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Alright, so we reached a stage where we were talking about the moment distributing distribution,

the moment generating function for a probability distribution and then I mentioned something

about  the  cumulant.  So  let  us  carry  on  with  that.  The idea  is  the  following.  If  you have  a

probability distribution for some random variable and from now on let me use the symbol capital

X for a random variable in general.

It could be continuous, it could be discrete. We have looked at discrete random variables, integer

valued ones but we are going to extend it to continuous random variables as well.

(Refer Slide Time: 00:57)

Then you define a moment generating function M of u as equal to the expectation value of e to

the  u  X where  this  X is  the  random variable  and of  course  that  is  immediately  equal  to  a

summation from k = 0 to infinity u to the k expectation X to the k/k! and these are the moments

of the random variable okay. Could be discrete, could be continuous whatever with respect to,

the average is taken with respect to the normalized probability distribution okay.



Now immediately it follows that M of 0 must of course be equal to 1 because we put u = 0 here,

all terms vanish except the k = 0 contribution which is 1. The expectation of 1 is just 1 okay. So

that is the normalization of the probability.
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And then one can ask can this quantity, can M of u be written as e to the power K of u, some K

of u okay. Can we do that? What does that mean? It says u are taking this quantity here which is

in general going to be some power series in u as you can see and you are writing it  as the

exponential of another function out here and we will see the advantage of doing this very shortly.

Of course this immediately implies that K of u, K of u is the log of natural log of M of u here

okay and K of 0 must of course be 0 so that M of 0 is unity as we have seen here. So in general

summation from r = 1 to infinity some constants some kappa r mu to the power r over r! and

these constants u independent quantities this quantity here is this so called rth cumulant of the

random variable okay.

(Refer Slide Time: 04:06)



Now it is not hard to see that these cumulants are going to have interesting properties kappa 1

equal to it is just the mean value of X. That is trivial to do. All you have to do is to expand this

quantity  and  pick  out  the  coefficient  of  u  in  the  power  series  in  u  and  then  you  discover

immediately it is just the first moment. That is trivially true okay. The second moment kappa 2

equal to turns out to be X minus the expectation value of X whole square equal to the variance.

It is just the variance of the random variable. As you know the second moment itself we found

was a very inconvenient quantity to use. You needed to subtract the square of the mean from that

and then you got a quantity which had a physical significance as a scatter of the variable about

the mean and that is kappa 2, the second cumulant okay. Turns out that the third cumulant kappa

3 turns out also to be X minus X average cubed.

Namely the third central moment turns out to be identically equal to that okay. Now when you

write this in a power series put that in here and write this as a product of terms and then write the

expansion  of  each  of  these  and  collect  compare  with  what  happens  here  with  the  various

moments, you discover immediately it follows from here that the highest term the leading term in

the rth  moment is  in  fact  the rth in the rth  cumulant  is  the rth moment but  then things  get

subtracted after that.



Now for instance this quantity here is just x square - x average square. This quantity here would

be an x cubed minus 3 times x square x and then there would be a term which would be plus 3

times x times x average square and then a minus x average cubed but when u take the average

value of that you get a cube here x average cube with a 3 and there is a - 1. So the next term must

of course be twice x cubed in this fashion okay.

The fourth cumulant turns out to be x minus x average whole square that to the power 4 but there

is a correction to it which is thrice x minus x average square. This fellow is a variance, square

and of course if you expand this, this is equal to x 4 and then plus etc. there is a set of corrections

lower moments than the fourth are going to appear the rest of it.

So there is a systematic way by which you can write the rth cumulant in terms of the rth moment

and lower moments and vice versa like this and the coefficients are standard coefficients. In a

sense what is happening? You are kind of subtracting out the lower moments, an appropriate

combination of lower moments when you do this and you have seen this happen in many places.

For instance when you subtract out in the quadruple moment of a charge distribution you will

subtract out the lower moments in exactly the same, so that the whole thing is rotationally it has

got  interesting  definite transformation  properties.  In  exactly  the  same  way,  by  doing  the

subtraction a very important property emerges among other things namely if you just shift the

random variable by a constant value then the moments of course would change but the cumulants

do not change.
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So if X is replaced by Y which is X plus a constant a, some constant value, a sure value a, then

the first moment of course will change because the average of Y is now the average of X + a this

constant a but all the cumulants remain exactly the same. K r for x = kappa r of Y for r greater

than equal to 2. That is trivial to see. It is immediate here for example and immediately see

wherever you can write it in terms of central moments this thing the mean value just cancels out

the shift in the variable cancels out and then you have this invariance here.

