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We had just  started  talking about  the Fokker–Planck equation  associated  with the stochastic

differential equation. So let us do this systematically and let us proceed as follows.
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So 1st we have an equation which is like the langevin equation, kind of generalisation of it and let

us  continue  to  call  it  the  langevin  equation  for  a  random variable  psi  which  is  a  1st order

differential equation of the form psi dot equal to some function of psi, let us look at stationary or

nonstationary processes but no explicit time dependency. We could include it if necessary but let

us look at the case without it because all the cases we are going to look at will be without it.

+ the term G of psi times white noise, a Gaussian white noise which has got 0 mean and a Delta

function correlation. So psi of T equal to 0 as zeta of T zeta of T zeta of T prime equal to Delta

function of T - T prime with unit strength. And any strength in the noise is subsumed in this

quantity, G which could be a constant for instance. Okay. Now technically, this noise is a Markov

process,  assumed to be a Markov process, it  is Gaussian in the sense that  all  its  probability

distributions, joint distributions and so on are all Gaussian functions.

And it is a stationary noise as you can see here, the level of the autocorrelation and it is a Delta

corelated noise so that the power spectrum is flat in this case. Then this implies and in turn this is

implied by an equation for the conditional probability density of this variable psi. So for this

quantity, P of psi T psi not 0, so this quantity here which is also guaranteed to be a Markov

process in the sense that this to point this conditional density determines all joint densities, this

quantity  P satisfies an equation called the Fokker–Planck equation and the equation reads as

follows.



So this is the stochastic differential equation for which I will use the abbreviation SDE and that

implies for this P, a Fokker Planck equation or SDE in short for this quantity which is as follows.

Delta P over Delta T equal to this side, a term which is - Delta over Delta psi F of psi times P

itself. That is the deterministic part, the drift part. Without this, you have a normally differential

equation, it is deterministic + a term called the diffusion term which is one half G square times P.

G square is a square of this function. That is the Fokker Planck equation for this quantity.

Of course it has got to be in this case since the initial conditions are psi not, at T equal to 0, the

value is psi not, the initial condition on this is simply a Delta function. This P at T equal to 0 is

Delta of psi - psi not. So P of psi 0 equal to Delta of psi not. So very often, I am going to

suppress this initial condition. Just call it, P of psi, T and P of psi, 0 is some prescribed initial

condition. And this is what you have to solve this equation with. We are not going to derive this.

It is not very hard to derive. It is actually quite straightforward. I have to introduce movements of

something called a transition rate or a probability per unit time and then using thing that, make

an expansion, etc, etc and show that this is what is obtained in the case where this is a Gaussian

white noise.

Student: (())(5:14)

Professor: Pardon me.

Student: (())(5:17) discretise time?

I do not discretise I do not have to discretise time but it is convenient to do so when you are

deriving the equation. If I am going to start from what is called the chain equation for Markov

processes, go to what is called a master equation and then a Kramers model expansion and so on

and finally we show that for Gaussian white noise, it reduces to this function. And there is also

the question of the interpretation of this equation because there is this noise here multiply, this

deterministic term multiplies this noise. So this is called multiplicative noise whose amplitude

depends on the value of the variable at that instant of time through this function here.

And for multiplicative noise, you have different ways of interpreting this equation and we are

using what is called the itoim interpretation. There is a Stratonovich interpretation and there are

several other ways of interpreting this equation which gets us into stochastic calculus which I do

not want to do here. So we will take equation for granted because we are going to actually look



at it in the simplest of instances, in the simplest cases and our focus is only physical processes.

Like motion of a Brownian particle or three-dimensional motion and the potential, et cetera et

cetera. Okay.

So this equation is not very simple to start with because it is a second-order equation in in the

random variable in the variable psi and it is a first-order equation in time, so it is a complicated

partial  differential  equation.  The solution  is  also  very complicated.  Now the  cases  we have

already looked at fall squarely in this. You can see what is going to happen immediately.
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For  instance,  we  considered  the  velocity  process,  we  said  one  Cartesian  component  of  the

velocity of Brownian particle was satisfied in equation - Gamma V + square root of gamma over

M times zeta of T. I call square root of gamma zeta of T is what I had called eta of T earlier in

noise because I said the correlation function is gamma times the Delta function. I got now a unit

strength Delta function here for the 2 point correlation. So therefore I put the gamma outside in

this one.

