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Now, so far we talked about random variables both discrete and continuous random variables but

we did  not  say anything about  time  dependence.  We did  not  say anything about  how these

random variables  could  possibly  change  with  time.  From now on  we  will  look  at  random

variables which change with time, which evolve with time and then you have what is called a

random process or a stochastic process.

So this is going to be our next topic which is concerned, this subject is concerned with the study

of random variables with some rule for the evolution of certain probability distributions as a

function of time okay. Now the first thing we have to appreciate is that a random process, if you

sample this random process at discrete instance of time, you get a time series with values for the

random variable drawn from the sample space of this random variable.
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So if we for instance say that this random variable could have values x 1, x 2 dot, dot, dot, etc.,

then from this set of values if you sample this process at various instance of time say t 1, t 2 and

so on; these are the sampling instance, instance of time or particular values of the time variable.



It  is general technical term is epochs, sampling epochs and this is these are elements of the

sample space of the random variable X okay.

Then one ask for the probability that any of these variables values is attained at any given instant

of time okay. Now we need, this is very cumbersome notation, so what I will do is to just take

the index here and label this value here by that index okay and for this index I will call, use the

symbol j, k, and so on and so forth. When I have too many of them I will call it j 1, j 2 etc., etc.

So the question is what is the probability for a discrete random variable functions; what is the

probability that at some instant of time t 1 the value happens to be some j 1 or x sub j 1.

So I will call that the one-time probability. Or if it is a continuous random variable then I use, I

will interchangeably use this j 1 t 1, but I will be careful to indicate the fact that this thing is a

continuous variable here. For the moment of course let us leave it at discrete and I have this. I

could also ask what is the probability that you have the value x sub j 2 at time t 2 and the value j

1 x sub j 1 at time t 1. That is a different function. This is a joint probability.

It is a different function from this. There are two-time arguments here . To keep track of that, let

me call  this P 2 and let me call  this P 1 and clearly this can go on. I look at the three-time

probability, the four-time probability and so on. Now to specify this random variable completely,

I need to tell you all these probability, joint probabilities. So the first thing we learn is that a

stochastic  process  is  described  by  an  infinite  hierarchy  of  probabilities  or  in  the  case  of

continuous variables, probability densities but it is an infinite hierarchy to start with.

Of course with this formidable problem there is not much one can do unless you start making

certain  simplifying  assumptions.  But  there  is  one  thing  we  can  do  which  is  not  even  an

assumption and that is the following.
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You can always take the n time probability. This n time probability can always be written as

equal to the probability that we have j n, t n given that all these earlier things happen. So I am

assuming here of course that t 1 less than t 2 less than dot, dot less than t n and I am writing the

earliest times to the right and the latest times to the left; that is the standard notation and this n

time probability can be written as the product of a conditional probability and a vertical bar will

denote the probability of whatever is on this side given whatever is on the right hand side of the

bar. That will be my notation. So we have j n - 1, t n - 1 all the way up to j 1 t 1.

This is again an n time argument probability, so it is still n. But this however is now a conditional

probability. Whereas this one is just a joint probability multiplied by the probability that all these

events have occurred that is j n - 1, t n minus 1 dot dot up to j 1 t 1 and that is a function of n

minus  1 variable.  So it  is  P n -  1  and in  turn  you can take this  quantity  and write  it  as  a

conditional probability of this last event occurring given that all the other events have occurred

and so on.

So finally you can write it as a product of an n time conditional probability and n - 1 time, n - 2

time right up to the single time probability P 1 of j 1, t 1. So that is one simplification one can do

right away immediately. But even that is not helpful because you still have this formidable task

of specifying all these conditional probabilities if these things have happened okay and that is

why the general theory is.



One can proceed further with this and so on but we are going to restrict ourselves to a very

special  instance,  a  very  special  kind  of  random process  where  the  memory  is  a  short-term

memory in a very specific sense okay. Now this implies that the probability that this happens at

time t n depends on all that happened earlier on earlier instance of time okay. But this is like

saying you have a memory in this process.

