drift term + square root of I have to divide by M square

gamma square.

So it is twice K Boltzmann T over M gamma. That is our old friend, square root of 2D appearing

again times zeta of T corresponding to this stochastic equation right? And what is this stochastic



equation? Corresponding to X dot equal to - 1 over M gamma V prime of X + square root of 2 K

Boltzmann T over M gamma zeta of T. That is a one-dimensional equation with non-linear term

here but we know how to write the Fokker Planck equation down for it. So what would that be?
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In other words, Delta over Delta T of P of X, T should be equal to with a - sign so that goes

away. And then you have equal to 1 over M gamma sitting here D over DX now of V prime of X

times P because that is inside. You cannot do anything about it. + the 2nd derivative, half of the

square of this which is KT over M gamma but that is just our old friend T. + D times D2P over

DX2. This is as before K Boltzmann T. That is a Fokker Planck equation. This equation is called

the smoluchowski equation.

So it gives you the diffusion equation in the presence of a potential. But you see where it comes

from. It really comes from the Fokker Planck equation in phase space. It gets reduced to this in

the diffusion regime where you have to have an extra criterion now about the variation of V

prime of X. We have not done the problem in the presence of a velocity dependent force. I

assumed that  the  external  force  was a  potential  which  depends only on the  position.  So no

velocity dependent forces, no magnetic field, et cetra has been included here as yet.

Now the question is, does this have any equilibrium solution or not as T tends to infinity? We

know that if it is not, this is not there, it does not. It is just the Gaussian which tends to 0, flattens

out. But now this will depend on what this V prime X is. We kind of expect that if you had in



confining potential that prevents you from having long-range diffusion, then the mean square

displacement will not diverge with T and therefore it might be an equilibrium case. For instance,

the oscillator. Now let us look at the harmonic oscillator in the over damped, highly over damped

high friction limit case.
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So highly over damped, what is the smoluchowski equation for the position probability density

of the highly over damped harmonic oscillator? Well, this fellow is trivial to write down. It is M

omega not squared X and the M cancels right? So you end up with Delta P over Delta T equal to



Omega not square over gamma times Delta over Delta X of XP + D times, this is KT over M

gamma. That is the Fokker Planck equation.  Does it remind you of any other Fokker Planck

equation you have seen?

Yes, the velocity process for a free particle. What did that equation look like? That looked like

Delta P over Delta T equal to gamma delta over Delta V times V times P + gamma K Boltzmann

T over M D2P over DV2, where this P was P of V, T whereas this P is P of X, T. It is not the

same function of course. Are not these identical apart from a reinterpretation of constants? The

the gamma is replaced by Omega not square by gamma and same physical dimensions for both

and the KT over M gamma is replaced by gamma KT over M.

This is the diffusion constant in the velocity space for a free particle or for a particle within the

presence of a potential, it does not matter. That is the diffusion constant in position space. What

was the solution to the situation? The Ornstein–Uhlenbeck distribution with a mean which went

like E to the V not E to the - gamma T and a variance which started with a Delta function with 0

and then went  to  the variance  of  the  equilibrium Maximillian.  So there was an equilibrium

distribution which was precisely the Maximillian distribution.

This is exactly the same mathematically exactly the same problem. So that is why you would

very  often  see  the  Ornstein–Uhlenbeck  distribution  process  described  in  some books  as  the

oscillator  process.  What  they  mean  is  that  the  conditional  density  of  the  simple  harmonic

oscillator, a harmonically bound particle, the Fokker Planck equation satisfying that gives you

the Ornstein–Uhlenbeck distribution just as for the free particle, the velocity has this Ornstein–

Uhlenbeck distribution.

In the over  damped limit  and the smoluchowski  this  thing becomes precisely  the Ornstein–

Uhlenbeck distribution.  Now how do you find the equilibrium distribution in this  case? You

would set this to equal to 0. Then you would find the current here but vanish at infinity, you

would get the Gaussian. E to the - MV not squared over 2 KT. What will you get here? What

would be that distribution? So there is an equilibrium distribution in this case. We have to look at

the general case.
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We will subsequently or when you have an equilibrium distribution but in this case there is no

doubt  at  all  that  P of  XT parents  as  T tends  to  infinity,  there  is  genuinely  an  equilibrium

distribution here because that will correspond to setting this equal to 0, then this is D over DX

comes out  and it  becomes whatever  is  inside is  a  constant  which can be set  equal  to  0 for

normalisable distribution and then you get DP over DX + omega square over gamma times M

gamma over KT times P equal to 0.

So what would you get? What is? And there is an X. So what kind of solution do you get? It is a

Gaussian. And what would that Gaussian be? Constant times E to the power - Student: M omga

not square.

Professor: Yes. M omega not squared X square over twice K Boltzmann T. Right? You expect

that of course because that is the Boltzmann factor for the potential  energy for oscillator. In

equilibrium, you expect it to go to the Gibbs distribution, the Maxwell Boltzmann distribution.

So it is E to the - the Hamiltonian and the Hamiltonian is half MV squared + half an Omega not

squared X squared divided by KT which is what is coming out. So you want that as a consistency

check. Otherwise you are really off right.

So you do expect  that  this  will  go to  the Maximillian  that  the Gaussian distribution.  In the

general case, no guarantee because you would have to set this equal to 0 and then ask whether



this ordinary differential equation has a solution or not. And yes, suppose it has a solution, what

would that look like?
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So this becomes a DX D over DX P equilibrium, this becomes D2P over DX2 equilibrium. What

would this solution look like? We want this to be equal to 0. Now of course, that simply means D

over  DX of  this  whole  business,  the  current  could  be  constant,  it  could  be  going  to  some

stationary  current.  Then  without  knowledge  of  that  stationary  current,  you cannot  solve  the

problem but let us assume that at T equal to at + - infinity this thing vanishes. Then what you



have is an ordinary differential  equation which says D DP equilibrium over DX + 1 over M

gamma times V prime of XP equilibrium equal to 0.

But D is  KT over M gamma,  there cannot be any reference to the frictional  constant  in the

equilibrium position distribution right? So this goes away and this was a KT. So this becomes K

Boltzmann T. Now what would that tell you? Yes. This tells you, implies P equilibrium of X is

proportional to E to the - V of X over K Boltzmann T. The integral of V prime X is V of X but

that is just the Boltzmann factor which is what you expect in equilibrium. There will be E to the -

the Hamiltonian over KT and the Hamiltonian has a kinetic part which we took care of separately

and then a potential which is precisely this okay.
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So it checks, this thing checks. There are other possibilities. We have assumed the stationary

current is not there but otherwise. So this will happen whenever there is V of X is bounded, I

mean it binds the it sort of stops long-range diffusion, then the particle is bound in some sense

and it cannot diffuse out to infinity and you end up with an equilibrium stationary distribution.

No guarantee that it  always exists but in these cases, normal cases it would exist.  Okay. So

magneticfield case is a little more intricate than this and we will talk about this (())(52:25) and

then we will see that how to generalise this. Okay let us stop this.