So in this problem, psi is V. F of psi is a linear function. It is - Gamma V and G of psi is a

constant and that is called additive noise. Because it just says to the deterministic part, you are

adding noise whose strength is independent of the value of the variable of the random variable.

This thing is a pure constant. Now look at what is going to happen immediately here. This will

imply as we have seen, if you apply the general theorem out here, this implies that Delta P over

Delta T equal to gamma times Delta over Delta V V times P because that is - F of psi which is -

gamma V - sign cancels, + one half and then G square which comes out as a constant.

So  it  is  just  gamma  over  2M  square  D2P  over  DV. So  without  proof,  using  this  general

correspondence, I am asserting that given this langevin equation, this is the equation satisfied

with a conditional density of the velocity. Now of course, we know from the langevin equation,

we already proved the fluctuation dissipation theorem. We know that gamma is 2M gamma K

Boltzmann  T.  We already  know  that.  For  consistency,  saying  that  the  system  remains  in

equilibrium, thermal equilibrium, when you take the full average over all realisations of the noise

and then over all  initial  velocities,  we know that you should get the Maximilian distribution

finally, equilibrium distribution should remain Maximillian. That happens only if this is equal to

that and that is what we argued, what is the fluctuation dissipation theorem in this instance? I

said, the strength of the dissipation and the strength of the noise must be related to each other in

this consistent fashion.

But that follows from here too immediately. You can see that if you ask what happens as T tends

to infinity? This, what we are doing, is starting with P of VT V not because I know this is a

stationary process, so I know this is a stationary process. So I do not write the 0 there. It does not

matter  in this  case.  Or just a side remark,  the fact that this equation has a noise which is a

stationary  random  process,  does  not  guarantee  that  the  driven  process  psi  is  stationary.  It



guarantees it is Markov but it does not guarantee that it is either stationary or Gaussian because

this could be all kinds of functions out here.

What is guaranteed is that it remains Markov and in general will have a finite correlation time,

not 0 as the noise. So what is carried over is a Markov property. Neither the stationarity, nor the

Gaussianity  is  carried over to the driven process in  general.  But we know, we have already

computed the velocity correlation function in this case and we know it is E to the - Gamma T

apart from KT over M and we know that it is a stationary random process. So I do not bother to

write the 0 there. Whenever it is a stationery process, I will not write the initial time explicitly

because we can always shift it out okay.
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The This quantity here we know that it should become as T tends to infinity, it should go to the

equilibrium distribution, the Maximilian distribution, right? So this should tend to be equilibrium

of V because it should forget the memory of the initial velocity and go to the final velocity and

be in equilibrium distribution. As T tends to infinity, it should be the stationary distribution. But

we know what this is. We know this is M over 2 pi K Boltzmann T to the power half. It is a

single component we are talking about, E to the - MV square over 2K Boltzmann T.

We know that is what it should become right. On the other hand, if I examine the equation itself

and  ask,  what  happens  to  this  as  T  tends  to  infinity?  If  there  is  a  stationary  equilibrium



distribution, this must become 0 because it cannot depend on time. And then as we have already

seen before, this will imply that the equilibrium distribution will satisfy an ordinary differential

equation, no time dependence there which will look like this. This will look like gamma, it will

look like D over DV of gamma over 2M square DP equilibrium over DV. That is this term here +

gamma P times P equilibrium is equal to 0 because this side is 0.

Therefore the bracket is a constant. Therefore this implies that this fellow is equal to a constant

independent of V. But we also want an equilibrium distribution which is normalisable. So this

means P equilibrium as V tends to infinity must go to 0. It must have finite moments, mean

velocity, mean square and so on, which means that this fellow should also go to 0 or derivatives

should also go to 0 as V tends to + or - infinity ok which implies that the constant must be 0.