So the cumulants of a random variable are invariant under translations of this random variable.

You shift it by a constant then it does not change at all. That is one very crucial property. Let us

write down the cumulants for various distributions that you already know about. So we have seen

a whole lot of distributions for which we know closed-form answers. So let us write it down.
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If you recall, just to recall to you what happened. If you recalled I defined a generating function f

of z. This was just a generating function and then I had a moment generating function M of u and

we found that this was just f of e to the power u. So wherever z appears I just replace it by e to

the power u and K of u the cumulant generating function is just the log of M of u. Now let us see

what this turns out to be for various distributions so that you could write the cumulants down.
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The binomial distribution the probability distribution itself we wrote down it is just the binomial.

The generating function for that was of the form f of z was equal to p z + q to the power N when

you had N Bernoulli trials and p was the probability of success in any given trial then it says M

of u is this fellow so  remember that the average value mu the mean was equal to N p.



So instead of N let us write it as mu over p and if I take logs I put instead of z I put e to the

power u and then I take logs I end up with K of u = mu over p + 1 - p.

So that is the cumulant generating function for and remember that the kth cumulant rth cumulant

kappa of r is d r over d mu r K of mu evaluated at mu = 0. So once you have this expression it is

a very simple matter to write down what the cumulant generating function is and therefore what

the cumulants are completely for this binomial distribution.  What happens in the case of the

Poisson distribution?
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For the Poisson f of z was just e to the power mu times z - 1 okay. So I replaced z by e to the u

and then take the log to get kappa of u K of u. So this immediately says K of u = mu e to the u - 1

that is it and what can we now say about all the moment all the cumulants? All we got to do is

this, differentiate it z = 0. If you differentiate this fellow you can just e to the u once again you

put u = 0 you get 1 right.

So it immediately says that for this Poisson K r = mu for all r greater than equal to 1. So the

mean, the variance, the higher cumulants they are all the same. It is just one number. It is a very

special property of the Poisson distribution not shared by others. There are other distributions

which might display this property.



You can create them but the fact is that for the Poisson the variance so the statement that the

variance  is  equal to  the mean for a Poisson distribution is  a special  case of a more general

statement that all the higher cumulants are equal to the mean value in this case okay. What other

distribution did we look at? We looked at the geometric distribution right?
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So for the geometric distribution with mean mu the distribution itself was 1 over 1 + mu, so

geometric times, mu over 1 + mu to the power n. That was the probability distribution of the

random variable n which took values 0, 1, 2, 3, etc. And now if I find f of z for it, it is just a

summation of this guy so it is 1 over 1 + mu and then this geometric series summed from 0 to

infinity which is 1 over 1 - this guy multiplied by a z.

So the 1 + mu will go away and you get 1 over 1 + mu - mu z but I got to put e to the power u

here and that is M of mu. So it says K of u = - log 1 + mu - mu e to the u and that is it and now

you can write down all the cumulants from this directly. A sum of Poisson random variables is

again Poisson so nothing new happens.

What happens if you have a difference of the two? If you had a Skellam distribution for instance

where you have the difference of 2 Poisson random variables whose means are mu and nu say.

What happens then? Well the generating function was this and then in the other case for the nu



because of the minus sign when we generated it you had an e to the 1 over z instead of z. So it

would be just this.
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Plus mu times e to the minus nu e to the minus u minus 1. That is K of u okay and of course the

first cumulant is the first derivative of this at u = 0 and that will immediately give you mu - nu

which we know is the mean, the second cumulant you differentiate this twice you are going to

get a plus sign again and so on. So it immediately says kappa r = mu plus minus 1 to the power r

nu in this case.

So every other moment, every other cumulant is mu + nu and every other the even ones are all

mu + nu and the odd ones are all mu - nu as you as you would expect in this case. We will write

down the cumulants of some continuous distributions as we go. So the first important property of

a cumulant is that it is translation invariant. The other property that is obvious by looking at it is

that the cumulant is a homogeneous, the cumulant, the rth cumulant is a homogeneous function

of this random variable in a strange way.

