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Stable distributions

Okay, we saw last time that the problem of random walks, random flights led very naturally to a

Gaussian distribution for the end to end distance with displacement and this looked like it was

part of a very general result namely you added up a whole lot of identically distributed random

variables and you got a Gaussian in a certain limit.

This is not an accident, it is actually part of the central limit theorem which as I stated last time

essentially  says  that  if  you have  an  identically  distributed  random variables  then  the  linear

combination of these random variables suitably rescaled and shifted will in the limit as n goes to

infinity end up with Gaussian distribution provided each of the random variables has a finite

variance.

This was the sum and substance of the central limit theorem. Now this is part of a more general

class of distributions called stable distributions and I would like to talk about stable distributions

to start with.
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And I will try to explain at least qualitatively what this stability refers to, what exactly it implies

okay. So we start by asking suppose I have a set of identically distributed independent random

variables and let us call these random variables X 1, X 2 to X n and let us suppose these are iidr

independent random variables and let us suppose that the cumulative distribution function of the

set of each of these variables is some f of fx okay.

So the distribution function CDF equal to some F(x). What this implies is that the probability

that any given random variable X i less than equal to x this thing equal to F(x) okay and then we

ask the following question okay. Is there any special form or forms of F of x this distribution

function such that if I add up a whole lot of these random variables iidrv’s and rescale them in

some suitable fashion the distribution function for the sum the resultant remains F of x, does not

change at all.

If you can do that for every n greater than equal to 2 then this F of X is said to be a stable

distribution okay. So now let us formalize this definition and write it in formal terms. There are

several equivalent ways of defining a stable distribution but I am going to quote a couple of them

and not try to prove the equivalence of these definitions but that will become intuitively clear

what we mean as we see the explicit forms possible for this F of x okay.

Just to recall to you what this Fof X is for a Gaussian distribution for instance for a Gaussian, for

a Gaussian this F of x recall is integral from minus infinity up to x dx prime e to the - x - x prime

- mu square over 2 sigma square over root 2 pi sigma square and that as we know is an error

function this thing here. So it is minus infinity to x. I can write it as minus infinity to 0 and then 0

to X.

So this quantity will turn out to become equal to 0 to minus infinity to 0 is half the Gaussian after

you shift to the origin here to x prime minus mu you set that equal to some other variable so this

is a half and then there is a 1 plus an error function of we shifted the variable and therefore it is a

function  of  x  –  mu divided by we scaled  it  with  root  2  sigma square.  So  this  is  what  the

cumulative distribution function for a Gaussian looks like and so on.



So for each of these cases you can write down the cumulative distribution function and non-

decreasing function of X and then we ask under what conditions is this F of x stable. So here is

definition 1.
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One way to do this is to say that if for every n greater than equal to 2 there exists a constant a n

which is positive and b n which is just real such that this combination summation X(i), i = 1 to n

that is the sum of these identically distributed random variables shifted by some amount which is

an independent and then rescaled with a 1 one over a. That is a random variable 2.

If this random variable can be shown to have the same cumulative distribution function as each

of the components except i then I say that f is a stable distribution okay. So that is a precise

definition. You are still left with the task of finding out if this is going to work or not for a given

F of x you have to find out if you can find a suitable constant a sub n and b n for each n greater

than equal to 2 and if that is possible then it is a stable distribution okay.

We will see examples of we will write down all the stable distributions in some sense but we will

see where this gets us. That is the first definition. It is in fact what I have said here in words.

“Professor - student conversation starts” Ya. This is a very strong criterion because you could

have n greater than equal to m where m is some finite number so. Yes. “Professor - student

conversation ends”.



So we will talk about divisibility and so on but this is the requirement that this is should be true

for every n. Should be able to do this. Then and only then is it a stable distribution. So this is a

necessary and sufficient condition that this be true but is operationally not very useful as you can

see  although  it  is  a  formal  definition  not  telling  us  how to  go  about  finding  such a  stable

distribution okay.
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Here is the second definition which is equivalent to the first. So if X 1 and X 2 just two of them

are independent identically distributed random variables with CDF F of x and if the following

random variables for given any given positive a 1, a 2 greater than 0, the random variable a 1 X 1

+ a 2 X 2 minus some constant b divided by the constant a greater than 0. If in fact and if for a

given this thing this random we can find a greater than 0 and b such that has a distribution F then

F is stable okay.

So this says okay forget about adding n of these guys trying to find out something for all n and so

on just take two of them and so on and if for any given positive constants a 1 and a 2 for every

set of given positive constants you can find the positive constant a and another constant b real

constant such that this combination this linear combination subtracted out suitably and rescaled

by a if that is got the same distribution function F of x then F of x is stable.