Now experience tells us with random process of various kinds tells us that in nature very often if

you use the right number of variables, if you take a complete set of variables in a very specific

sense then it is short-term memory that occurs, never long-term memory. No history dependence

in a certain specific sense. Just to give you an example, if you look at to give you a sort of trivial

example,  if  you look at  Newton’s equation for a particle  moving in  space,  this  looks like a

second order differential equation in time okay.

So not only to tell you what so if you want to plot a trajectory of a particle you have to know not

only the position of the particle at a certain instance of time, but also the slope of the trajectory at

that instant of time. This is like saying really to specify things completely, the fact that the force

specifies the acceleration rather than the velocity, tells you that you need both the initial velocity

and the initial position.

Which means that dynamics is really happening in a phased pace comprising the configuration

space of coordinates as well as the velocity components or the momentum components right and

once you put in in terms of those extra variables the full set of variables then the equations are

motion of first order differential equations. So the initial state, any given, at any given instant of

time will determine once you solve the equations of motion will determine the future state of the

system right.

So that  is  an example  where the dynamics  is  really  first  order  in  time so that  the future is

determined by the initial  condition or the present  and not on how you reach that  present in

exactly the same way as in quantum mechanics where the Schrodinger’s equation is the first

order differential equation in time for the state vector. So if you tell me the state vector at an



initial instant of time and the Hamiltonian which gives you the rule of evolution, you can predict

what the future state of the system is going to be in principle.

So this  experience  tells  us that  it  may be worthwhile  looking at  those random processes  or

stochastic processes where this conditional end time probability is not dependent on the earlier

variables other than the one immediately preceding here. So if this is equal to P n, now it is no

longer P n but it is P j n, t n, j n - 1, t n - 1 and it is just a two-time probability; so it is P 2. If this

is equal to this quantity here for all n so P 3, P 4, P 5 etc., it does not matter; every one of those

things gets truncated to just this here.

If that happens then it is called a Markov process. So again to repeat, a Markov process, it says

nothing about the form of the probability distributions, it does not say anything about whether it

is a Gaussian or whatever; those things come later. It says something about the level of memory

in the process. Sometimes there are cases where you would like to have this dependent on the

preceding 2 instance of time and then it is called a two-step Markov and so on.

But I am not going to get into that now. This is our straightforward definition of what a Markov

process is, okay; does not always have to happen. But it turns out that if you model physical

systems appropriately  with the right  number of  variables,  almost  always you end up with a

Markov process. Notable, there are notable exceptions. We will talk about a few of them. But the

fact is that in most cases experience tells you how to model a random process and in general the

most common one that you use always is a Markov process okay.

Now exactly as in the vector example I gave of a particle moving in space, it might so happen

that the random variable is not a single random variable but a set of random variables, couple

random variables. Then it would be a vector process of some kind maybe and then it is a Markov

process still in terms of memory but there won’t be a single index here but you need now several

labels here for all the variables.

So that is a possibility we keep in mind okay and that is a matter of notation which we can sort

out if the occasion arises but this is what I mean by a Markov process, this thing here. A similar



thing for continuous processes, instead of probabilities the same thing is true for densities okay

and then I will call it a conditional density in this case. But it is a two-time conditional density

here.  As  soon  as  you  have  this,  you  immediately  see  that  this  joint  probability  simplifies

enormously.
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So if you make the Markov assumption, this becomes equal for a Markov process to a product of

P 2 of j r + 1, t r + 1 given j r and t r and is a product from r = 1 to n - 1 out here so the last one is

this guy here multiplied by a P 1 of j 1 t 1. So it at once simplifies okay into a product of two-

time probabilities multiplied by a one-time probability P 1 okay. So the problem now reduces to

specifying these 2 quantities and once you do that then we have all information we need for this

infinite hierarchy of probabilities okay.

So it is a great simplifying assumption, the Markov assumption is a very it immediately changes

the complexion of the whole problem and makes it a much more tractable problem to handle

okay. As you will see this itself includes in it enormous amounts of complexity but it still makes

the problem quite tractable. So we will focus on such cases here. We will look at many examples

of Markov processes.

There is another further simplification that can happen and that has to do with the fact that the

process that we are talking about may not change statistically speaking as time progresses. In



other words it could be exactly the same process statistically no statistical properties change as a

function  of  time.  In  other  words  the  randomness  is  not  ageing  in  some sense.  There  is  no

systematic drift or anything like that.

