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Today  let  us  turn  to  a  topic  of  some  importance  in  the  study  of  dynamical  systems  and

specifically I want to show you how probabilistic methods help you to discover things about



complicated dynamical systems in particular systems where the dynamical behavior is perhaps

chaotic or something like that.
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So, the specific things I want to discuss the following I want to discuss Sojourn escape and

recurrence in deterministic dynamical systems well explain what I mean by this gradually. So,

we  are  going  to  talk  about  classical  dynamical  systems  for  which  the  rule  of  evolution  is

specified  there  is  no  randomness,  no  external  imposed  randomness,  no  thermal  fluctuations

quantum fluctuations or no sources of fluctuations.

But completely deterministic dynamical systems and the kind of systems we have in mind are

either in discrete time or in continuous time it does not matter. And specifically just to be very

concrete about it if you had dynamical variable x which perhaps stands for x1 up to xn say in

dynamical  variables  in  the  context  of  mechanics  these  could  be  positions  and  momenta  of

various particles or whatever angular momentum.

We do not care some dynamical variables of this kind and their evolution in time is given by a set

of differential  equations.  And the differential  equations look like x dot first order differential

equations. So, you have a sufficient number of variables x1, x2 up to xn to describe the system

completely and then the idea is that these up change with time according to a rule of the form f of

x possibly dependent on time as well in this dot stands for that time derivative.



This could be a very complicated nonlinear function of x and t and x is the set of dynamical way

we perceive.  In particular  if  it  is  a  Hamiltonian system or a Lagrangian system then I  have

generalized coordinates in generalized velocities or momenta and they would all come under the

umbrella of these dynamical variables. If I have an explicit t dependence here the system is said

to be non autonomous that means the rule of evolution itself is changing with time and it is a

little more complicated than if you did not have that we just had f of x.

So we will remove this and will consider systems which are autonomous which means that this t

dependence is removed so the time evolution rule is translation invariant in time it is exactly the

same rule now of course this is a very, very general problem. And in general we do not have

closed  form solutions  for  it  for  arbitrary  nonlinearities  and  the  whole  subject  of  dynamical

systems is concerned with solving this problem in seeing to what extent you can extract the

information. 

Now to cut a very long story short the way to do it is to define a phase trajectory in phase space

namely the space of all these x's some phase space and for simplicity. Let us just take it to be n-

dimensional Euclidean space. Then the state of the system at any point is specified by giving x at

any instant of time let us say x  at time 0 so a point in this n-dimensional space tells you all the

values of the variables know the way of values of all the variables at initial instant of time and

then when once you solve this set of equations in principle you know the values at later instants

of time ok.

Now the  explicit  solution  in  closed  form may  not  be  possible  in  general  if  the  function  is

nonlinear it has a large number of variables this is impossible in most cases what is possible

however is to do numerical integration of this equation. So, that you can instant by instant if you

have a sufficiently  small  time step you can actually  numerically  integrate  and find out what

happens at any later instant of time you can join all those points together and you have a Phase

trajectory.



This word phase space is borrowed from mechanics borrowed from Hamiltonian Lagrangian and

Hamiltonian dynamics. So, we call it a phase trajectory here. Now if the system is autonomous in

this fashion then under suitable conditions on f of X the solution is unique namely if you specify

the initial value X of 0 it is a well-posed initial value problem and in principle the solution is

unique which means that as time evolves this trajectory which is meandering around in this n

dimensional phase space cannot ever do a thing like that it cannot intersect itself.

Because if it did so and you had an intersection of this kind then you see once you reach this

point the future is unique there is only one outward trajectory with arrow pointing outwards that

you can get from here because I could start with that point as the initial condition and the future

has to be unique but if this situation is permitted you have this and you have that so this is not

possible not possible. 

