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Right, so we were exploring the consequences of the fact that the generalized susceptibility

Kai is analytic in the upper half plane in the frequency. 
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So if  I  draw the frequency plane this  being the frequency with the real  omega here and

imaginary omega let us call it prime, so this is the omega prime plane out here. Then the

point was that it will start with any fixed real frequency omega and we discovered that the

integral over the close contour C of d omega prime Kai of omega prime over omega prime

minus omega over this contour.
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So all the way from minus infinity coming in and then a little indentation, a semicircular

indentation in the upper half plane through an radius Epsilon say and then back on the real

axis and all the way down and closed in this fashion, this is equal to 0 and with the condition

we needed for this was that this integral, the integral have to vanish as omega prime went to

infinity anywhere in the upper half plane.
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So if Kai of omega prime goes to 0, if Kai of omega prime goes to 0 as mod omega prime

tends to infinity in the upper half plane then this contour C could be blown out all the way to

infinity this contribution would then vanish because this is going to give you a capital R into

the i theta, this is going to give you a capital R they 2 cancel each other and then if this goes

to 0 the answer goes to 0, okay.

So a sufficient condition for this integral to converge and for this contribution goes to 0 is that

this be true that Kai vanish in the upper half plane. As you can see it suffices if Kai vanishes

along  the  real  axis  because  on  the  imaginary  axis  you  actually  have  extra  convergence

factors. So if this is true then this 0 implies that the integral from minus infinity up to this

point which is omega minus Epsilon and this is omega plus Epsilon up to infinity plus this

semicircle is 0.
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And since the arc integral from this in that contribution from the semicircle is 0 anyway you

end up with this statement that integral from minus infinity to omega minus Epsilon d omega

prime Kai of omega prime over omega prime minus omega plus an integral from omega plus

Epsilon to infinity the same thing. 
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These 2 plus this contribution this little contribution is as follows plus an integral from on this

contour on  this little contour here omega prime equal to omega plus Epsilon e to the i theta.

So it is circle about the point omega, so omega prime is omega itself plus this little complex



number Epsilon e to the i theta and the integration variable here is theta running from pi to 0

it goes the other way. 
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So this is equal to Epsilon e to the i theta i d theta that is what d omega prime is, I just

differentiate this quantity and then the integral runs from pi up to 0 divided by omega prime

minus omega that is equal to Epsilon into the i theta and that is it. So 0 is equal to this whole

thing, okay.
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And this cancels, this term cancels here and the integral is minus i pi times oh! Sorry there is

Kai of omega plus Epsilon e to the i theta there is of course sitting inside there.

So in the limit in which Epsilon goes to 0 this becomes the Epsilon cancels the theta cancels

and you are left  with i  pi times Kai of omega, right? Minus i pi because this is from pi

towards.
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So this finally says that i pi times Kai of omega is equal to an integral from minus infinity to

infinity d omega prime Kai of omega prime over omega prime minus omega living out a

small portion which is symmetric about the point omega and this is called the principal value

integral this is called the Cauchy principal value. So this is equal to, let me just write it as P

and this stands for Cauchy principle value. 

So this was an invention of Cauchy’s, he discovered that in many cases when you have an

integral  with  a  singularity  on  the  real  axis  on  the  axis  of  integration  on  the  contour  of

integration in general the real axis then if you leave out a small symmetrical portion about

this  a little  segment  which is  symmetrically  situated about  the singularity  in  this  case at

omega and take the limit as Epsilon goes to 0 then that can be finite and it is called the

Cauchy principal value.
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In this case it’s finite and it’s equal to this susceptibility at this point apart from this factor

here. So if I bring the i pi to the right-hand side over i pi. So look at what has happened? We

did an excursion we met an excursion from real values of omega to complex values but we

are back to the real axis because this contribution went away we are back to the real axis and

what we have done is.

We have succeeded in expressing this susceptibility at any real frequency as an integral over

all other frequencies except from (()) (7:50) interval about that point that frequency, okay.

This sort of thing is called a dispersion relation we will write a simpler form of this in a

minute but notice that you are back on the real axis, so there are no complex frequencies here

it is completely physical, right?