This two is a necessary and sufficient condition okay and with a little work one can show that

these are equivalent definitions here. But you see again neither of these things is saying anything

about F itself. It is saying take this random variable or that random variable and test what its

distribution  function  is  and  so  on.  We need  the  condition  which  says  something  about  the

distribution F itself and that is the third definition and that goes as follows.
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It says if for given positive a 1 and a 2 there exist a greater than 0 and b such that the convolution

of F of x over a 1 and x over a 2 if the convolution of these two distribution functions is equal to

F(x) - b over a then F is stable okay and now we are getting somewhere because this is now

directly a condition on the distribution function itself and what does it say?

It says you scale one out, you scale the other out and then you suitably and then you have a

convolution and for any given positive a 1 a 2 if  you can find a subtraction constant and a

rescaling constant such that this is true then F is a stable distribution okay. Now in every one of

these definitions if you leave out this shifting, if this is not there if you do not need this, this

constant or that constant if this is a 0 or the b is a 0 here then you say the distribution is strictly

stable. Otherwise you say this is a stable distribution okay.

So strictly stable distribution is a special case of a more general definition of a stable distribution

okay. Now this definition immediately suggests to us the following. It says if these two things are



in  convolution  it  means  in  some sense  that  the  fourier  transforms would  multiply  and  it  is

immediately telling us that this fourier transform has a certain factorization property and only

then would this be possible at all which sort of tells you in some sense when will it have this

factorization property.

If you go back to definition 1 you need to add n of these fellows so we need a characteristic

function which is the fourier transform of probability density function which should in some

sense factorize which means it must be exponential in some form because what you want is the

expectation value of e to the ikx. That is the characteristic function and if x is the sum of terms

these exponents would multiply each other if they are independently distributed right. We saw

that  already  working for  the  random walk  because  recall  that  in  the  random walk  problem

although I did not write that down explicitly this is really what it meant.
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There we started with a vector r which was the sum of R 1 plus dot, dot, dot, up to R n in this

fashion and then I said the characteristic function of this random variable here was e to ik dot R

or whatever it is so this is the expectation value of e to the i k dot summation 1 to n R i and the

next step was to write this out as an exponent here because it is a product as soon as you write it

out. So this is equal to k dot R 1 e to the ik dot R 2 all the way up to e to the i k dot R n and then

came  the  crucial  observation,  crucial  observation  that  these  are  all  independent  steps  and

therefore the expectation value of the product is the product of expectation values.



So it immediately became e to the ik dot R 1 any one of these guys to the power n and this was

the one step, this is just the fourier transform of the one step random walk which was p 1 of R  p

1 tilde of k in this case and then it became raised to the power n and if you recall this was sin k

lower kl to the power n and then there was all these integration variables etc. So this suggests to

us that that is probably happening in general for a stable distribution and indeed it is so.

It will turn out that all the stable distributions can be classified completely and they are classified

with the help of 4 parameters. The most general stable distribution is labeled by 4 parameters. I

am not going to write the general form down. Text on statistics will tell  you what the most

general form of the distribution of the cumulative distribution function is for a stable distribution

but what we need to understand is the following.
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It turns out that this coefficient a sub n that we are talking about in the summation, in the first

definition this coefficient a sub n in this definition here this thing here must necessarily be of the

form n to power 1 over alpha where alpha is a positive constant okay where 0 less than alpha less

than equal to 2 it turns out. I will explain why it is restricted by this range 0 to 2. It turns out also

that all the stable distributions are unimodal distributions.



There is a single peak for every one of them and they are labeled primarily by this index alpha

the exponent or index alpha okay and it is unfortunately true that you cannot write down an

explicit expression in general for the probability density function for a stable distribution. But

because  we  see  that  the  characteristic  functions  must  in  some  sense  be  multiplicative

exponentials which get multiplied to each other it turns out that the characteristic function p tilde

of k must be of the form apart from phase factors it must be of the form e to the minus some

constant times k to the power alpha.

So I am merely stating these results, I am not proving this. I am merely stating these results and

you can see that for a Gaussian this was e to the minus k square apart from a phase factor, we

write that down explicitly. But this it went like e to the minus k square. For a Cauchy distribution

it went like e to the minus mod k to the power 1 and so on. So they it looks like those guys are

going to become stable distributions okay.

Now the restriction here is sort of understood in the following way, at least heuristically it will be

the following. Suppose alpha were negative then this is e to the minus 1 over mod k to some

positive power and as mod k tends to infinity that will tend to unity because it goes to e to the 0.