That is if you multiply the random variable by a constant, then the rth cumulant gets multiplied

by that constant to the power r okay and that is fairly straightforward to see.
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So if X goes to c times X, K r is multiplied by C to the r. So the scaling property is also very

immediately obvious here.  The cumulant  has another  very crucial  property. We saw that  the

variance of 2 independent random variables and is simply the sum of the individual variances.

This  is  going to happen for all  the cumulants.  The additivity  of cumulants  is  a very crucial

property and we can see that in many ways.

But one way of seeing it is to say that well if I take the log here, this moment generating function

just multiplies for various random variables and if I take the log it simply adds up. So it is clear

that  if  you have  several  random variables,  independent  random variables  then  and they  are

independent, statistically independent then the cumulant rth cumulant of the sum is equal to the

sum of the rth cumulants.
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So the  crucial  property  is  for  independent  this  is  absolutely  crucial.  It  is  a  very  important

property. We make use of it as we when we talk about limit theorems we are going to make use

of this, this part of this property okay. Now I have mentioned off and on continuous random

variables, just to say a few words about it and then.
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So you have a continuous let us call X the random variable, takes values in some continuous

interval of the real axis reference or takes values over all real values of over all real numbers.

Then instead of talking about a probability of this X for any particular value which must be

defined with infinite precision now is a set of measure 0 a point in a continuum. All you can talk

about is the probability density function of this variable.



That this random variable has a value probability that X has a value in some x, x + dx = p(x) dx,

p(x) is the probability density function. I call that, denoted by PDF okay. That is the probability

density  function  and it  cannot  be  negative.  This  number  cannot  be  negative;  could  become

unbounded. All you need is normalization. So all you need is integral dx p(x) = 1 over whatever

is the range of this variable, in general minus infinity to infinity say.

And we also need p(x) to be greater than equal to 0. Now we are going to be rather loose in our

mathematics.  If  for  example  you have  a  situation  where there  is  one particular  point  in  the

continuum where there is a finite probability and this variable has a value then we will include it

in here by putting a delta function at that point and put a delta function spike in the PDF with an

appropriate weight factor so that it gives you the probability of taking on that particular value.

So we will be a little casual about this. I will continue to write integrals but then in here could be

delta functions out here okay. Alright, now once you have a continuous random variable of this

kind it is convenient to define and once you have a probability distribution function of this kind

which is integrable it is convenient to define a fourier transform for this variable.
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And the fourier transform of this quantity p tilde of k equal to integral minus infinity to infinity

dx e to the -  ikx p(x) this  quantity. This is called the characteristic  function of this  random



variable. But it is nothing new. We have already introduced this quantity in a different way. This

quantity is just the expectation value of e to the - ikx with respect to this weight factor here. But

we know what e to the u x is. That is M of u. So this is nothing but M of - ik.

So the characteristic function is just another way of writing or saying that you have a moment

generating  function  okay. There  are  analytical  properties  of  these  variables  which  I  am not

emphasizing at the moment but you see if you give an arbitrary function p tilde of k I cannot

claim immediately that it is a characteristic function of a random variable till a certain set of

conditions is satisfied.

For instance if I want a normalization to be valid for this if I put k = 0 here and I want the

integral to be equal to normalized quantity 1 total probability then this immediately implies that

p tilde of 0 must be equal to 1 but even more strongly given a function p tilde of k it can be a

characteristic function only if it is fourier transform, only if it is inverse fourier transform gives

you a non-negative function p(x) okay.

So that is a very strong constraint, a real function should be real and it should be non-negative.

That  is  a  very  strong condition.  So all  functions  of  k  are  not  going to  be even if  they  are

integrable are not going to be characteristic functions okay and that is an important test alright.

Now the additivity of cumulants follows trivially once I introduce the characteristic function as

you can see from here because this immediately says that.
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So if I have a random variable x 1 and another random variable x 2 with moment generating

functions m 1, m 2 and cumulant generating functions k 1, k 2 etc. then it immediately says as

you can see  the probability density function of the variable, let us call this equal to x say. Then

p(x) is equal to an integral from minus infinity to infinity d x 1, integral minus infinity to infinity

d x 2, p 1(x 1), p 2(x 2) where x 1, x 2 are the points in the sample space of these 2 variable

random variables.

And p 1 and p 2 are the corresponding probability  density functions okay multiplied by the

constraint that x 1 + x 2 must be equal to x okay and where does that get us. That says this

quantity is minus infinity to infinity d x 1, p 1(x 1), p 2(x) - x 1. If I use the delta function

constraint then this is all it is. Now in what form is this quantity here? It is a convolution.