A trajectory in an autonomous dynamical system a phase trajectory cannot intersect itself nor can

it intersect any other phase trajectory nor can it intersects something where the initial condition

was that and this is some other trajectory this too cannot intersect that because at the point of

intersection the future becomes non unique. But this is not much of a constraint because when

you have an n-dimensional space and n is large a ball of thread winding around the space will

hardly ever intersect itself you never do so in general okay.

There is only one case in which this is possible and that is if the trajectory goes out like this in

this fashion comes and joins itself again in this way that is perfectly all right. But this means that

if you start here after certain finite amount of time it comes back here and then again because of

the uniqueness theorem it is going to go in the same direction and come back here repeatedly

which means that  a closed phase trajectory  a simple closed curve is  the only thing possible

means the motion is periodic.

Because all the dynamical variables have returned to their initial values right, so, the two things

we know right away are that  for an autonomous dynamical  system phase trajectories  cannot

intersect themselves or each other. And the second thing is every periodic motion is necessarily a



phase  trajectory  a  closed  curve  is  a  periodic  motion  and  vice  versa  a  simple  closed  phase

trajectory is periodic motion.

And all periodic motion every periodic motion is described by a simple closed phase trajectory.

Now look at the fact look at the simplest example you take a harmonic oscillator for instance

then the phase space in this case the equations are to be right down you have x dot is P over m

and P dot the rate of change of momentum is the force on this particle which is = - m Omega

squared x where Omega is the natural frequency and m is the mass of the oscillator P is the

canonical momentum conjugate to the position x and these are the two equations of motion.

So, in this case this vector x this the phase space is 2 dimensional this comprises x and P and it is

part of this kind of set of equations but this is even more special than that what is so special

about this right hand side here their linear it is linear in x and P. So, therefore the problem is

solvable in closed form no complications occur here at all. And of course we know immediately

that in the phase space of x and P, so here is P here is x the phase trajectories are all simple

closed curves they are ellipses.

They are ellipses corresponding to the fact the ellipses are also written down explicitly these two

will imply that half m Omega squared x squared + p squared over 2m = a constant e which in

this case has the physical meaning of being the total energy of this oscillator and that is an ellipse

in general. So, in this case all motion is periodic for a simple harmonic oscillator. No matter what

positive  energy  you  specify  the  motion  is  periodic  motion  and  the  energy  determines  the

amplitude and different energies would correspond to different amp ellipses.

So, you see in this case the phase space is a phase plane and the whole plane is laminated by

these ellipses each ellipse corresponds to a fixed energy. And there is one very special value of

the energy which is 0 which corresponds to a critical point in equilibrium point because at that

point the right hand sides of this vanish. So, both x dot and p dot are 0 and if you start with 0

values for both of them then you are going to remain at 0 values because these are first order

equations.



So, this point here is a phase trajectory all by itself it corresponds to the equilibrium point. So,

this problem is utterly trivial here. Now you can ask the question and when does the system

come back to its original state does it wrecker. And here because the motion is periodic every

initial condition wreckers is very clear that once you are here you are going to come back to this

after finite amount of time the time period and ditto for the other thing and so on.

So, the motion is periodic in this case all motion is periodic so in that trivial sense every initial

condition will recur after a fixed amount of time. There is something even more special in this

problem about this periodicity and what is that? So let us suppose this energy is some energy E1

this is some E2 and so on. All of them are positive numbers different numbers and the larger the

energy the bigger the ellipse because the bigger the amplitude.

What is special about the recurrence time in this case the recurrence time is just the period of

every orbit what is special about it in this particular pardon me it is independent of the amplitude

that is not true in general it is independent of the amplitude only for simple harmonic motion for

any motion other than any periodic motion other than simple harmonic the amplitude depends on

the time period depends on the amplitude.

If I drop a ball from this height and it is a perfectly elastic ball perfect elastic collision with the

bottom of the floor it is going to come right back to this and the periodic motion but if I drop it

from a greater height the time period changes. So, every time you have a potential which is not

the harmonic oscillator potential you have an amplitude or a time period which depends on the

amplitude or the total energy whichever way.