So this means if alpha less than 0 p tilde of k will go to 1 as mod k tends to infinity plus or minus

infinity. That cannot be integrated.

So you cannot find a fourier transform which will give you the probability density function,

normalizable density function. So it is easy to understand why this restriction appears okay. That

is immediate from this. On the other hand if alpha is greater than 2 then it is a little more subtle

to show why this cannot be a characteristic  function because it  turns out the inverse fourier

transform cannot be shown to be nonnegative.

On the other hand you know that the PDF p(x) must be nonnegative as a probability density

function. So that is what puts the restriction on this side out here. So rules out, this rules out

alpha less than 0. PDF must be nonnegative. Implies alpha less than equal to 2 and that is harder

to prove. I have not come anywhere near proving it but this is a statement that you have to take



as  on faith that if alpha is greater than 2 you cannot establish the non-negativity of the fourier

transform, inverse fourier transform.

So the stable distributions are characterized by this index here and the actual formal name for

these stable distributions is they are actually called Levy skew alpha-stable distributions.
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And  for  short  I  will  just  call  it  stable  distributions.  There  is  a  little  bit  of  confusion  in

terminology here because  it  turns out  that  one of  the stable  distributions  is  called  the Levy

distribution and it is not the general family that is being referred to here. So we will just call

these stable distributions, nothing more than that. Now what are the other properties of these

distributions. Well,  the Gaussian is certainly a stable distribution as we will see and the most

famous cases are the following 3 main cases, 3 important; they are the ones that occur in practice

very often, especially the Gaussian.

The first of these is a Gaussian. One is the Gaussian and this is alpha = 2 and we know what the

density function looks like p(x). This is equal to 1 over root 2 pi sigma square e to the - x - mu

square  over  2  sigma square  and  we  know the  characteristic  function  too  p  tilde  of  k.  Oh,

incidentally if the distribution has a density p(x), this is the fourier transform so p tilde of 0 must

be equal to 1 because that is the integral of p(x) for - infinity to infinity.



So this fellow here is e to the minus i mu k minus one half sigma square k square. Remember

that the moment generating function was just a, the cumulant generating function was just a

quadratic of this kind. It was mu times u plus half sigma square u square and the characteristic

function is the moment generating function at the value u = - ik, so it is this; p tilde of 0 is 0  is 1

as you can see.

So it is normalized correctly and that is the Gaussian expression. What is the variance of the

Gaussian,  sigma square is  the variance,  a finite  variance  okay. The second case that  is  very

important  is  the Cauchy distribution  and in  this  case  alpha equal  to  1.  Actually  the  general

Cauchy distribution need not be symmetric between about the mean value. It is general skew but

we are looking at a special  case where certain other parameters other than alpha the other 3

parameters have been set equal to special values.

And the most common form of this is when p(x) equal to some lambda over x - mu whole square

+ lambda square is lambda over pi that is the normalization constant. This is x, curly x. Now

what is p tilde of k in this case? It is got to be a proportional to ke to the power minus mod k

because remember I said that the Cauchy distribution corresponds to alpha = 1.
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So for the Cauchy, the symmetric Cauchy distribution this guy here p(k) = e to the - I mu k -

lambda mod k. Again p tilde of 0 is 1. It is normalized and it is got exponent alpha equal to 1.



The mean value is mu and that is the peak of the distribution. It is unimodal. So is this unimodal

peaked about mu. What is the variance of this distribution? What do you think the variance goes

like?

Well  you  got  to  multiply  this  by  x  square  and  integrate  minus  infinity  to  infinity  and  the

denominator goes like x square. So it diverges. Yes, the variance is infinite. For this the variance

is infinite. What is the mean value? Mu, but barely so because if you (()) (25:23) power counting

you put an x here and you integrate it then the denominator goes like x square so the whole

integrand goes like 1 over x which will logarithmically diverge but because it is symmetric about

that midpoint if you shift to x - mu the answer turns out to be 0 the mean value. So it gives you a

finite mu. But it is barely so.

The variance is certainly infinite for this distribution okay. Notice that this distribution has a tail,

this guy has a tail that for large values of mod x it goes like 1 over x square. Unlike this which

has an exponential e to the minus x square that goes to 0 faster than any power, any negative

power of x, plus minus infinity and this is going to be a general feature. This is a general feature. 