All we have to do, now is to take real and imaginary parts of this, so it follows that the real

part of Kai of omega is equal to it comes from the imaginary part this is real plus i times

imaginary and the i cancels and you get P over pi integral minus infinity to infinity by the

way I have written this as P integral minus infinity to infinity. Sometimes it is written like this

minus infinity to infinity with a slash over the integral that notation is also used just to show

you that leave out a symmetrical portion about infinite decimal symmetrical segment about

the singularity and take the limit, okay.

That limit is not always guaranteed to exist but in this case it does, okay. So this is equal to d

omega  prime  imaginary  part  Kai  of  omega  prime  over  omega  prime  minus  omega,  the

singularity of the integral integrant at the point omega prime equal to omega is avoided by the



principle value supposed to be left out omitted and similarly imaginary part of Kai of omega

equal to, that comes from the real part but there is a minus i here and you take this up, so it is

equal to minus P over pi integral minus infinity to infinity d omega prime, real part of, so this

is the reason why asserted in the beginning that this susceptibility cannot be purely real or

purely imaginary.

Because if it were so then being an analytic function it would just vanish identically, you

cannot have this to be identically 0 or this to be identically 0 because then the whole thing is

0, okay. These relations are called dispersion relations, they are also called occasionally for

historical  reasons  these  are  the  people  who  introduced  these  relations  first  into  physics

Kramers Kronig relations.

Dispersion because it was introduced by Kramers and Kronig first in the context of refractive

index, it is an optical susceptibility if you like refractive index, the complex refractive index

is just the optical susceptibility and they introduced within that connection. Now any 2 real

function, any 2 functions real valued functions of a real variable such that you have supposed

say 2 functions f and g then the fact if you have f of x prime d x prime over x prime minus x

principal value equal to g and g is the inverse relation they hold a pair of Hilbert transforms.

So  the  real  and  imaginary  parts  of  a  causal,  linear  retard  susceptibility  from  a  Hilbert

transform  pair,  okay. So  the  real  part  is  a  Hilbert  transform  of  the  imaginary  part  and

imaginary  part  is  a  Hilbert  transform of  a  real  part,  notice  there  is  a  minus  sign.  So in

principle if I substitute for imaginary Kai of omega from here in this, you will have one more

integration to do, in principal you should get an identity, in other words that intermediate

integral should turn out to be a Delta function, okay which it will, I am not going to show it

over here but it will. So these 2 guys real Kai and imaginary Kai form of a pair of Hilbert

transforms. 
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Now what is the reason for this whole thing happening? Well it happened because this is an

analytic function in the upper half plane and where did the analyticity come from? What is

the origin of this business? Remember this got represented as an integral 0 to infinity d tau e

to the i omega tau pi of tau. So it got represented in terms of this one-sided Fourier transform

and  then  the  argument  was  if  this  is  true  for  real  omega  then  for  omega  with  positive

imaginary part? It is certainly true an analytic.

So it arose from this and where did this come from, why is this 0 and not minus infinity or

anything else? Causality, so in all cases dispersion relations are a consequence of causality,

finally  that  is  what  is  doing it.  So  the  physical  reason why the  generalize  susceptibility

satisfies dispersion relation is because it is a causal response, okay. And this has profound

implications in other parts of physics especially in particle physics, Quantum field theory

and so on anywhere where dispersion relations appear and they appear in the large number of

places but finally it is traced down to causality, okay.
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Now you might say look this is an integral over negative frequencies also whereas physical

frequencies are positive but there the fact that this is an anti-Symmetric function comes to our

aid. So we can convert this integral into something that runs over from 0 to infinity. So let us

do that.



(Refer Slide Time: 14:40)

The real part therefore equal to P over pi there is an integral from 0 to infinity and then the

portion from minus infinity to 0 I am going to write in this form, is minus infinity to 0 plus

integral 0 to infinity times d omega time blah blah blah, in this term so I am going to write

this as P over pi I am going to change variables to minus omega prime when I pull out a

minus sign due to the Jacobian, this becomes infinity to 0 and those 2 minus signs cancel.
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So both integrals look like 0 to infinity d omega prime and then in the first integral I have Kai

of omega prime over omega prime minus omega that is integral from 0 to infinity in this

formula  and then minus infinity to 0 remember I change variables to minus omega prime. So

let us write that as, so this is imaginary plus imaginary Kai of minus omega prime divided by

minus omega prime minus omega because I change variables.
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But this fellow is an odd function, so it is equal to minus imaginary Kai of omega prime that

minus sign cancels with this and you are left with the following, you are left with imaginary I



of omega prime times one over omega prime minus omega plus 1 over omega prime plus

omega but this omega cancels and just gives you 2 omega prime. 
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So  therefore  I  have  a  nice  representation  which  says  that  in  general  we  have  useful

representation which says real Kai of omega equal to 2 over pi principle value 0 to infinity d

omega prime omega prime imaginary part of Kai of omega prime because when I add these 2