If that happens that would be the analog of an autonomous dynamical system where you do not

have explicit time dependence in the way in the dynamical variables evolve in the dynamical

rules. They will satisfy some kind of differential equations but then those differential equations

do not explicitly involve the time okay. so the analog of that here would be a process where the

origin of time does not matter and therefore this quantity here is a function only of the elapsed

time t r plus 1 minus t sub r okay. And what would that imply and that is called a stationary

random process.
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So stationarity implies statistical properties don’t change with time at all. So it implies that P 2 of

say k, t, give j at time t prime this quantity is a function of t minus t prime and not of t and t

prime separately okay. So you could write this as equal to P 2 of k, t - t prime j, 0. In other words

I can shift the origin of time and nothing happens. The probability do not change okay and very

often I am going to make life easier and write this as P 2 of k, t, j where k and j are state labels or

they stand for sample space elements.



I am going to use this kind of notation all the time. This is t - t prime  j. I dropped the 0 here. It is

understood that it is a function of difference of time arguments here. What would it imply also

for this quantity P 1 of j, t. This should be independent of time. So all time dependents disappears

in the one-time probability. So this is equal to P 1 of j okay. No t dependence at all and that

together with the Markov assumption here.
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So for a stationary Markov process, for a stationary Markov process, this thing here implies this

is equal to a product from r = 1 to n - 1 P 2 of j r + 1 t r + 1 - t r j r. So we now just have a two-

time  probability  to  handle,  a  one-time  probability,  time  dependent  probability,  conditional

probability to handle and an absolute probability here okay. So a stationary Markov process is

completely defined if you tell me this quantity as a function of t minus t prime and this quantity

out here okay.

Now all the models we talk about are going to specify these 2 quantities okay and if there is no

confusion, once we reach that stage I will often drop this 1 and a 2. The moment there is a time

argument and there are these arguments with this bar I know I am talking about a conditional

density or probability and this for a probability itself in this case. You could put in one more bit

of  physical  assumption  or  a  physical  input  and  that  is  the  following  although  this  is  not

absolutely essential. In general we won’t need it.
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But it will so turn out that you could ask what happens to this quantity k, t, j as t tends to infinity

okay. Notice  I’ve  dropped  this  2  here.  It  is  supposed  to  be  there  but  I  just  dropped  it  for

convenience. What would you expect would happen to this quantity, this probability, conditional

probability as t tends to infinity? Well you might expect, intuitively you might expect that this

quantity  should  tend  to  something  which  depends  on  k  but  shouldn’t  depend  on the  initial

condition j, initial state j.

As t becomes very long, memory is lost completely. So I would kind of expect in the same way I

expect autocorrelations to die down and so on and so forth. I would expect that this tends to

something which depends only on k n therefore it is just the probability k okay with a 1 here but

this needs to be established. We need to make sure this really happens okay. On the other hand if

the  system has  in  the  common example  of  some system in  thermodynamic  equilibrium for

example I would expect the statistical properties are not changing.

Then if I choose a particular initial condition and ask what happens conditioned upon that initial

state if some variable changes with time and I find some expression for the probability associated

with it I could ask what happens if time elapses, a long time elapses and the system, nothing is

happening to it statistically, I would expect it would this relation to hold good.



For instance if this was the velocity of a molecule and I start with a particular molecule whose

velocity is some given number I specify and then I let it lose among all the other molecules and I

ask what is the probability or probability density that it has a certain given velocity a long time

after I started I would expect it to just attain the equilibrium density all over again okay. So I

would expect it  would tend to the Maxwellian distribution on this  side independent of what

initial velocity I started with okay.

Well, that is a physical expectation. If the system has enough junk in it and there are enough

influences which are completely independent of each other randomizing the whole process then I

would expect this to happen. In technical terms one says that if dynamical system has a sufficient

degree or what is called mixing this will be true in general. So we will take a look at examples

when this happens.