(Refer Slide Time: 26:14)

Turns out that as soon as you have this property here p(x) will turn out to go asymptotically

namely as mod x tends to plus infinity. It will go asymptotically like 1 over mod x to the power

alpha + 1 for alpha less than 2 and indeed when alpha is equal to 0 you see it goes like 1 over x



square out there. And what does this imply? If alpha is less than 2 and the denominator goes like

1 over mod x to the power alpha + 1 it implies infinite variance.

So it says the entire family of stable distributions except for the Gaussian all of them have a huge

amount  of  scatter.  The  variance  is  formally  infinite  and  the  Gaussian  is  the  only  stable

distribution with a finite variance okay. In fact this also tells you that if alpha is less than 1

between 0 and 1 even the mean value is infinite. Even the first moment does not exist for those

distributions but certainly the variance is finite only for a Gaussian.

This is  a very crucial  observation and all  these fellows are called heavy tailed distributions.

Essentially  it  says  large  values  of  this  of  these  random  variables  are  possible  and  have  a

probability mass which is significant unlike the Gaussian where it just gets cut off faster than any

inverse power of x okay. That is a crucial observation. The third of these we will come back to

this. 
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The third of these special cases is this. It is called the Levy distribution and it corresponds to

alpha = 1/2 and it looks like this. The distribution p(x) is characterized by a constant c. So c over

2 pi x cubed to the power half e to the - c over 2 x but here 0 less than equal to x less than

infinite. I shifted the, it is a semi-infinite random variable, the semi-infinite range for the random



variable  and I  have shifted  that,  the  beginning of  that  range  to  0 in  suitable  rescaling  by a

translation.

So there is a constant c positive and it is not hard to check that this is normalized to unity. You

could ask what is the characteristic function here turns out p tilde of k not surprisingly is e to the

minus c modulus k to the power half as promised. That is what it should be and it is multiplied

by a phase factor. In this case it is 1 + i times the sign of k and it is called the levy distribution.

What does it look like? What does the shape of this fellow look like?
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Well, for the Lorentzian and Gaussian we have seen what the shape looks like. For this thing

here, here is x. Here is p(x). As x tends to infinity, positive infinity, this factor tends to unity. This

goes like 1 over x to the 3 halves in the denominator. That itself tells you that the variance has

got to be infinite because the denominator goes like x to the 3 half alpha + 1. So it is 1 over 3 to

the 3 halves and what does it look like near the origin?

What is it going to do near x = 0? Is it 0 or infinite or finite? It is 0. It is dead 0 because this

factor in the denominator is swamped by the exponential factor e to the - 1 over something which

goes to 0 is going to go very rapidly to 0. So this function not only is it 0 at the origin but all its

derivatives are also 0 at the origin, all its derivatives of finite order. So it looks this is the 1 over

x to the 3 halves decay out here and the peak is characterized by the scale c okay.



And you could ask where do these distributions appear, where do they occur? Well, it turns out

there is a very close connection between different stable distributions in a very specific sense.

Oh, by the way let me before I go on mention that although I have written down explicit forms

for the probability density function for these 3 special cases this is not in general possible for

generic alpha between 0 and 2.

In fact turns out that you cannot write this p(x) in terms of elementary functions other than these

cases, these 3 cases. You can write p(x) in terms of hypergeometric function for rational values of

alpha and so on like 3 halves etc. But in general all you can do is to write down specific forms

for  the  characteristic  function  for  its  fourier  transform.  But  already  that  gives  us  all  the

information we need about these distributions.

There  are  examples,  some physical  examples  of  when this  is  going  to  happen;  when  these

distributions are going to appear. For the Gaussian of course we see it appears everywhere. So let

us go back to our same expression of random flights or diffusion or something like that.
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When you have a particle diffusing on a line and we will do this in some detail later on. Along

the x axis, if you have a particle freely diffusing in the x axis then its probability density function

if it starts from the origin at equal to zero is of the form e to the minus x square over 4Dt where



D is called the diffusion constant divided by square root 4 pi Dt. That is a Gaussian with 2 sigma

square = 4Dt or sigma square the variance is 2Dt.

So it says the variance of this particle increases as time goes linearly with time. So that is a

Gaussian distribution. But now if you ask what is the distribution of 1 over x square that turns

out to be a Levy distribution because it is not hard to see that if you have p(x), let us write a

normal Gaussian down equal to 1 over root 2 pi sigma square e to the minus x square over 2

sigma square say Gaussian is  centered  at  the origin and ask what  is  the probability  density

function of the random variable psi which is 1 over x square that has a Levy distribution okay.