So, this is a very, very special problem in this case not the most general case is much more

complicated than this is a very special case. Our focus is not on dynamical systems here but we

want to look at recurrence properties in particular. So, the first kind of recurrence you have is

periodic motion as a very trivial kind of recurrence. Once you solve the dynamical equations you

compute the time period that is the end of the matter here.



But already if you complicate this a little bit and take two simple harmonic oscillators, let us say

a particle moves in a plane and it is connected by a spring to the origin and it moves in the plane

that is the combination of two simple harmonic oscillators at right angles to each other then

already a complication starts arising in that case they have got an x and a y-coordinate so you

have a 4 dimensional phase space.

(Refer Slide Time: 13:30)

And if I plot I cannot plot this phase space because it is 4 dimensional what I can do is to plot x1

p1 p2 x2 and I write down the usual total energy or Hamiltonian of this oscillator 2 different

oscillators at right angles to each other the total Hamiltonian is p1 squared + p 2 squared over 2m

+ the potential energy in this case and this potential energies of the form half m Omega 1 squared

x squared + Omega 2 squared y squared or so take the scale of 1 of them to be 1.

So, it is x1 squared + Omega square x2 square in general right. So, if I took this oscillator I have

set the frequency of 1 of them to be = 1 and the other one to be Omega some number Omega

there is no reason why the frequency should be the same in the 2 orthogonal directions. Is this

motion periodic? Is this motion going to be periodic? It depends on Omega it depends on Omega

if Omega is = 1 then of course it is periodic immediately.

What happens if Omega is too it is still periodic because the two frequencies are commensurate

with each other. So, as long as Omega is some rational number the motion is periodic but the



moment is irrational the motion is no longer periodic it will never come back to its initial point.

What will happen that will come arbitrarily close to its initial value every initial condition will

come arbitrarily close but never come back to its exact initial value the motion is said to be quasi

periodic.

In this case and you can sort of tell what is the nature of this quasi periodicity by saying that

basically what I want to know is moving around the trajectories look like this the sections of the

trajectories look like this, so what is relevant is once you specify some initial conditions such as

the initial value of the total energy of this oscillator and that you specified these ellipses then the

question is if you start at this point and you go around you start here and you go around you do

not come back to the starting point there when you finish a revolution here.

And if the frequencies are in commensurate there is no time at which you will come back to

exactly the same values for all the 4 dynamical variables right. What is relevant in this case is the

angle so it is sort of making by changing units you can make these circles like then all you want

to know is the angle here is theta 1 and the angle here is theta 2, the state of the particle the

values of the variables at any point at any time can be written in terms of two angles theta 1 and

theta 2 where are you on these circles for given values of the energies of the two oscillators.
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So, you can write that as a point on a torus in which this angle here with some reference direction

with respect to some reference direction gives u theta 1 and in the cross-section here of the storis

you get data to basically you want to know your phase space is now reduced to the space of two

angles each running from 0 to 2Pi. So, at every value of theta 1 you have another variable which

runs 0 to 2Pi so it is like a donut surface of a donut right.

And this torus on this tour is the phase trajectory is doing this kind of thing it cannot intersect

itself so not all on the system and if the frequencies are in commensurate it is not hard to show

that any individual initial condition will whine tightly around this torus an infinite number of

times  never  intersecting  itself  but  coming arbitrarily  close to  its  initial  value.  And there are

theorems which will tell you what will be the density with which this typical point will cover this

torus and the answer in this case is in uniform we uniformly covered.

So, now you could ask what about recurrence what about if I start with a small patch here set of

initial conditions and I let the system evolved. Since it is quite regular it is not diverging or

anything  like  that  this  patch  will  move  around  neighboring  initial  conditions  will  remain

neighboring initial condition neighboring points as time goes along but this patch this little patch

will move around this torus and so on.