But remember that we have already assumed that it  is a stationary process okay. If it  is not

stationary then of course this is even this is not true there is a time argument sitting here and it

could well be that the initial state is remembered okay. So this poses an incredible amount of

simplification once you have this. The moment you have a property like this, it means the entire

process is determined completely by this one-time conditional probability because from that you

get this the 0 time thing and you get all the other joint probabilities as well through this formula.

So  a  stationary  Markov  process  with  this  property  here  of  mixing  actually  is  determined

completely by determining this probability, this probability, conditional probability and then it

reduces to a question of writing down equations for this probability  in general  okay. So the

processes we will look at, a large number of them will fall into this category and we will write

down specific equations for this quantity.

If  you think  a  little  bit  you realize  that  any modeling  that  you do for  physical  systems  of

probabilities would be always to write down equations for conditional probabilities or probability

densities.  You need to know given something then what is the probability  of something else

happening and so on. You never say something about absolute probabilities itself. It is always

conditional probabilities.



So conveniently for us joint probabilities reduced to conditional probabilities okay. So all we

need to do is to model these conditional probabilities appropriately and then we are done okay.

So it is important to distinguish between several assumptions here. First the Markov assumption

has reduced things to one-step memory if you like and then the stationarity assumption reduces

time arguments in this fashion here.

And it is important to remember that it does so for an arbitrary n. No matter how many time

arguments you have out here this conditional probability depends only on the preceding instant

of time okay. That instant is not specify this arbitrary, some earlier instant of time and that is it.

That is all you need and then if it is true for every such earlier instant of time you have a Markov

process okay.

So in a sense this process is kind of renewing itself at any instant of time it is forgotten the past

and now it looks at what it does next in the future. So it is not surprising that there are going to

be renewal equations and so on associated with this sort of process okay. For instance you could

ask can I write down an equation for this p. And now let us use symbols like j, k, l etc., because

we are not going to deal with these n time probabilities anymore but essentially just one-step

memory.
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So let us simplify notation and ask what is this likely to be k, t, j with 0 on this side okay. Now

clearly, if it is a Markov process, which has this property of renewing itself all the time let us

look at a case where j, k, etc., can take values 1, 2, up to some n. In other words, the sample

space  is  discrete  and  you  have  capital  N  of  these  possible  values.  We  could  of  course

subsequently look at cases where n tends to infinity or becomes continuous and so on okay.

And this  is  equal  to  on  this  side  the  probability  that  you started  with  j  and  reached  some

intermediate state l at some intermediate time t prime. So on the time axis here is 0, and here is t

prime, here is t and in the remaining time you move from l to k t minus so let us write it out

properly.  P  of  t  prime,  we  started  with  j  but  reached  an  intermediate  state  l  and  then  the

probability that you went from that l in the remaining time t minus t prime to the state k.

But you could have done so through a variety of paths, all kinds of intermediate states l would

have been allowed. So you have here a summation l equal to 1 to N in this fashion okay. So for a

stationary Markov process, this tells you because it is not dependent on any earlier instance the

memory is a one-step memory it says to go the probability of going from an initial state j to a

final state k in time t is the probability of going from j to l at some till some intermediate time t

prime and then in the remaining time going from l to the final state k, this desired state k okay.

And you must sum over all the intermediate possibilities (()) (28:30) and that is the summation

over l out there okay. This is like a chain equation. It is got a technical name. It is called the

Chapman–Kolmogorov  equation.  It  should  really  be  called  the  Chapman–Kolmogorov,

Bachelier, Smoluchowski equation etc.; several people  were associated with this equation. But it

is popularly called the Chapman–Kolmogorov equation in this case okay.

Now if these were continuous random variables then you would have to integrate over this state,

the intermediate state l rather than sum over it but that is a matter of notation in this case okay.

What do you, what is the first thing that strikes you about this equation? Well, first let me say

that this is not restricted to Markov processes. There are other processes which also obey the

chain  equation  but  Markov  processes  obey  it.  So  it  is  not  uniquely  a  property  of  Markov

processes.



“Professor - student conversation starts” Ya. Pardon me. You are fixing t prime here. We are

not fixing t prime. So this is true for any t prime in 0, t. I think from each n the t prime that we

choose is the same right, when we make a sum. Yes, yes of course. Yes, certainly. You must sum

over  all  intermediate  states  at  some  intermediate  instant  of  time.  “Professor  -  student

conversation ends”.