I get 2 omega prime divided by omega prime square minus omega square. Now everything is

physical it says this denominator has a simple pole at omega prime equal to omega, the one at

minus omega is outside the region of integration and you have to take the principal value in

the pole at omega prime equal to omega and integrate this quantity, okay.

Its  guarantee to converge,  at  infinity  this  is  going to produce capital  R, that  is  going to

produce capital R, this is going to produce R square they cancel each other but this fellow

goes  to  0  and  the  integral  exists.  So  this  is  a  physical  form of  the  dispersion  relation.

Similarly you do the same thing for imaginary for Kai of omega equal to still be 2 over pi and

there was a minus sign which is going to persist, so minus 2 over pi times principal value

from 0 to infinity d omega prime.
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Now you are going to subtract one over omega prime minus omega minus one over the other

because this fellow is symmetric, so it does not produce an extra minus sign. 
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When you subtract that you get 2 omegas, so this becomes an omega which is outside the

integral and then the real part Kai of omega prime, okay. That is a very useful form of the

dispersion relation, so this is the one that you would use in practice, okay. In practice what

happens is the physical use this is put to is, suppose you know the susceptibility or you have

measured the susceptibility both the real and imaginary parts  because they have physical

meanings.



You measured it in some frequency range and you could approximate it by 0 or something

like that outside this range then to find this susceptibility at any point outside the range you

could use this formula to first order it will be correct even if you cut it off that sump up a

limit here, okay.

“Professor -Student conversation starts”

Student: How the second integer looks better than. 

Professor: Yes that is the consequence of the fact that one the real and imaginary parts that is

the reason, yes sure that is exactly true but it is not really better because these functions

behave differently asymptotically, okay.

“Professor-Student conversation ends”

Now you could ask the other questions we slurred over some points we said Kai of omega

must go to 0 at infinity, suppose it does not, you still have to deal with this situation because

that can happen in many cases. 
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Suppose it does not go to 0 but it goes let us say on the upper half plane suppose not Kai of

omega goes to some number, some Kai infinity as mod omega goes to infinity in the upper

half plane, suppose this were true then the contribution from the semicircle is not 0 that is all

but you can still work out what the contribution is because now you notice that this infinite

semicircle is here.

On the semicircle Kai goes to Kai omega Kai sub infinity and then you have on this circle

omega prime equal to capital R e to the i theta, so d omega prime is going to produce R times

i d theta and so on and in the denominator you have the same thing omega prime minus

omega is going to produce an R. So you will end up with a Kai infinity as a constant in

integral so fine. 
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You will still get dispersion relations but you get an extra contribution here plus something

time pi times Kai infinity or something like that, so you can still write it down still compute

but now suppose you say well I do not know Kai infinity I just know that it does not go to 0

but I do not know or suppose it is a function of the angle. Suppose the limit that it goes to

does not go to 0 but suppose it is a function of which way you go to infinity you know handle

on that. 

I have assumed here that all through uniformly it goes to the same constant but if it depends

on the angles and you cannot do the angular interpretation, right?
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Then this is  the trick you do in that case,  what you do is  to modify the function whose

analytic behaviour you are looking at.  So your omega prime plane here is omega choose

some value of the frequency at which you know the value of the susceptibility. So let us

suppose there is a point omega not and let us suppose that Kai of omega not is known or

measured.

So suppose, so you know the value at this point and now I am trying to derive dispersion

relations. So the function I am going to look at is not Kai of omega prime over omega minus

omega prime minus omega this is not good enough because it does not converge fast enough

but if I multiplied by this omega prime minus omega not then I am in good shape because

there is an extra omega prime capital R sitting from here and the d omega prime will cancel

against this.