And you could ask when does a typical trajectory come back to this region? So, if I specify a

small cell in this phase space I could ask a trajectory which starts at this point how long does it

take to come back that is it how long on the average does it take to come back. So, we already

have our first example of a recurrence problem in which you have quasi periodic motion and you

are asking what is the mean time of return to this patch sometimes.

It will of course depend on the size of this patch possibly it will depend also on what is the

resolution with which you made this patch etc all these details exist can be worked out. But the

question is what is the mean time over which it comes back this problem has a closed answer it

has a straightforward and simple answer based on number theory which we will not talk about

right.



Now but you see the first of these recurrence problems appearing but we want to go to a more

general case I want to go to the most general case possible and say you have a phase space some

complicated dynamics is going on there is a complicated phase trajectory going on and now in

this n dimensional space I identify some small cell and say suppose I start in this cell the system

starts in this cell initial conditions specified to some resolution.

How long will it be before it comes back will it come back at all is a question and if so how long

will it be on the average before it comes back? So, it is a very, very general question of which

these are very simple examples this cause I periodic recurrence and so on. But we are asking an

extremely general question.
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And here is how one can make some headway and answering it. So, schematically let us suppose

that we have a big phase space since I cannot draw an n-dimensional space stations draw this

blob and say that is the phase space in which the system is. And typically a trajectory will do

some very complicated and meandering in this directly I have shown it to be intersecting itself it

is not supposed to intersect itself which is just a projection on the plane of this trajectory.

So, it is like a ball of wool is never going to intersect itself but it will come arbitrarily close to

itself and I would like to know something about recurrence. So, what I do is to simplify the

problem by saying look I have some resolution with which I can identify points. So, I have some



coarse graining by which I identify volumes in phase space. So, I partition this phase space into

cells and this is a typical cell.

This whole thing is a typical  cell,  cell  in phase space and I do not keep track of individual

trajectories at all. I simply ask is my representative point in the cell or is it not in the cell where is

it with respect to the cell. So, I give a label to each cell c1, c2, c3 etcetera and ask at a given time

is my typical trajectory is any factory that I am following in which cell is it. And so, so I work to

that resolution and I also do this with some sampling time.

I generally do not look at the trajectory at all times I have no information I do not solve this

problem exactly I simply look at it as a discrete in discrete time with some time step then the

dynamical problem that I have becomes slightly different.

(Refer Slide Time: 22:09)

It becomes not a flow but a map so now what I have is a situation where with typical point x at a

given time n is = some functions are nonlinear function in general of this point at time n – 1, so

this is discrete time. In other words instead of following the trajectory I am following this these

are the points where it is at discrete time steps. And then I ask where is this, which cell is this

point in itself? 



So, now I have essentially I replaced a continuous trajectory by a symbolic dynamics I simply

say that my point to start with is in some cell c let us call it c1 it jumps to cell c3 when it comes

to c7 then it jumps to c6 etc so I have a string of letters following a typical trajectory. Saying it is

in this cell or that cell of this cell or that cell and the question asked is what is the mean time it

takes to come back to the original cell, but it started from.

In the most complicated situation possible neighboring trajectories will actually diverge and have

very different histories because the system could be chaotic. In that case you have exponentially

sensitive in system sensitive to initial conditions exponentially. So, initial trajectories which are

very close to each other initial phase space point will diverge typically exponentially till they

become as for big as a space  itself.

Separated as much as the phase space itself so we will look at cases where the full phase space is

bounded some bounding volume and we will now look at a case where we assume that this

process has been going on for a long time there are no reasons of a space where the system gets

stuck and the system is moving about in a portion of a space or the whole of a space with some

invariant measure or probability with some steady state probability. 

So, the idea is that the trajectory has gone on for a long, long time and now it is visiting different

regions of phase space here with probability measures which do not depend on time. This is the

equivalent of saying the system is in thermal equilibrium in all the equilibrium problems we

looked at right. So, there is an invader measure just as the Maxwellian distribution of velocities

is the invariant measure for velocities for an ideal classical gas. Similarly we assume there is

some invariant distribution. 