So if you draw a picture, here is the initial state, here is the final state. Here are all the possible

intermediate  states.  We are  going from propagating  from here  to  there,  here  to  here  in  this

fashion and there is a time slice here at this point at time t prime. So you are summing over all

those possibilities and adding the probabilities appropriately to get this right here okay. So what

is it that strikes you about this equation immediately?

As a mathematical equation, this is not so tractable as it looks because it is a non-linear equation.

This equation here is not linear in this P okay and therefore it is a fairly complicated equation. It

is not immediately obvious what the solution will be okay.

“Professor - student conversation starts” Yes. In the first problem D, is it t + t prime or t - t

prime? Well, the time interval left here is t - t prime. So that is all the time available for the

system to go from the intermediate state to the final state. So it is this interval multiplied by that

interval. Also this equation hold for one stationary processes but they need not be Markov, is that

right. “Professor - student conversation ends”.

Well  this  chain  equation  yes.  They  are  stationary  processes,  but  there  is  a  wider  class  of

processes called renewal processes for which this equation would also hold good. It is called. It

is an example of what is called a renewal equation right. But we are concerned here with Markov

processes okay. So I am not going to get into the technicality of looking at processes other than

that. If time permits we will talk about such renewal processes later on.

When we do Poisson processes and so on then I will mention what happens if you look at a more

general case here. So this nonlinearity makes it intractable in some sense and if it is a continuous



variable  then for  the probability  densities  you have an integral  equation because there  is  an

integral on the right hand side which is nonlinear and therefore fairly hard to solve. It would be

convenient to write this in terms of a linear equation for this P. For this purpose one introduces

the following idea. Does not always work, but when it does this is what happens.
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So one introduces  the  idea  of  a  transition  rate  and the  idea  is  the  following.  Consider  this

probability here for extremely small values of t, very close to 0 or this probability for extremely

small values of t minus t prime close to 0. So if you look at P of k delta t, j over here, this is state

j at time 0 and this is state k at an infinitesimal time delta t. What would you expect this to be

proportional to?

If delta t goes to 0 I would expect that it is going to remain at the initial state. I would expect a

delta function there right. But if delta t is infinitesimal then I would expect that this quantity for

all k not equal to j, for all k not equal to j this must be of the form some delta t multiplied by w k,

j where this quantity is a transition probability per unit time that the system jumps from the state

j to the state k okay.

I would expect the answer to be proportional to delta t and a constant of proportionality is a per

unit time. This is a probability. So this must have dimensions 1 over time okay and this is a

transition probability or rate to jump. No guarantee that this exists. No guarantee at all this exists



okay. But if it does then it has the physical connotation of a transition rate because when you

multiply it by the time interval delta t you get the actual probability, conditional probability okay.

The same thing could well be true for even a non-stationary process. What would happen in that

case if I had a t + delta t here? So if I have a non-stationary process of the form k, t + delta t, j at

time t you could still assume that if delta t is sufficiently small and k is not equal to j, this should

be proportional to delta t  multiplied by a transition probability  but that transition rate would

depend on time right.

So  the  generalization  of  this  idea  of  a  transition  rate  to  a  non-stationary  process  is  fairly

straightforward. This would again become equal to w of k delta t  k, t well k, j and then a t here

to show that the transition rate itself could change as a function of time because the statistical

properties  is  changing  with  time.  So  the  great  advantage  of  having  made  the  stationarity

assumption is that the transition rates are independent of time okay.

So this is a very physical thing that we are talking about. If I make that assumption, then what is

the next step? What is going to happen here? Well the obvious thing to do is to say let us make t -

t prime delta t  and then for this quantity put that in, put that expression in and there would be

answers, there would be things proportional to delta t. The obvious thing to do is to subtract from

this k of t - delta t at time j from both sides and then divide out through delta t and convert it to a

differential equation. So this is what one would do immediately right.
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So I leave that to you as an exercise and it is not hard to show that with this assumption this

equation translates to d over dt of P of k, t, j becomes equal to summation l equal to 1 to N and

now we got to be a little careful . P of l, t, j; w of k, l; l not equal to k this side minus because you

subtracted this quantity you end up with a minus sign here and now let us look at this equation

carefully.