There is 1 over capital R here and there is this fellow who goes to a constant some constant at

infinity, so there is 1 over R and this contribution will still vanish but now you will say that is

not good because there is a singularity at this point now. So what you will have to do is to

consider the contour this way and then the indentation here and then another indentation there

and then all the way to infinity, okay.
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So that is one way to do this, another way to do this, so what would that amount doing? What

would this contribution be finally? It would be i pi or minus i pi whatever it is, Kai at that

value sitting and then Omega not minus 1 would sit there. 
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You can save yourself some trouble by considering not this function but this function this is a

constant, this function if this is got a simple pole at omega not than this function is well-

behaved at omega not, okay.

So I  write  a  dispersion relation for this  function,  keeping track of  the fact  that  this  is  a

complex number in general.



“Professor -Student conversation starts”

Student: Basically you are making it a reversible direction.

Professor: Yes I convert this singularity into a removable singularity by subtracting this one

here.

“Professor-Student conversation ends”

So since I have subtracted this, this is called subtracted dispersion relation and this is called

the point of subtraction. So there are several ways of fixing this problem of Kai not going to 0

at infinity subtracted once, this assumes that Kai is such that it goes to , does not go to 0 at

infinity but goes to a constant. Suppose it goes like omega prime itself what would you do?

Then I have to subtract at 2 points and so on.

So each time you add a denominator it improves the convergence, okay. And then it is a

doubly subtracted dispersion relation and so on,  as long as it  does not have an essential

singularity at that point at infinity you are in good shape, as of now there is no, so if it blows

up like some polynomial like some power of omega prime as omega prime goes to infinity

we are okay.

Blows up exponentially you cannot write dispersion relations, okay. So these are techniques

just techniques for getting rid of singularities but this tells you what the basic idea is or there

is one more very important case where you have to deal with this situation which is as I

mentioned it happens so happens in many cases that the dc susceptibility is actually divergent

that  it  blows  up namely  you apply  steady force  to  the  system forever  and  the  response

becomes exploit it divergences, okay.
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What you do then? That implies that Kai of omega has a pole or singularity at the origin and

simplest case it has a simple pole, right? So suppose that happens, suppose so this part is

taken care of.

Now suppose Kai of omega has a simple pole at the origin, so it is of the form some residue a

over omega plus regular part in the neighbourhood of omega equal to 0. So suppose it has a

simple pole at this point at the origin, here is my omega then the thing do is to go back and

consider this contour out here and consider the original function itself. So you have Kai of

omega prime over omega prime minus omega and you look at it over this contour.

So indent this in the upper half plane, so as to avoid the pole and stay in the region of analytic

behaviour of this function and include the contribution from here in the contour integral, this

indentation is going to give you minus i pi Kai of omega, what is this going to give you?

What is the contribution going to be? We are going to have to integrate remember that on this

contour omega prime is just equal to Epsilon e to the i theta plus 0 because it is at the origin.

So this thing here integral b omega prime over this little semicircle, so let me call this little

semicircle little gamma little gamma this fellow here is going to become equal to this is going

to go like a over omega prime plus the rest of it, right? So the leading term is going to be a

and then an integral from pi to 0 Epsilon e to the i theta, i d theta that is d omega prime

divided by omega but omega is Epsilon e to the i theta. So Epsilon e to the i theta, that is the

Kai the behaviour of Kai with an a here and then there is this factor which is harmless.



So that factor is 1 over Epsilon e to the i theta minus omega, so the pole contributed 1 over

omega prime which cancels gives you this Epsilon to cancel this, so this fellow goes away

and this is i pi or minus i pi times a and the rest of it will follow with a minus omega. So the

whole integral will have a contribution which is essentially a over omega which it should

because they are writing a representation for Kai and if it is got a singularity residue a at

omega equal to 0 there better be an explicit term a over omega that is what is happening here.
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So tacitly the point of subtraction has been the origin in that sense. So in all these cases we

know how to deal with this situation but the physics of it is that causality leads to dispersion

relations  Kramers  Kronig  relation  for  that  generalized  susceptibility, okay. And that  is  a

general statement and you can write it in terms of physical frequencies using this which is

then usable for numerical evaluations.