In fact the density function for rho of psi this will imply is 1 over root 2 pi sigma square psi cube

e to the minus 1 over 2 sigma square psi. So the constant c is 1 over 2 sigma square, square root,

1 over 2 sigma square, c over 2 whatever it is.  So this is precisely a Levy distribution with

exponent half here. But that is if I took this random variable and I gave the example of the

Maxwell distribution of velocities where I said the energy has a very strange distribution 1 over

square root of epsilon e to the minus epsilon exponential.

That was not a Levy distribution but here we are asking for the distribution of 1 over x square

and then it  has this  right here.  Well  in connection  with the diffusion problem itself  there is

another random variable which has precisely this kind of distribution.
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For instance if you ask alright I start with diffusing particle on the x axis. I start at 0 and I ask as

it moves about what is the first what is the distribution of the time where it first hits the point x,

some given point x, some given point x. Now let us call this just to be  not to confuse it with that

random variable x, let us call this a and ask here is this particle diffusing on the x axis starting at

x = 0, at equal to 0.

And I ask what is the probability that between time t and t plus Dt, the particle crosses this point

a for the first time because it is doing a zigzag motion for the first time and that is a distribution.

The random variable here is a time and if I call that q to cross the point a at time t having started

at 0 and you want to I want to cross t at the point a at time t having started at the point 0, this

quantity here.

This is equal to it turns out 1 over it turns out to be a over 4 pi Dt cubed to the power 3 halves e

to the minus a square over 4Dt okay and that is the distribution in time so t greater than equal to

0 and integral q of t, a 0 dt, 0 to infinity = 1. That we know because this is a Levy distribution

which is normalized to unity already. It is called the first passage time distribution okay and it is

precisely a Levy distribution. 

So that is the simplest physical example I know of where Levy distribution appears. Ya. To the

power ha sorry this is the power half. I already put a t cubed in here so quite right. It is a half,



yes. So it is t to the 3 halves in the denominator here okay. In general there is a connection

between a random variable  which  has  a  stable  distribution  with index alpha  where  alpha  is

between 1 and 2 and a random variable which is a function of this original random variable has a

stable distribution with index 1 over alpha.
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So if for instance , if X has a stable distribution with index with exponent alpha where 1 is less

than equal to alpha less than equal to 2 then 1 over X to the alpha has a stable distribution and

remember that this 1 over alpha therefore is half less than equal to 1  half less than equal to 1. So

the new exponent is between half and that is what we used there when I said that a Gaussian

which has exponent alpha a 2 = 2, 1 over the Gaussian square 1 over x to the alpha has a Levy

distribution with exponent half okay.

Similarly, you could ask does the Cauchy distribution appear in a natural way in the diffusion

problem. Notice that everything with alpha less than 2 has no variance. They are all heavy tailed.

No variance  at  all.  What  about  diffusion  problem in  which  the  Cauchy distribution  appears

naturally. There are lots of places where the Cauchy distribution it  is called a Lorentzian in

physics  appears  naturally  but  here  is  a  very  simple  instance.  Again  let  us  go  back  to  the

distribution problem and look if it is a physical problem and look at a very simple function of a

random variable.
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So suppose you have 2 particles, both of it start at the origin and diffuse on the x axis such that

the coordinate of 1 at any instant of time is x 1 and the other one is x 2 okay and you look for the

random variable psi equal to X 1 over X 2 and ask what its distribution is okay where each of

these has a probability density function given by the solution of the diffusion equation right. So it

says rho of psi therefore has a function of time.

This is equal to an integral minus infinity to infinity dx 1 minus infinity to infinity dx 2 and let us

suppose for simplicity they have the same diffusion coefficient that need not be the case but.

Then there is a 1 over 4 pi Dt and then e to the minus x 1 square minus x 2 square over 4 Dt and

then a delta function of psi minus x 1 over x 2. That is the normalized density function for this

whole psi. Now what is the physical range of psi?

Each of x 1 and x 2 runs from 0 to minus infinity to infinity. So what is the range of psi? Again,

minus infinity to infinity right. So in that sense we are spared putting extra conditions and all we

have to do is to do this integral out here. Now the obvious way to do this is, is to write this is as x

2 times psi and get rid of the x 1 integral right. So let me write this as the delta function of x 1

minus x 2 psi and I have to remove this factor 1 over x 2 from there and take its modulus.