So the trick is to subtract from this both sides of this equation, subtract the following quantity

minus P  first set, set t - t prime equal to delta t and subtract P of k, t - delta t which is t prime by

the  way from both sides  and put  that  in  and maneuver.  “Professor -  student conversation

starts” Sir. Ya. When we are considering the product of probability, yes, Chapman–Kolmogorov

equation, why are we not considering all possible times? Ah, it is not necessary. Any time will be

true. Okay. “Professor - student conversation ends”.
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So look at it physically like the picture I drew. You want to start at t = 0 at this point and at time t

you want to reach this point at time t you are starting in this state ending in this state and you

have  many  routes  to  go  through  with  different  probabilities  and  now  the  statement  is  the

probability  to  go from here to  there,  the  total  probability  is  the sum of  all  these  individual

probabilities such that you go from here to here at some time t prime and then you traverse the

rest of the way and it does not matter where you take the time slice okay.

These  quantities  are  mutually  exclusive.  They are  different  intermediate  states  which  is  the

reason you sum over it okay. So when you sum over these probabilities, what is the meaning of

the word and it means if you have several possibilities, you sum over their probabilities; this and

this and this and this. If you have or then of course it is a different story. Sorry, if it is and you

multiply the probabilities which is what I have done but if you have or you sum over them and

that is what I have done because they are mutually exclusive.

This is different from this is different from this. So it is only at the same instant of time that these

are all mutually exclusive possibilities okay. So it is worth pointing this out. It is not an equation

in time. It is not an integral in time. There are such renewal equations. We will talk about them

subsequently. But this is a summation over intermediate states here at any given instant of time

in between okay and therefore I can choose that interval, intermediate time as I please. I choose

this to be infinite decimal.



“Professor - student conversation starts” Shouldn’t it be a double interval, double summation.

No, no that will be over counting, that will be over counting. This is the physical way to look at

it. This is over counting because these parts could intersect and so on. So you definitely have to

do this at one instant of time. So you add over mutually excluded events okay. “Professor -

student conversation ends”.

Now let us look at this equation a little bit. So this derivation is something I am going to leave to

you,  its  straightforward  enough.  But  what  is  the  interpretation  of  this  equation.  It  says  the

conditional  probability  to  go  from  j  to  k,  the  rate  of  change  of  this  probability  has  2

contributions.  One is  a  gain  term out  here  where  you go  from j  to  l  an  intermediate  state

multiplied by the probability per unit time that you go from l to the final state desired k.

That is the gain term and this is the lost term exactly like in the rate equation because you have

gone from j to k the state that you want to but then you jump out of it with this transition rate

with this probability here okay. So the input into this is first you do this then you subtract this

and then you use conservation of probability.
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You use the fact that if you start with P k, t, j and you sum over all k out here, all k now from 1 to

N, what should you get? You should get 1 because you start with a state and the system has not

disappeared, it is in one of the states available to it including the initial state itself, so when you



include that the sum should be equal to 1 for all t okay. This is equal to 1 for all t greater than

equal to 0. That is input, that is put in.

You need to put that 1 in and that is how you get this minus term appropriately okay. So the

interpretation is quite clear. The rate of change of this probability this increases when you have

gain and it depletes when you have a loss and this is the precise equation for it okay. This is

called the master equation. This word is used in many context, but this is the most common

context okay. Now what is the great advantage of this master equation?

It is a linear equation. The price you pay for it of course is that it becomes a differential equation

here in time, a first order differential equation okay. But it is a linear equation. The matter is not

so  simple  even  now because  in  general  if  it  is  a  continuous  variable  then  these  would  be

probability, conditional probability densities and this would be an integral. So then you have a

integrodifferential equation, linear but an integrodifferential equation and that is not so simple to

solve either okay. In fact we are going to look at that.

What will happen in that case is that this side will get converted, there had been an integral here.

We can get rid of that integral but we will get it converted to a partial differential equation in the

variable itself but it will unfortunately be an infinite order partial differential equation in general

okay at least formally and then we look at further cases, sub cases etc. But at the moment we are

talking about discrete variables with discrete sample spaces.