Because this thing is equal to a constant and we say that at V equal to infinity, this constant is 0.

So since it is a constant, it is 0 for all V. But then that is a 1st order equation and we know what

the solution of it is. It is trivial.
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So this thing here will imply that P equilibrium is equal to, is proportional to apart from constant

of proportionality, E to the power - 2M square gamma, I will multiply through by this guy. You

should be careful with all the 2s and so on. Yes 2M squared gamma over capital gamma V square

over 2 because I integrate  VDV and that gives me a V squared or 2 and that is this ok. So

cancelling out these 2 fellows, you get this. So this matches, this thing here if and only if, M over

2K Boltzmann T equal to M squared gamma over gamma. So you are back to this.

You are  back  to  this.  So  that  is  one  more  way  of  saying  that  this  must  be  the  fluctuation

dissipation theorem. If and only if gamma equal to 2 M. So it is just saying it in in that in terms



of the probability distribution or probability distribution or (den) probability density function

rather than the stochastic equation itself. It is the same fluctuation dissipation theorem you are

going to get okay. Now what is the general solution of it? Well, now we need to examine this a

little more carefully. This equation is not too hard to solve. It is not trivial though because this

differential operator is not self adjoined. It is this 1st order term here, it is a bit of a mess.

There are several ways of solving this. It turns out that the solution is precisely the  Ornstein–

Uhlenbeck distribution. This turns out to continue to be a Gaussian process in this case and it is

the  Ornstein–Uhlenbeck distribution. So we know what that is. We know that E of V in V not

equal to an exponential apart from normalisation, - M V - V not E to the - Gamma T whole

square. That is the mean value, the peak shifts to the left,  divided by 2M 2KT and then the

variance and then a normalisation factor which is essentially M over 2 pi KT times these times

square root of that whole thing.

So the mean is this value which goes to 0 as T tends to infinity, starting at V not and the variance

is a delta function at T equal to 0. Variance vanishes at T equal to (zee) 0 and then broadens out it

hits the value given by the Maximilian distribution, depends on the temperature.

(Refer Slide Time: 17:15)

And this is the OU, Ornstein–Uhlenbeck distribution. Next question. What about the phase space

distribution? What about the distribution of X, V and T? We need to know whether it is a joint



distribution. Is it possible to get an answer for that? And the answer is yes. We can see how that

is going to come about because I should really augment this  equation with another equation

which says X dot equal to V. We are talking about one cartesian components, so it is just an X

and a V. So X dot is V and V dot is this out here.

In this case, there is no external force and therefore there is no F of X which you might get from

a potential maybe but you do have this systematic part and then you have the random force here.

So one should be able to join to write down of P of X, V, T given X not, V not and 0 and an

equation for it, a corresponding equation. For that, you need a generalisation of this to higher

dimensions, to moment, to 2 dimensions. We will come to that in a minute but before that, let us

settle this other question. We know there is a diffusion limit and in the diffusion regime, we

know that the mean square displacement  goes like 2DT and we know that D is KT over M

gamma.

Can we get that from this? Does it follow up from this thing at all? Does it follow from this

equation? And the answer is yes, it indeed does. Because what we need is an equation which says

that the velocity is delta co-related. Because when you are in the diffusion region, the velocity

correlation time is gamma inverse. And now you are saying, you have T much much greater than

gamma inverse. So one way of implementing that is to say, I take gamma to be so large that

gamma inverse is negligible and then at all T practically, you have only diffusion regime. So one

could look at the high friction limit of this equation and ask whether that is going to work or not.

Okay? There are several ways of implementing this but let us do it that way and see what we get.
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So a high friction limit of this system is going to be gamma tends to infinite gamma high friction.

High compared to what? Well, the statement is that gamma is so large that all 10 times that you

look at are such that T is much much greater than gamma inverse. So I drop the inertia term. This

came from M times V dot, mass times acceleration. I drop that term, I retain this term and look at

it as a stochastic equation. So now my stochastic equation says X dot that is V is equal to root

gamma over just one second. Before I do that, there is one thing I want you to bear in mind

which  is  since  we  need  this,  we  have  imposed  this  fluctuation  dissipation  theorem  for

consistency, we can rewrite this equation a little bit and this is going to be useful to do so.