So it immediately follows that p tilde of k = p 1 tilde of k, p 2 tilde of k by the convolution

theorem for fourier transforms. But that is the same as M of M 1of - ik and M 2 of - ik and if I

take logs this immediately implies that k of u, k of u or - ik it does not matter. These are all

power series so which implies that the cumulants add up because the cumulant, the rth cumulant

of this quantity is the coefficient of - ik to the power r/r! or whatever right.



So it says immediately the additivity of cumulants is a trivial consequence of this fact here okay.

If they are discrete value, random variables over some finite range or something like that you got

to work a little harder to do this but it is pretty much the same here.

“Professor - student conversation starts” Ya. The x there should be both x 1 and x 2 there. I

am sorry say that again. The x 1 + x 2 should be equal to x in that case when we are finding the

probability density factor of x, yes, what exactly are we doing in this we are getting x 1 comma x

2 equals x on top. X 1 + x 2 is equal to x. Ha I am sorry, I am very sorry ya. Thank you ya x 1 +

x2 is the sum yes. “Professor - student conversation ends”.

Now generalization to some constant times x 1 plus some other constant times x 2 any linear

transformation similar things will happen but you can check that out directly. Thank you. Now

we could go back and look at various continuous distributions or even  the discrete distributions

and ask for sums of random variables and that is going it is going to become very important to

understand  how  the  sums  of  random variables  behaves  when  you  have  a  large  number  of

components.

We are going to spend some time on it but let us do this in the context of a very famous example.

The simplest of these example, the most ubiquitous of continuous distributions is the Gaussian

distribution. So let us write down the answer for the Gaussian distribution what happens to the

cumulants and a very important property will emerge.
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So the Gaussian, it is also called the normal distribution and it is parameterized by 2 quantities

the mean and the variance. The PDF for the Gaussian, first of all you got a random variable X

which is an element of minus infinity, infinity and the corresponding PDF p(x) the normalized

PDF is this quantity. I should use curly x here the value. Then the mean value of x this quantity is

mu and the variance of X = sigma square. So it is parameterized by the mean and the variance,

the two parameter distribution okay.

Now this distribution is going to appear ubiquitously everywhere, we will see when we look at

the central limit theorem how this distribution emerges in a very general context. But right now

let us look at some of its properties.
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First of all the shape of this distribution, it is quite straightforward. It is something which is bell

shaped here where this is the mean value. It is unimodal. The peak is at the mean. Out here is a

function of little x, this is p(x) and this width here this half width is proportional to sigma. So the

full width at half maximum the value at this point and this mu at x = mu is 1 over root 2 pi sigma

square.

And when you go to half that value this quantity here the width is proportional to sigma and

sigma is the standard deviation out here okay. You could ask what the cumulative distribution

function  is  so  the  cumulative  distribution  function  let  us  call  it  f  of  well  there  are  various

notations used for it. Let us call it P(x). This is equal to the probability that the random variable x

is less than equal to some specified number x which is equal to the integral from minus infinity

up to x of d x prime p(x) prime.

So the probability that the variable has a value less than some specified value is the area under

this  curve.  That  is  the cumulative  distribution function.  It  is  clear  it  cannot  be a  decreasing

function. It is got to be a non-decreasing function. In this case when you have a distribution like

this as you move to the right the area keeps getting added to so it is an increasing function right

and P of minus infinity is 0. P of infinity is of course 1.



Let us use another symbol for this. I do not like this P. Let us call it F out here. F of infinity is 1

and by the symmetry of this distribution it is quite clear that F of mu = 1/2. At this point you

have exactly half, the area is exactly half okay to write down this F(x) in terms of some known

functions.
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Well  there is this famous integral.  It is called the error function,  error function of x. This is

defined as an integral from 0 to x dt e to the minus t square and you want to normalize it. So 0 to

infinity the answer is equal to square root of pi over 2. So 2 over root pi. Then Erf infinity is

equal to 1, Erf 0 is 0 and Erf - infinity, it is an odd function so it is equal to - 1 goes from - 1 to +

1 to infinity  to 1 at x = infinity.