Then this is what you have as the master equation okay. Now when you do chemical reactions

you write down rate equations for the concentrations of various species. You have precisely the

same sort of equation, set of equations. You have things which are gain terms and loss terms of

this kind. So this is often called a rate equation or something like that but in this context these are

equations for the conditional probability, probability itself okay. So the next task is to solve this.

By the way what is the initial condition? It is a first order differential equation and time, so we

need an initial condition to solve it.
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And of course P of k, 0, j = delta k j. Given that you are starting in the state j at t = 0, of course at

t = 0 this becomes delta k j okay. Now in a slightly more general context you could look at this; j

is sitting here as a dummy variable, as a sort of spectator throughout. You could write such an

equation for the probabilities  themselves without  putting this  j  in and then specify an initial

distribution of j’s.

Then the initial condition would not be a delta function but some appropriate distribution. We

will look at those cases as well. But this is the task one has to now attack, this quantity here.

Now let us see what we can do about this. The first thing to do is to notice that if j and k run

from 1 to N, these indices run from 1 to N then this equation has the following structure.
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Let me write P of 1, t, j ; well let me let me write this, let us  write this as a column vector P  of t

given j so let me suppress this j index for a moment because it is a spectator sitting out here. For

every j this is true, for each and every j. You have such a master equation. So let me suppress that

for a moment and write this P(t) to be a column vector which is P(1, t), P(2, t) up to P(N, t) with

j’s, understood, on the right hand side after the bar.

If I have defined a column vector of that kind then this equation here takes the form d over dt

P(t) equal to some W P(t). W is a matrix of some kind okay and what are the elements of W? W j

k is just w j k. This is for j not equal to k. On the other hand the diagonal elements of this matrix,

remember here it is l that is getting summed over. So in that sense this term comes out into the

summation and this fellow multiplies the sum over l okay.

So it is immediately clear the moments thought that W kk = minus the sum of all  the other

elements in that column okay. So this is equal to minus summation W l k l not equal to l equal to

1 to N, l not equal to k. So you can rewrite this this set of linear equations in the form of a matrix

equation with a certain column vector P which determines all the probabilities that you want,

conditional probabilities.

And then multiplied by on the right hand side you have this square matrix N by N matrix acting

on this column vector where this matrix has off diagonal elements which are all the transition



probabilities and the diagonal elements are minus the sum of the rest of the elements. That is a

very special  kind of matrix because it says the sum of the elements of every column of this

matrix is 0 okay.

Now  what  does  that  tell  us  immediately  about  the  eigenvalues  of  this  matrix?  Well  the

determinant is 0 because the sum of each column is 0 so the determinant is 0 right? The moment

the determinant is 0, you know that 0 is a eigenvalue of this matrix right. So this means that this

equation in general, this equation would have an eigenvector. You expect it to have a nontrivial

eigenvector such that W on P is 0 which would imply that d over dt of that P is 0 which would

imply that this is a stationary distribution.

It does not depend on time at all okay. So this is buried in it, this whole thing is buried in it and

we will see what happens. Of course there are other eigenvalues as well.  What is the formal

solution to this equation? I have an equation of this kind, what is the formal solution. Well, it

depends on the initial condition right? Now what the initial condition be? We know that at t = 0

this quantity here at t = 0 is a delta k j.

I have written this equation here. This is the k index and I have suppressed the j index. So at t =

0, what is P(0)? It is going to have 0’s everywhere except at the j th element where you would

have 1. So you got to solve this equation with the initial condition that P(0) = 0, 0 etc., till you hit

a 1 and then 0’s again and this will be the j th, it will be in the j th row okay. Now given that

initial condition, what is the formal solution to this equation; the exponential.

Because  this  W is  independent  of  time  and  what  is  the  physical  assumption  that  made  W

independent of time, stationarity, stationarity. We assumed it was a stationary process. Otherwise

is not true okay. You still have the formidable task of exponentiating this matrix. But we know in

principle what is going to happen. If this matrix has eigenvalues lambda 1, lambda 2 to lambda n

then in general generically barring repeated eigenvalues and so on we are going to have terms on

the right hand side which go like e to the lambda 1 t, e to the lambda 2 t and so on.