Student: (())(21:04)

Professors: Pardon me.

Student: Large gamma limit.

So that I can take the large gamma limit, yes. But this is also going to be needed in another

context, we will see in a minute.
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So this is really gamma delta over delta E VP + for this I substitute 2 M KT gamma and then the

2  cancels,  the  so  this  is  gamma  K Boltzmann  T over  M D2P over  delta.  So  the  diffusion

coefficient if you like, in velocity space is, KT over M. In position space, it is already what we

know. It is KT over M gamma but in velocity space, it is turning out to be gamma KT over M.

We will keep that aside for a moment. So let us look at the high friction limit of this.

(Refer Slide Time: 22:03)

So let us look at the high friction limit of this and that reads, so I drop the V dot term, this term

and retain this, bring it to the left. So it says V equal to root gamma over M gamma Z of T. So



you are really saying, sorry V which is X dot which is what it is in the diffusion regime because

it says the velocity is uncorrelated. For our practical purposes, it is a delta function correlation

but we can simplify this right? So this is equal to square root of or put that inside. So 2M gamma

K Boltzmann T over M square gamma square Zeta of T equal to the M cancels, one of them, the

gamma cancels. Twice KT over M gamma. But remember, we had set D equal to K Boltzmann T

over M gamma.

We discovered that the mean square displacement in the diffusion limit was actually 2 DT where

D was given to be KT over gamma. That is what we found. So let us put that in. This says this is

square root  of 2D Zeta  of T. And now I  go back and appeal  to  this  general  Fokker  Planck

correspondence  between  the  stochastic  differential  equation  and  the  corresponding  Fokker

Planck equation. I stare at this and I say look, X is Psi now, Psi is X now. There is no F of psi

now of zeta the or psi. That term is missing. There is only a noise term. And G is square root of

2D. It is a constant.

(Refer Slide Time: 24:27)

So this tells us that delta over delta T P of X, T for some given X not which I will impose as an

initial condition right is equal to one half G square. But G square is 2D and half of that gives me

D.  So  this  becomes  DD2P over  DXT. That  is  the  diffusion  equation.  That  is  precisely  the

diffusion equation okay. So you see the origin of the diffusion equation from this language, from



this point of view, it is precisely the fact that you are working in a regime where the velocity

correlation time is essentially 0.

And therefore, the velocity is a white noise. And when you integrate it, you get an equation for

take this equation and write it for as a density in X position you have this diffusion equation. So

this emerges from that correspondence. So it is a part of that correspondence. There is no drift

term in this equation.  It  would be there if  I put an external  force.  If  I  said I am looking at

diffusion in a potential, even gravity, there will be an extra term, there will be that 1st, the F of psi

term would be present. But that’s completely missing here.

In the velocity case, there was a friction term which was proportional to the velocity. It was

linear in the velocity that made life a little easy out here. In the diffusion case, that’s in that’s

missing. Now if I look at sedimentation, namely diffusion of a molecule in a vertical column

under gravity for instance then there would be a constant force and a constant force would lead

to just P. There will be no V here, just P on this side. So you would have a 1 st order term + a 2nd

order term on this side.

And that would lead to an extra contribution. It would change the solution here considerably. It

would lead for instance if you ask in a finite column if you ask or even infinite, semi-infinite

column under gravity if you asked, is there a study distribution, the answer is yes, there will be

one.  But  is  there  a  steady  distribution  for  this  on  the  infinite  line?  Is  there  an  equilibrium

distribution for this? If there were, then this should be 0 and then you get D2P equilibrium over

DX to  be  equal  to  0  and  the  solution  to  that  is  P equilibrium  is  AX +  V but  that  is  not

normalisable, it is not normalisable. And therefore there is no such equation, there is no such

distribution.
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And you know that in this case what happens is that if you start at delta function at X not, you

could impose a condition, P of X0 equal to delta of X - X not. If you start at this delta function

distribution and you look at this P, as T changes, it does this, et cetera, whatever. It doesn’t even

drift.