So this quantity, this f(x) it turned out to be half 1 plus the error function of x - mu because I

have  shifted  everything  to  mu,  the  origin  to  mu  and  it  should  be  scaled  down.  I  used  a

dimensionless variable here. So what I need is in the probability density I had e to the - x - mu

whole square/2 sigma square. So the length scale there was fixed by 2 sigma square right. So I

got to kill that and that is all it is okay.

And this Erf x itself is a function which looks like this the function of x. This is 1, this is - 1, then

0, and the function goes like this and that is what the cumulative density distribution function of



this random variable is okay. Statisticians like to use the cumulative distribution function rather

than the probability distribution function itself for various reasons.

First of all when you have these atomic probabilities namely you have a given point where there

is a finite measure for instance then we need to introduce things like delta functions and so on

which is rather singular objects but when you integrate it out things get smooth. So people like to

use this rather than using. You do not mind using step functions but delta functions are little

singular. You got to define them more precisely etc. So it is convenient in many cases to do this. 

Physicists generally work with densities all the time, probability density functions etc. So once

we have this we could ask what is what are the various quantities associated with this Gaussian

distribution, 2 parameters mu and sigma square the variance, we could ask what all its cumulants

are for instance. We could ask what its moments are and what would be the moments of this

distribution. We already can predict what is going to happen.
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For a Gaussian we can ask what is X minus the average value, the central moment, this quantity.

This is of course 0 by definition because mu is just the expectation of X but we can ask what this

is for the kth moment 2k plus 1 say the odd moment. What should this be? Well the PDF is a

symmetric function of X minus mu and now I am asking what is the average value of X - mu to

the power an odd number in odd integer. It should be 0.



By symmetry this is 0. The integral exists for all positive K as you can see because there is a e to

the - X square to take care of convergence. Definitely all the moments exist so this is identically

equal to 0 etc.  0, 2 and what are the even moments like? What would this be? What is it when k

is 1? It is just the variance. It is just the variance. What is it when k is 0? It is got to be 1, average

value of 1.

Now it is clear that the answer depends only on sigma because once you shift to mu the only

parameter left is sigma and the only quantity of dimensions sigma of dimensions length is sigma

in the problem. So this got to be proportional to sigma to the power 2k just on pure dimensions

multiplied by some factor and that factor is not hard to find. You can write down a Gaussian

integral multiplied by any even power here and turns out this thing is times (2k – 1)!!.

This stands for 1 times this fellow here stands for 1 time into 3 into 5 into 2 k - 1 okay. So this

symbol double factorial is very often used for this. Or you could write it in terms of 2k!/k! times

2  to  the  k  and  so  on  so  forth.  Now  there  is  a  nice  interpretation  of  this,  combinatorial

interpretation which were which is useful in places like field theory when you do what is called

Wick’s theorem, it is very useful.

If you took this thing here X - mu to the power 2k and wrote it out as factors, you have 2k factors

each of which is X - mu then you can ask in how many distinct ways can I pair these fellows, can

I write them pair-wise. How many pairs you can independent pairs can I find and the answer is

precisely this. So this is really a combinatorial factor that arises from the number of ways in

which you can pair 2k objects two at a time okay.

So that is what this is. Now you could ask what is so a very important property emerges that all

the central moments are all dependent, just powers of this guy here, nothing more sigma square

to various powers. Now you can ask what is the cumulant generating function of this distribution

and a very interesting fact emerges.
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K of u in this  case is equal to, well  first you want the moment generating function but you

remember this is just a K of - ik is just log of p tilde of k and p tilde of k is the fourier transform

is integral minus infinity to infinity 1 over root 2 pi sigma square e to the - x square over 2 sigma

square - ikx. It is the fourier transform of a Gaussian okay and what is that going to be. It is also

going to be a Gaussian.

This guy is also a Gaussian and all you can, all you need to do is to complete squares out here.

Pull out a 1 over 2 sigma square complete squares here. It is also a Gaussian but what is the

width of that Gaussian going to depend on? It is 1 it is sigma square itself whereas here the width

was sigma square there it  is 1 over sigma square. There is this  very interesting property of

fourier transforms that the more compact a fourier transform is the more spread out its function

is, the more spread out its fourier transform is and vice versa.

So the width here if it is sigma square the width there is 1 over sigma square, very profound

implications. So this will lead to the fact that K of u = mu times u plus half sigma square mu

square. K of - ik which is p tilde of k will turn out to be - mu ik minus half sigma square k

square. So what does that tell us about the Gaussian? It says of course it is immediately true that

kappa 1 = mu and kappa 2 = sigma square.