So they are going to be exponentials of the eigenvalue multiplied by time. “Professor - student

conversation starts” So this implies that the eigenvalues cannot be real and positive because if

they  are  the  probabilities  keep  on  multiplying.  Yes,  absolutely.  “Professor  -  student

conversation ends”. Absolutely. This immediately tells you we know nothing about this matrix.

At the moment we know nothing about it.

What we know is the following. We know that these elements, these fellows are all positive or

maybe 0. There could be some states where there is no transition directly possible from k to l. So

this could be 0 right, but certainly not negative. So we have a matrix whose elements are all real.

All the off diagonal elements are either positive or 0. No negative elements and all the diagonal

elements are negative because they are minus some positive numbers okay and the matrix is real,

not necessarily symmetric.

Because there is nothing that says w j k must be w j k nothing at all. So given that we still see

from this  physically  we would be very  surprised if  you got  an eigenvalue  which  has  got  a

positive  real  part  because  immediately  it  would  imply  that  this  probability  is  growing

unboundedly with time. So you need to be sure that the eigenvalues cannot have positive real

parts. They could be complex but there are current complex conjugate pairs.
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And once they do that what it would mean is if you have an eigenvalue of the form lambda plus

or minus i mu then this would go like e to the lambda t cos or sin mu t. That is what the solution

would look like but we must be sure that this lambda is in fact negative. So we would expect

something like this e to the power minus lambda t where this is positive and possibly oscillatory

behaviour etc.

So this is what we should make sure we have and we should expect. Now we would expect that

as t becomes infinite, I would expect the t dependence have to disappear and thinks to go to

where. Well, once I say that all the eigenvalues have negative real parts, all these fellows go to 0

but we know that 0 has to be an eigenvalue of this matrix. Therefore there’d be some constant

which  is  sitting  there  and  the  P(t)  will  tend  to  that  constant  which  will  be  the  stationary

probability right.

Now this is sort of formalized by a little theorem in matrix analysis called Gershgorin’s theorem.

I am not sure if you have heard of this but let me explain what this theorem is because it is

simple enough.
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It says if you have a square matrix with various elements an N by N matrix then let us suppose

the general element of this matrix is a 11, a 12 bla bla bla etc., a NN then it says the eigenvalues

of this matrix, whatever be this matrix in the complex plane because eigenvalues are in general



complex are located in certain circles or discs and these discs are found as follows. Take a 11 and

mark it on the complex plane.

It could in general be a complex matrix with complex entries we do not care is sitting somewhere

here and then you take the rest of these elements here at their moduli together and that gives you

a positive number right and that positive number draw a circle of that radius about this point

okay. So draw a circle  whether  you choose rows or columns it  does not matter  because the

eigenvalues of a matrix are unchanged if you change the matrix to its transpose.

So the radius here would be the sums of these moduli. Similarly, take the next row take a 22, that

is somewhere here and draw a similar circle etc. These things are called Gershgorin discs and the

statement is all the eigenvalues will lie either in or around these circles, that is all and it is a very

simple theorem to prove. You can prove it by elementary means okay. Now these are discs, could

be disjoint. There could another disc here which is disjoint.

There could be things which overlap we don’t care. What we do know, there is an extra theorem

which says  that  if  any of  these discs  is  disjoint  then  you are guaranteed  to  have  at  least  1

eigenvalue there in the disc and this is a completely general theorem. It does not say anything

about the nature of the matrix. It does not assume whether it is real elements, complex elements

etc., we do not care, still true. Now if you apply this to this w what is going to happen?
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In the case of w we know that all the diagonal elements are negative real numbers. So they are all

sitting here or here or here etc. and in each case the elements add up. The rest of the elements are

minus whatever was the diagonal element right so the radius is just this distance and this fellow

here has a thing like this etc. and all the eigenvalues are in the intersection of these discs which

means no eigenvalue can have a positive real part immediately.

And all the eigenvalues other than 0 will have negative real parts and therefore the system will

the probabilities relax towards the equilibrium distribution. So w is called the relaxation matrix

in the physical literature. So I stop here now and we take it from this point.