It doesn’t because there is no drift. Because there is no drift at all, what it does is to start at X not,

it broadens out and broadens further and decays to 0 such that the total area under the curve

remains 1.

It is normalised in one. No material is going away. So this thing does not have an equilibrium

distribution. If you put gravity, we will do that later on, we will do this sedimentation problems

later on. You will discover it and to the bottom, everything goes to the bottom. So there is an

equilibrium distribution under certain cases but in general, there is (())(28:27) for this. So this is

how you get the diffusion equation okay? Well now you could ask, what about the phase space

distribution? What does that look like? So now we have to be a little more careful.
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A stochastic equation is a pair of equations. So we have X dot + V equal to 0. Sorry, - V equal to

0 and you have V dot + gamma V equal to whatever this fellow was. Yes, root gamma over M.

Let us let us change this thing here. This is equal to root gamma over M equal to root 2M gamma

K Boltzmann T over M square. So 2 gamma KT over M, let us just put it that way. This fellow

here times zeta of T. So it is a pair of coupled equations.

Now let me introduce a vector X which is XV, put this in matrix, column matrix here. I am going

to write this as a single equation in a vector form and let us introduce a matrix K, a drift matrix

which is equal to there is a - 1 so it is 0, - 1. There is + gamma here, so it is 0, gamma. So



introduce that matrix. Then the left-hand side for these 2 together becomes X dot + KX gives you

the left-hand side equal to on the right-hand side, a noise which is essentially this fellow here. 0,

root 2 gamma KT over M times  zeta. I can give it a symbol, some vector noise, it  does not

matter. Okay.

Now the question is what is the corresponding Fokker Planck equation corresponding to this.

And it turns out that what you have is a special case of a much more general case. In a case

where the noise is additive, this is additive noise because there is no X or V dependence here.

There is no G. It is only constants. Moreover, the drift is linear. So this is a linear drift. So you

have addictive noise and linear drift. This makes life easier. The general case is also something

we are going to write down but the expression for the Fokker Planck equation for the linear case

with linear drift and additive noise is very straightforward and it is very natural. Let me write it

down.
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It says so now we are going to look at the density rho of X, V, T given X not, Vnot, et cetera. So

let us put X not, V not, 0. Oh, by the way, when we looked at the high friction limit of the

original  langevin  equation  and  got  to  the  diffusion  equation  for  the  positional  probability

distribution function, was X of T a stationary process or not? So we had this quantity, P of XT

delta over delta T equal to D D2P of X, T over DX2 with initial condition X not, et cetera. So we

had P of X0 equal to delta function of X - X not and we know how to solve this equation.



You do Fourier transform with respect to space, Laplace with respect to time, et cetera, many

ways  of  solving  this.  These  are  fundamental  Gaussian  solutions  with  natural  boundary

conditions. Namely P is 0 as X tends to + - infinity. Then the solution of this equation is worth

remembering. It is a fundamental property. It is equal to 1 over square root of 4 pi DT E to the

power - X - X not whole square over 4 DT. That is the fundamental Gaussian solution to the

diffusion equation.

The peak remains at X not out here and the peak actually goes the the width of this peak goes to

infinity linearly with time. That is why you have diffusion. So in this case, the average value of

X - X not square that  actually  diverges.  While  the probability  density itself  decreases  at  all

points.  That is  why one overthrew T. It  is  normalised to unity. The integral  for - infinity to

infinity in X for all time is finite is one. Okay. Is this a stationary process? No, imminently no

because the various changes with time.

So it is not stationary. It is Gaussian. It is Markov but nonstationary okay. Earlier, the velocity

process  alone,  the  noise  is  Gaussian,  stationary,  Markov  and  delta  correlated.  The  velocity

process is stationary, Gaussian, Markov but not delta correlated, exponentially correlated. The

position in the friction limit is nonstationary. It continues to be Gaussian, Markov.

Professor-student conversation begins:

Professor: Yes?

Student: (())(35:04).