That is that is very clear. But what does it say about this, when it is greater than equal to 3. What

does it say about it? It is 0 identically because remember it is the coefficient of u to the r over r!

in a power series expansion about the origin of K of u and this is a polynomial. That is it, just the

first 2 terms and everything else goes away. So an incredible property of the Gaussian is that all

cumulants higher than the second one vanish identically.

There is a first moment, there is a second moment and there is a variance, mean and a variance

and all the higher cumulants are identically 0 okay. So a very basic property of the Gaussian is

that the higher cumulants are all identically 0 which again means that if you look at the fourth

cumulant for example or ask the third cumulant that is identically 0 there is a physical meaning

to these cumulants.

The mean is of course is going to tell you something about the average value, it is exactly the

average value. The variance tells u the scatter about the mean. The third moment gives you what

is called skewness. It is related to how asymmetric it is, this distribution is, and when you have a

symmetric distribution like the Gaussian the fourth or any other symmetric distribution then the

fourth cumulant gives you information about how much it departs from Gaussianity.
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Because this relation immediately tells you, this relation here it immediately implies that for the

Gaussian kappa 4 is equal to this quantity which is delta X that is the X minus average X which I



call  mu, mu to the power 4 -  3 times the average value of X - mu whole square square is

identically 0 okay for the Gaussian.
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And this quantity in general, let me call X - mu equal to the deviation from the mean. Then this

quantity delta X 4 - 3 times delta X square the whole square and just to make it dimensionless we

divide by this quantity delta X square square this quantity. This is called the excess of kurtosis

and for a Gaussian it is identically 0. This quantity could be positive, negative or 0. If it is 0, for a

Gaussian it is identically 0.

But if it is positive, what does it sort of imply? It says that this guy is dominating over that in

some sense and this is the fourth moment; so it means that the higher, larger values of X about

the mean are actually more significant than the smaller values. It says something about the shape

of this distribution um. Similarly, if it is negative it says the large values don’t dominate, the

smaller values dominate right.

So in one case you got a thing which is fatter  than the Gaussian,  in the other case you got

something that is linear than a Gaussian and these are important indicators of the deviations from

Gaussiantity and the reason the deviation becomes important is because Gaussianity is what I

would expect if you had as we will see a lot of random variables added up in an incoherent sort



of a fashion and the limit for suitable rescaling of the sum linear combination it turns out the

distribution will be Gaussian and a very -robust conditions.

So this implies that whenever you have a deviation of this kind it says something very important

about the underlying physics in the problem okay. So keep that in mind that you have this is

identically 0 for the Gaussian but then there are distributions for which this is not so. Now pretty

much you can ask does this go on forever. After all to define the distribution completely I need

information about all the moments. So is it that I need an infinite set of numbers. Only then can I

reconstruct the distribution?

For instance, suppose I give you all the moments of a distribution. Can you uniquely reconstruct

the probability distribution function or the density function? This important problem is a problem

in the mathematical statistics. It is called the problem of moments and there are certain answers

known to it under suitable conditions. It is a very important problem. We will not go into that.

But  let  me explain  say simply say that  for practical  purposes  very often when you actually

analyze data etc.  the first 4 cumulants serve to pretty much describe the random process the

random variable more or less completely. So the mean gives you some crucial information about

what this variable is typically likely to be if it is a simple kind of distribution. The variance gives

you a scatter.

The third one tells u about skewness or asymmetry and the fourth one tells you departures from

Gaussianity. So pretty much this numerical purposes this should this suffices in most cases. But

of course from a theoretical point of view you need to know all the moments before you can

make statements here. You could ask the following question which is an interesting one. I am not

going to prove it here which is the following.

Other continuous random variables with well-defined probability density functions such that just

as a Gaussian had a quadratic cumulant generating function and all the higher cumulants were

identically 0 after K 3 onwards, is it possible to have a cumulant generating function which is a

polynomial of some finite degree greater than 2 and everything else all the higher powers are 0.



So  the  distribution  would  have  cumulants  up  to  some  n  and  then  every  other  cumulant  is

identically 0.

Is it possible to have such distribution? The answer is under fairly general conditions, no. Either

in principle all cumulants exist barring accidents in certain cases or the Gaussian says it stops

quadratic and that is it nothing more. There are other such properties which will also emerge as

we will see when we talk about stable distributions.