(Refer Slide Time: 42:22)



So this becomes mod x 2 times this and then all I have to do is to replace x 1 by x 2 times psi. So

this becomes e to the minus x 2 square into 1 plus psi square over 4 Dt and all this goes away, the

x 1 integration goes away and I have this. So this is straightforward to do. All I have to do is to

write this is as twice 0 to infinity and get rid of the modulus. It is an even function now okay. But

2 x 2 d x 2 is d of x 2 square.
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So I change variables to x 2 square and this goes, this goes and this becomes some du over 4 pi

Dt  e to the minus u times this fellow here. So that is a trivial integral and du times e to the times

e to the minus au is just 1 over a and if a is positive right. So that will kill this 4 Dt and give you

1 over pi 1 plus psi square and that is a Cauchy distribution okay about mean value mu = 0 and



this lambda parameter set equal to 1 in this case. What is interesting about this? I said this is

distribution at time t so what really happened here to t. It disappeared. It completely disappeared.

So this is true at all times.
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It  is  really  true at  any instant  of  time.  So the  ratio  of  the coordinates  for  a  diffusion  for  2

diffusing particles ratio of their coordinates is actually has a distribution independent of time and

it is a Cauchy distribution okay. What would have happened if I had D 1 and a D 2? So I will

leave that to you as an exercise. If the first particle has a diffusion coefficient D 1 and the second

one has a D 2 then show that the result is still a Cauchy distribution except this parameter here I

mean there would be a D 1 over D 2 sitting here.

There will be a lambda parameter which is equal to 1 in this special case okay. So this is one

more place where the Cauchy distribution appears naturally in a lots and lots of such examples.

Now we will say a little more about this Levy distribution and these long tail distributions a little

later when we do anomalous diffusion when we talk about anomalous transport okay.

But the take home lesson is that you have this family of very special distributions called stable

distributions and they are characterized primarily by this exponent alpha, alpha is positive, runs

up to 2; 2 is the extreme case of the Gaussian, which is a very respectable distribution. It is got



moments of all orders including a finite variance and all the others are heavy tailed and they do

not have variances okay.

On the other hand you could ask is there a central limit theorem for them because we already

said there is  a  central  limit  theorem for the Gaussian so is  there a  generalized  central  limit

theorem for all  the stable distributions.  The answer is yes. So if you started with identically

distributed variables and you said that they did not have variances.

(Refer Slide Time: 46:52)

But for instance if you if you have a p(x) going like 1 over x to the power alpha + 1 and you ask

the variance does not exist because alpha is less than 2. On the other hand the sum, what is the

maximum moment that exist for this distribution. So you could ask a thing like what does  what

kind of dx if I say x to some beta/x to the power alpha + 1 at infinity, when would this exist and I

put a p(x), p(x) has a tail which goes like this.

So if I put beta = 2, I am in trouble if alpha is less than 2 but what is the maximum value of beta

that you can have for which this converges. So it is clear that this denominator must go to 0, the

whole thing must go to 0 faster than 1 over x. So you must have alpha plus 1 minus beta to be

greater than 1 right or beta must be less than alpha.



So if this alpha for example is 3 halves then although the second of this distribution does not

exist the beta th moment would exist even if beta is a fraction as long as beta is less than 3 halves

okay and as alpha gets closer and closer to 2 you get, the variance would be would diverge

formally but beta would exist where beta gets closer and closer to 2 okay. So such moments

would certainly exist.

Then this  generalized central  limit  theorem says that  if  you have a whole lot  of iid  random

variables such that the beta th moment exists where beta is just less than alpha out here then the

sum of those fellows in a suitable as n tends to infinity would tend to one of these the appropriate

stable distribution in this case. So this is the generalization of a central  limit  theorem which

simply  says  that  each  of  these  stable  distributions  is  the  attractor  for  whole  family  of

distributions all of which have moments up to a certain order.

And then the maximal  one among those moments will  decide the alpha value for the stable

distribution to which these distributions get tend in the limit okay. So this is what the appropriate

generalization is and there are further generalizations of this. I will mention this a little bit more

when we do fractional Brownian motion when we talk about Brownian motion which is not the

usual kind.

So,  so much for  stable  distributions.  They have a  lot  of  other  interesting  properties  we can

discuss subsequently. But now I would like to ask a reverse question, a different kind of question.

I would like to ask the following.
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Given,  not  a  set  of  iidrv’s but  given a  random variable  X with certain  properties,  specified

distribution function and so and so forth. When can I write this random variable as a sum of 2

identically distributed random variables? If I can write it as a sum of 2 random variables iidrv’s

then I would say this variable is 2 divisible. If I can write it as a sum of 3 iidrv’s I would say it is

3 divisible and so on and in general n of them n divisible.

Then I can ask other random variables for which I can write the random variable as a sum of n

iidrv’s for all n greater than equal to 2 no matter how large. If I can then I say this random

variable is infinitely divisible. So I would like to introduce the concept of infinitely divisible

random variables. So this is when X can be written. So when this can be done then I say X is an

infinitely divisible random variable okay.