Professor: Yes, exactly.

Professor-student conversation ends.

So this  is  not,  yes I  emphasise once again.  This is  not the exact  equation for the positional

density at all. How would you get that? Well, that would get you get from here, you would get

from this quantity.
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So if you did this, if you integrated - infinity to infinity DV rho of XVT, if you did with those

initial conditions of course, X not, V not, 0 so you integrate over the other variable, velocity, you

would then get a distribution in X, the conditional density for X, the exact conditional density for

X. That is not this because as he points out, this is true only in the lesion when gamma D much

much greater than 1. Only there is this true. You really have to go back here and do this.
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Similarly if you got the exact answer here and you did this, - infinity to infinity DX rho of XVT

X not, V not, 0, you would expect to get. What would you expect to get here? You would expect

to get, this should be equal to P of VT V not. You would expect to get this because you would get

the conditional density in the velocity now and you do. And you do in this case. The X not

dependence must somehow disappear and you should get this. But what happens when I am

anticipating myself a bit?

What happens is you did this? You integrate over the velocity. Is that, you get an answer for P of

XVT which involves both X not and V not which immediately tells you that it is not a stationary

process. X alone is not a stationary process. Even worse, we know that this quantity satisfies a

Fokker Planck equation the velocity variable alone, this quantity does not satisfy anything of that

kind. It does not satisfy any simple master equation. So that is the problem. This is the problem.

It is a highly nonstationary process even in the diffusion limit.

Student: (())(37:37) velocity also, there will be X not, V not?

There is not. There is V not dependence of course, we saw that. There is V not dependence.

Certainly, there is V not dependence but the point is, when you integrate here, this quantity, there

should be no V not dependence. There should be X not yes, but there is V not dependence as

well.  So  you cannot  decouple  the  velocity  completely  showing  that  this  is  retaining  in  the



correlations, memory, et cetera okay. We will see, we will see what the solution looks like and

then we will be able to examine this.

(Refer Slide Time: 38:19)

So that is a good point that this quantity is equal to this only in the limit. So as gamma T is much

much greater than 1, goes to this P of XT, this P of XT. Goes to that but not for all T. Okay so the

question is what is the Fokker Planck equation here? And the answer is the following.

(Refer Slide Time: 38:45)



You have Delta rho over delta T equal to in such a case, let me call momentarily let us call this

equal to X1, X2 in index notation, 1st component, 2nd component. Then this is equal to delta over

delta XI, sorry it is equal to KIJ delta over delta XI XJ rho where a summation over repeated

indices apply + the term which is the diffusion term. It will look like some generalised diffusion

matrix here, DIJ times D2 rho over DXI delta XJ. We already know this, we already know what

is KIJ is. It is this. I have to write down what is DIJ, the diffusion matrix. Let me use another

symbol for it. Let us use DIJ.

So this D in this case is 0 0 0, that is not surprising because this is essentially root twice the

diffusion constant in velocity space. That is what this is. So that is the Fokker Planck equation. In

phase space all we have to do is to substitute. For this case, substitute for this D and we are done.

So let us write it out.
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So this becomes equal to, the first-term that is going to contribute is K12 out here and that is

going to have a - sign delta over delta X1 that is X, 2 is 0. And then K22 is going to contribute.

So that is going to be + gamma delta over delta V V rho, that is it. + this fellow, the only term

that contributes is D22. So + gamma K Boltzmann T over M D2 rho over delta V2. Okay. Pardon

me. Well X2 is V. X2 is V and we are looking at only D22 because all the other terms are 0. But

this is precisely we what we got in the Fokker Planck equation for the velocity. And this too but

we have an extra term here. But you see, this term can be simplified a bit because X and V are

independent terms in phase space.
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So this  is  equal  to  -  V delta  rho over  delta  X + gamma delta  over  delta  V 0 + gamma K

Boltzmann T over M D2rho over DV2. This is the phase space Fokker Planck equation for the

phase space conditional density rho. Remember this is an equation for rho of XVT given X not V

not at t equal to 0. We essentially have Delta of V - V not, delta of X - X not and with those

boundary (con) initial conditions, you have to solve this equation here. Does this remind you of

something?