Okay, now let us come to terms with what is this susceptibility actually is? We have to look at

the response function a little more carefully, so let us do that, we want to attach some physics

to the whole thing, so given for instance quantum mechanical system can I say what the

structure of this response function is? What does it really look like etc? In particular I want to

be able to write things in terms of this spectral function.
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If you recall I pointed out that just to write these formulas out again Kai AB of omega is

integral 0 to infinity d tau e to the i omega tau phi AB at tau this guy here be showed was the

canonical ensemble f is equal to beta times the equilibrium the canonical correlation between

A dot of 0 and B of tau we already defined this quantity the classical case is subsumed in this

as a special case and this was analytic in the upper half plane etc etc. 

We also had defined a Fourier transform of this quantity of omega and I call this the spectral

function for reasons which will become clear now, this was the Fourier transform of phi the

response function, so this was equal to integral d tau minus infinity to infinity e to the i

omega Tau phi AB of tau, this will talk not very much about what is this quantity for tau less

than 0? 

Because the susceptibility just involves this right here, I will come back to this we will deal

with the question of how to define it for negative values of tau? But notice that this spectral

function this Kai here was also related to the Green function, we found out what the Fourier

transform of the Green function was and the Fourier transform of the Green function which is

this multiplied by theta function of tau.



So I called it GAB of tau that quantity it is Fourier transform was the susceptibility, exactly

the susceptibility. We also found the relation between this fellow and this fellow by writing a

theta Fourier representation for the theta function and if you recall that was a pi AB of omega

was equal to an integral for minus infinity to infinity d omega prime phi AB tilde of omega

prime over omega prime minus omega minus i Epsilon in the limit in which Epsilon goes to 0

from above and there was some i factor somewhere here.
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Would  you  check  and  let  me  know there  was  an  i  dependent  on  the  Fourier  transform

Convention which I have fixed once and for all but I am pretty sure there was an i here

somewhere, i or minus i or something like that. I just want to keep this straight, okay. So now

let us see what the content of this response function is in general?

What  would  it  imply?  We will  take a  specific  case and I  will  do this  then the simplest

notation possible  and then we can add fields to it  later. So we will  look at  the quantum

mechanical system to start when and take A and B to be summation operators their physical

observables  or  operators  corresponding  to  physical  observables  and  then  I  am  going  to

assume that there is a discrete spectrum of the Hamilton in h not in this system, just so that

the notation becomes simple.
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So let us suppose that this is Hamilton in h not has a complete set of states labelled by a

quantum number or set of quantum numbers let me call n for collectively, so I have H not on

normalised Eigen function phi n is En on phi n and n runs say 0, 1, 2, 3 whatever that discrete

spectrum just for notational convenience and then this is an orthonormal basis, so let us say

phi n phi m equals to delta nm and similarly sum over n phi n phi m equal to the identity

operator.

So it is a complete set of states and it satisfies orthonormality, okay. Are you familiar with the

terms completeness in orthonormality, okay. So given any state vector of this system you can

always  write  it  as  an  expansion  in  terms  of  these  phi  n’s here,  this  summation  here  is

supposed to some over states labelled by this set of quantum numbers n and not the energy

levels because there could be degeneracy in general.

So every time I write a sum like this it is not over the energy levels per se but over the states

of the system, okay. Then this response function phi AB of tau, if you recall this quantity was

equal to the equilibrium expectation value of A of 0, B of Tau equilibrium that was one of the

formulas we had for the response function and in the quantum case this stands for 1 over ih

cross A of 0, B of tau stands for this.

So let us calculate this in this basis, we need to compute trace that is what this thing here

means, so let us calculate that in the basis phi n, you can compute a trace in any basis you like

but let us do it in the basis of Eigen states of the unperturbed Hamiltonian h not.



“Professor -Student conversation starts”

Professor: Pardon me, no it is still a commutator.

Student: Yes but I mean it is A dot intervention.

Professor:  No, no,  no the response function is  not  a  dot,  after  I  compute,  right?  Then it

becomes dot and so on, what happens then you get rid of the commutator and you get this

kubo  transform or  whatever  it  is  and  then  it  becomes  a  dot  but  before  that  it  is  just  a

commutator.