For every n I will call the X sub i's the components of X because you add them all up you get X

and this is a very special property. You can see immediately it is not going to happen most of the

time but when it does you have an infinitely divisible random variable. And what makes things

interesting is that the distribution of every one of these X’s need not be the final distribution of X

itself okay, need not be so at all.

You just want them to be identically distributed random variable with a common distribution

function  which could  be different  in  functional  form than the  distribution  of  the  sum itself.



“Professor - student conversation starts” So also stable distributions will be definitely; right.

“Professor - student conversation ends”. So it is clear that stable distributions are infinitely

divisible immediately.

Not only that, in the case of stable distributions the distribution of each of the X i's for every n is

exactly the same as the distribution of X itself and that is a very special property right.
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So it is immediately clear that stable distributions are infinitely divisible. Is the converse true?

No reason why that should be true at all. No reason at all. So the converse is not true. We are

going to give counter examples. So converse not necessarily true. This idea of divisibility is a

little subtle. You have to be a little cautious here. You may have a random variable, let me give

you an example. Suppose you have a random variable which takes the value 0 or 1.

It is a Bernoulli trial let us say. So this variable can take X 1, can take values in the set 0, 1 and X

2 also takes values in the set 0, 1; X 3 0, 1 okay. Now what is the sample space of the random

variable X = X 1 + X 2 + X 3, 0 to 3; 0, 1, 2, 3. So this has sample space 0, 1, 2, 3 and clearly

this by inspection if you can see these appear with equal probabilities it is just heads or tails and

you are asking what happens to the sum of the scores right.



Then it is clear that this is 3 divisible. This random variable has some distribution. In this case it

will be a binomial distribution and it is 3 divisible in this fashion. Is it 2 divisible? Is it possible

to have a random variable which takes values in the set 0, 1, 2, 3 and ask can it be written as the

sum of 2 iidrv’s. Is this possible? Well suppose you say 0 and 1. It is clear it would not reach 3 so

that is gone. Then you say 0, 1, and 2.

Let us suppose each of the components has values 0, 1, 2 then 4 is in the sample space of the sum

which is not given okay. Then you say let it suppose it is 0 and 3 halves so it reaches this. But

since 0 is in the sample space 3 halves has to be in the sample space which it is not so there is no

way in which you can make this 2 divisible right. So here’s a random variable this fellow here

which is 3 divisible but not 2 divisible.

So this divisibility is not such a trivial concept. It requires a little bit of understanding. So not

everything is divisible but now we are saying something much stronger. You are saying for every

n this variable is divisible,  n divisible.  So it  puts a lot of constraints  on this  in the possible

distributions that can have this property. And what do you think is the primary property that it

has.  Because this  has  to  become iidrv’s it  implies  that  the characteristic  function  must  be a

product of characteristic function because these are iidrv’s right.
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So it immediately implies that X must have a characteristic function p tilde of k which must be of

the form the nth power of some other characteristic function. So this must be of the form p tilde

then we put a n here to show these are different functions for different n’s in general and it must

be of this form okay. Only then is this variable going to be infinitely divisible, is this random

variable going to be infinitely divisible okay.

So now the matter is simple. All we got to do is to look for all those characteristic functions

which has this property here. So as soon as you can write this, the matter is over. Let us look at

that  example  again.  Let  us  look at  that  guy here  and  see  what  this  implies  for  divisibility.

“Professor - student conversation starts” Pardon me. Is the decomposition unique? So if you

ya we have not answered questions like is it always going to be unique for a given n and so on

and so forth. “Professor - student conversation ends”. No apriori reason why this should be so

and so on but tell me if I take an arbitrary characteristic function p tilde of k in this fashion and

ask can I not always write it as something to the power I do a 1 over n here and raise the power

n. Is it not always going to be the case? Suppose that were true it would imply that this is an

honest characteristic function. So it means p tilde of 0 is 1 and its inverse fourier transform is

nonnegative.
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But now you are asking if I raise this to the power 1 over n and I get some function here phi n of

k you are saying this too should be a characteristic function. It too must have an inverse fourier



transform which is nonnegative and that is not true in general. So this means that divisibility is

not a trivial concept at all. Not necessary that this is going to happen all the time. It happens only

in special cases. Now let us look at the Bernoulli trials that we talked about.