Well if you bring it to this side, what is going to happen? Yes, it looks like total derivative. This

looks like that convective derivative. It is indeed that. It is indeed that, it is just the convective

derivative  which  is  sitting  here.  No external  force  present,  no  velocity  dependent  force,  no

magnetic field, none of those. Then this looks like a convective derivative. It even has the right

sign. You bring it to this side, it is convective, precisely the convective derivative which is what

you kind of expect basically.

So can we write  the 3 dimensional  generalisation  of  this?  That  will  be a  horrible  thing but

anyways before we do that, I should tell you what the solution to this equation is. You can again

solve  it  with  delta  function  initial  conditions,  you  can  give  an  exact  solution.  It  is  a  two-

dimensional Gaussian, it is a joint Gaussian in both X or X - X not and V - V not E to the -

gamma T. It is a joint Gaussian. So it will have an exponential which will involve - X square - V

square, it will also involve an XV term in between.
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Such that asymptotically so the solution to this asymptotically what would you expect it to do for

T tending to infinity? Well, the solution will actually vanish because if we look at the ordinary

diffusion equation, the probability density vanishes but but we are not asking as mathematically

T becoming infinite, we are not saying that. We are saying, when T becomes much larger than all

the timescales in the problem, gamma T much much greater than 1 for instance, what would

happen? So let us write that.

That is much more reasonable right? What would you expect it to become? The velocity term

arises. In other words, it loses track of its initial value and gets into the Maximillian distribution.



So you would certainly expect that to happen. The position in the diffusion limit will have a

diffusion equation solution, Gaussian. So I expect that this is going to become E to the - MV

square over 2K Boltzmann T times E to the - X - X not square over 4DT times the normalisation

factors.  So this  fellow is  divided by root  4pi  DT and this  fellow is  divided by M over  2K

Boltzmann 2 pi K Boltzmann T times square root.

So I expect that to happen. And that is what? That is that should be your check. That in (())

(46:44). But as I said, if you integrate this exact expression for V, you get a very complicated

thing for X which will involve V not and X not. But you integrate over X from - infinity to

infinity,  you  will  get  the  Ornstein–Uhlenbeck distribution  with  initial  value  V not  with  no

reference to X not for the velocity distribution alone. What would you expect would happen in

this three-dimensional case?

So  we  could  write  a  generalisation  of  this,  we  could  make  these  things  vectors,  here  in  3

dimensions. So what would happen to this quantity? Everything else remains the same but of

course, different Cartesian components of the noise would be uncorrelated to each other.
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You have to assume that. So you would certainly have to assume that you have a zeta I of T, zeta

J of T prime. Average value is equal to delta IJ delta of T - T prime. You have to assume that.

That is certainly true. And then what this quantity does rho of R VT given R not V not at 0, we



can write down a Fokker Planck equation for this rho for this  rho, phase space density in 3

dimensions. We can read it out from here. Just the vector form of it. So we will again get delta

rho over delta T is equal to what would happen to the 1st term? - V not grand rho grand with

respect to R, with respect to the components of the coordinate + what is the next term going to

be?

So gamma times, grand with respect to V dot V rho right + gamma K Boltzmann T over M grand

with respect to V squared, this is the exact Fokker Planck equation for the phase space density in

3 dimensions. Just a straightforward extension of this. And the solution is a generalised Gaussian

in  all  6  variables  with  the  same  sort  of  properties  once  again.  So  once  you  have  this

correspondence between the stochastic differential equation and the Fokker Planck equation then

the matters, writing down the Fokker Planck equation is very straightforward okay?

Now we have to go to the next stage where will get cases where you have multiplicative noise

and then the question is what happens if you have a higher dimensional case? We should be able

to write generalisation there too and we will do that and we will apply at least in the simplest

instances, we will apply to a couple of examples so that you see what the use of this (())(50:05)

is. But this is a fairly intricate problem. At the same time, it is amenable to exact solution in this

case. Okay, let me stop here and we will take it up.