“Professor-Student conversation ends”

So let us calculate this, let us calculate  A of 0, B of tau equilibrium this is equal to that the

first in the commutator we will just compute this number this is equal to trace which means a

summation over n phi n e to the minus beta H not that is the equilibrium density operator A of

0 B of tau phi n which is equal to a summation over n e to the minus beta is not on phi n is e

to the minus beta e n because it is an Eigen state.
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So e to the minus beta E n phi n A of 0 and now for this B of tau, let us write this as e to the

power i h not tau over h cross, B of 0 e to the minus i H not tau over h cross that is the

meaning  of  B  of  tau,  so  that  is  the  Heisenberg  picture  operator  but  that  B  of  0  is  the

Schrodinger a picture operator because that is at t equal to 0, that is the way we define the

Schrodinger of picture, okay.
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So this fellow here I have to put this in but what I could do is in between I put phi n phi m

and sum over m that is the identity operator and then I put this in e to the minus i h not tau

over h cross B of 0, e to the of plus i and minus i h not tau over h cross times phi n. This is

equal to a summation over n, a summation over m, e to the minus beta En on this side, what

would you call this?

This is Schrodinger a picture operator the time independent Schrodinger a picture operator

and if  I  represented  in  the  basis  on  by the  Eigen states  of  the  Hamiltonian  unperturbed

Hamiltonian that is the n mth matrix element, okay. So this is just Anm there is no time

dependence that is just a number, okay. Some complex number in general, does it have to be a

real number?

A is the hermitian operator does this have to be a real number? No, not true in general, does

the diagonal element of A have to be a real number? Okay, alright. So this thing here Anm

and then here I can pull out an e to the i this becomes e sub m and this fellow becomes e sub

n when you take it outside and what is left is B? In n and then in e to the power i over h cross

tau and then you have an E m minus e n and that is it. So let us give this a name, let us write

this as e to the power minus E n minus E m, what does that give you?
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That says, let us now it is natural to do the following this is the energy difference between the

n and the states its call that omega nm times h cross.
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So I define h cross omega nm by definition equal to En minus Em it says A of 0 B of tau in

equilibrium can be written in compact form summation n, m Anm Bmn times e to the minus

beta En  and then e to the minus i omega nm tau. So it can be written in quite a compact form.
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Next up is to wait for the other part of the commutator, right? So let us write the other way

point B of tau A of 0 and this is now going to have B of tau A of 0 and since I want to match

with that let us take the sum here to be over m and sum here in between to be over n and this

fellow becomes B out here we have to work this out properly.
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So this is just A of 0, this fellow here is that now introduce a complete set of states your by

putting i into the summation over n phi n phi n therefore you can write-down directly, what

this quantity is? B of tau A of 0 equilibrium equal to summation over n, m you are still going

to get Bmn and then you going to get Anm which is the same as this, so this is still Anm Bmn

but now this is going to hit this and give you e to the minus beta Em.

So this is going to be e to the minus beta En and the rest is going to be exactly the same as

before. So therefore what does the commutator do? Let us divide by 1 over ih cross because

that is what the response function is, all these portions are common but this becomes e to the



minus beta En minus e to the minus beta Em and this goes away. So this is equal to 1 over ih

cross summation over n summation over m Anm Bmn times this product that is it, Right?

And this is equal to phi AB of tau.
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So we have now explicit  equations in terms of physical quantities the matrix elements of

these operators,  you have representation for these operators then all  that  rigmarole about

going  to  the  interaction  picture  and  so  on  and  so  on,  finally  ended  up  with  just  these

quantities the Tau dependence is sitting here and the temperature dependence is sitting here

and this is a set of exponentials that is it. 



(Refer Slide Time: 47:28)

(Refer Slide Time: 47:30) 

Now it is trivial to calculate what the correlation function is? What the spectral function is?

What is going to happen? You want to do this integral and there is a minus out there, exactly.

So what will this be? I am going to stop with that today, phi AB tilde of omega therefore

equal to 1 over ih cross summation over n summation over m Anm Bmn E to the minus beta

En minus e minus beta En times e to the i omega minus omega nm integrated over all values

of tau that is a Delta function 2pi times delta function.



(Refer Slide Time: 48:32)

So this is 2pi, so the spectral function is a function of frequency has speaks at all these points,

okay. If the number of the levels are very close to each other it has a large system at many

levels  then  it  is  going  to  look  like  a  continuous  spectrum,  okay  but  these  are  the

characteristics frequencies the next thing we will do is write down the susceptibility based on

this representation. 

So it will give you all explicit omega dependent thing involving the transition frequences of

the system these are the transitional  frequencies  of the system between which transitions

another due to a perturbation, okay. So and then we will interpret this further and so let me

stop here today.