We will see there are certain other interesting properties of this kind which will emerge that

either it stops at the second order it goes on forever. They only are the 2 possibilities, we will see

where this comes about okay. So the next step now is to ask I have some information about the

Gaussian. Are there other such distributions, there are several but we will talk about it when we

come to stable distributions.

But first we would like to do the following. I would like to take a set of ordinary, very simple

distributions for random variables, add them all up and see where it goes, what the distribution of

the sum looks like. In particular we will undertake a simple exercise. We are going to take a

whole n random variables all uniformly distributed between 0 and 1.

So this  random variable,  each of the random variables  takes values between 0 and 1 with a

constant probability distribution function 1 and add up all  these fellows and ask what is the

distribution of the sum of this thing. So we will work that out explicitly here. Meanwhile, one

final point. If you have functions of random variables their probability density functions can look

very different from the distribution density functions for the original random variable.  If you

look at the Gaussian example for instance let us take a Gaussian with 0 mean.
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So you have a p(x). This guy is 1 over root 2 pi sigma square e to the minus x square over 2

sigma square, the Gaussian with 0 mean.  For simplicity let us set the mean to be equal to 0 right

and then I ask what I i the density function probability density function of a variable  let us call it

psi which is equal to the square of this variable X square okay and let us call it PDF rho of psi.

 Now it immediately, it is obvious that this psi is an element of 0 infinity unlike the original

random variable  which  ran minus infinity  to  infinity  now we got  0  to  infinity. What  is  the

distribution PDF of psi going to be like? Several ways of doing this. One of them is to say alright

I do it by brute force.
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I do it by saying that rho psi must be equal to an integral minus infinity to infinity dx p of x and

then a delta function which says psi - x square, x square is psi okay. But to do this integral, I got

to convert this delta function over psi to 1 over x right and what’s the first property of the delta

function it is a symmetric function so I can write this as x square - psi in this fashion and I got

the delta of x square minus constant square psi square root of psi whole square.

So I can write this as integral minus infinity to infinity dx p(x) delta of x - root psi + delta of x +

root psi/2 root psi. That the Jacobian derivative and I do this integral. I can now do this integral

because I use the delta function and plug it in. But you can also write the answer down. You see

if I say that when X takes a value between x and x plus dx capital X takes a value between little x

and x + dx suppose psi takes a value between psi and psi + d psi right.
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Then rho of psi d psi must be equal to p of x dx. In this case we are fortunate because as X

increases psi also increases. Otherwise, when you are talking about probabilities you have to

make sure that they are both positive on both sides. So I can write this as dx over d psi but I must

be careful to write that modulus sign okay and I must express this thing in terms of psi because

that is what a function of.
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So I must write this as p(x) is square root of psi um and d psi over d x is 1 over twice the square

root of psi. There is no need for modulus because psi is not negative. So would that be the right

answer? No because minus x contributes exactly the same amount to this right. So there is a

factor 2 and that is equal to e to the - psi over 2 sigma square over root 2 pi sigma square psi. So

this 2 cancels that 2 and then we get this.

Of course you got to check normalization so you got to verify that rho of psi d psi = 1 integrated

from where to where, 0 to infinity. So it is an exponential but it is also got this factor sitting here.

So this distribution looks rather different from what the original variable was. For instance if you

wrote  down in  one  dimensional  motion  if  you wrote  down  the  Maxwellian  distribution  of

velocities, velocity component it is going to be e to the - mv square over 2kt or something like

that, the Gaussian.

On the other hand if you asked what is it for the energy which is half mv square then it is going

to be proportional to e to the minus the energy with some kt factor/square root of the energy in

the denominator. So this factor which came from the derivative, the Jacobian sitting there too,

this factor here is crucial.  “Professor - student conversation starts” What do you call this in

that example which I just talked about in the energy? The density of states. You call it the density

of states “Professor - student conversation ends”.

 



It is precisely the density of states in one dimension for one dimensional motion okay. So we will

see where that is when we talk a little bit about the canonical ensemble you will see that this

density of states plays a crucial role and we will talk about that when I mention  the characteristic

function  for this  distribution  okay. Alright,  so the  next  exercise is  to take  a  set  of  identical

random variables and add them up and see if the how the Gaussian emerges magically. I will do

that next time.

 

 