Now if you had n Bernoulli trials then the distribution that we got for the resultant was in fact a

binomial distribution if u recall right.
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So in that case you got the binomial distribution was of the form some N n p to the power n, 1

minus p to the power N minus n in this fashion and what was the generating function for this

guy? What was the f of z in this case? It was a very straightforward thing. It was just so you can

remember that f of z was equal to p z plus q to the power N. That is all it was right and then the

characteristic function p tilde of k in this case was pz by e to the minus ik and that was it or q

plus p e to the minus ik etc. Is that n divisible?

You can see it is a product of functions, all identical functions p plus or q plus pe to the minus ik

raised to the power n. So you would immediately say it is n divisible provided this fellow itself,

provided q plus p e to the minus ik was the characteristic function of something or the other and

it is. It is the characteristic function of a Bernoulli trial, a random variable which takes value p  1

with probability p and 0 with probability q right.



So trivially the binomial distribution with parameter capital N is N divisible into N Bernoulli

trials  okay, not  binomial  distribution  binomial  random  variable  at  all  but  N  Bernoulli  trial

immediately follows okay right. What about the geometric distribution? What about the negative

binomial distribution? What happened in the case of the negative binomial distribution?
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We call that the negative binomial distribution had a distribution which looked like N - n + 1 n p

to  the power N,  q  to  the  power  little  n.  Little  n  was a  random variable  which  took all  the

nonnegative integers in its sample space 0 to infinity and capital N was some given positive

integer okay. This fellow here had a generating function f of z which was p divided 1 - qz to the

power N. That is why it was called the negative binomial distribution okay.

Is that n divisible? It looks like the Nth power of something. Capital Nth power of something

right? So if p over 1 minus qz is a characteristic function of q so in this case p tilde of k = p over

1 - q e to the - ik to the power N. So this fellow is a characteristic function or if this fellow alone

p over 1 - qz is the generating function for a probability distribution then this negative binomial

distribution with parameter capital N is capital N divisible into n of those distributions  n of those

random variables right.

Is that a generating function p over 1 - qz? Yes, it  is the generating function of a geometric

distribution right which had a probability density function probability distribution p times q to



the power n right. So immediately this is N divisible, N divisible into N geometrically distributed

random variables. What about the Poisson distribution? Is that N divisible?
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Let us write the random let us write the distribution down. For a Poisson we had e to the - mu,

mu to the power n over n! was P of P n and the characteristic function p tilde of k was equal to e

to the - mu e to the - e to the power mu e to the - ik - 1. It was e to the mu times z - 1 for the

generating function so I put z is e to the - ik get the characteristic function okay. Can this be

written as the nth power of something?

Yes, trivially so. And what sort of random variable has a characteristic function like that? A

Poisson with mean value mu over n for every positive integer n right. So it is n divisible. Is it

stable? It does not fall in the family of stable distributions. it is not discrete and where the sample

space is discrete and so on and so forth. So it is the discrete analog of a stable distribution, but it

is infinitely divisible. This guy is infinitely divisible.

It even has this property that for every little n it is n divisible into n Poisson random variables

with appropriate  means etc.  Is the Gaussian distribution n divisible,  infinitely divisible? Yes,

indeed. it is a stable distribution. So it is immediately so and you see that at once.

(Refer Slide Time: 1:05:54)



Because in that case the characteristic function p tilde of k was e to the - i mu k - one half sigma

square k square and you can certainly write this as mu over n and sigma over square root of n

square and the whole thing raised to the power n. So of course it is. It is n divisible with mean

mu  over  n  and  standard  deviation  sigma  over  root  n.  it  is  a  stable  distribution  so  it  is

automatically infinitely divisible as well okay. What about the Skellam distribution?

The difference of 2 Poisson random variables, is that n divisible, is it infinitely divisible? You

would expect  it  to  be  so because  in  this  case  it  is  just  the difference  of  2  Poisson random

variables and if you recall this had e to the mu e to the - ik - 1 + mu times e to the - u so it was e

to the ik - 1. That is what the characteristic function was for the Skellam distribution okay and of

course now it is very trivial matter to say this is mu over n, nu over n and I raise this to the power

n.

So yes, it is also infinitely divisible okay. So the set of infinitely divisible distributions is a bigger

set than the set of stable distributions but the stable distributions are a very special subset of it. In

general for infinitely divisible distributions the components do not have the same distribution as

the original distribution but for the stable ones they do and for the Poisson they do okay. So it

becomes an interesting question to classify all such distributions.



This gets us into statistics. I am not going to go into that detail here except to show you that by

these simple examples you can see the idea of the notion of divisibility and what sort of role it

plays. We will try to get back to this in various other examples. So we will stop here today.