Now what is meant by this distribution, so this is equivalent to saying that which each cell Cji

associates a probability? That the system is a priori in that in other words I should close my eyes

I put pen on the paper and asked p of Cj is the probability that the point it is Cj that the typical

trajectory hits Cj right. What would this be actually well think of it this way if I toss a coin and I

say the probability of a head is half what I really mean is if I toss the coin in n times the total



number of times that I get heads to the total number of tosses approaches the limit half that is

what is meant by the a priori probability.

In exactly the same way P of Cj would be the actual fraction of time that a typical trajectory

spends in the cell Cj over an infinite amount of time you take the fraction of the time that it

spends in Cj and that of course is going to be the apriori probability that the system is going to be

that the representative point is going to be in cell Cj. So, we have an invariant measure it is like

the stationary probability.

Now in this case in contrast to noisy problems where we had thermal fluctuations or some source

of fluctuations I have to specify for you the statistics of the noise whenever we did Brownian

motion or random box headset I had to specify for you the distributions each time it was put into

the system but here the dynamics generates this P of Cj because in principle it is deterministic

dynamics and there is nothing outside that is coming in.

So,  from that  from this  equation  I  should be able  to  determine  what  this  invariant  measure

actually is explicitly we should be able to do that right from the equation itself. Now how is that

done okay and that is a little trick it is called the Frobenius Perron equation. And let me tell you

what it is because idea is extremely simple.
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Suppose you say that at any given time in n the density of points in this space at any given time

let us suppose off when you have this invariant measure is some Rho to start with I specify an

initial distribution of initial conditions. And let us suppose that is Rho 0 at time 0 of x and I ask

what happens after one time step what happens to this density. Well if you start with a point here

and it is on a trajectory going there after one time step it is there.

If I start here and is the trajectory going here it is here etc, so this density spreads out into some

other density after 1, 1 unit of time let us call that Rho 1. So, I want to find out what is Rho 1 of

x given Rho naught of x how one approach this. Well the point the point y goes to the point x in

one time step where x is = f of y by this rule. So, if you give me a point y it goes to f of y and I

call that the point new point x at time one right.

Therefore it is clear that Rho 1 of x must be = an integral over dy Rho naught of y you are

integrating over the initial distribution but each y goes to an x which is given by f of y. So, this

has got to be multiplied by a delta function of x - f of y there is a delta function in all the

variables because that is all it can be we know where each y goes deterministically completely.

Therefore the distribution has to be a delta function.

This  way and now you tell  me the  initial  value  itself  was uncertain  there was many, many

possibilities there was a distribution you prescribe and therefore that distribution goes to a new

distribution which is = this given by this. Now this is a tall order to compute what this is because

remember that you are integrating over y but the Delta function is in x, so you have to invert this

function and in general it is nonlinear so it is multiple valuable.

So, this is where the complex it is but it in this doing it even in the simplest one dimensional case

is very, very non-trivial for nonlinear functions okay. But in principle that is what it is but now

you can extrapolate this in time and ask what is Rho n of x given Rho n - 1 of y again the same

rule so at time n - 1 if you had this then at time n you have to have this density. Now we want the

invariant density the equilibrium density the t go into infinity limit.



So, what would that correspond to what limit should I take here. Well time has been replaced by

discrete time n so I need to let n go to infinity but when I let n go to infinity I call this whole

thing this is identically = Rho of x, Rho invariant I do not put a subscript this is the invariant

density and that is got to be = integral dy Rho of why the same Rho of y Delta x - f of y the same

Rho because it is not supposed to change.

It is exactly like the Maxwellian distribution of velocities in this rule. If I take an instantaneous

snapshot the particles are all distributed by the Maxwellian distribution of velocities an instant

later the individual velocities have all changed but the distribution has not changed it is exactly

the same distribution. Although different particles will occupy different parts of this distribution

now and that is exactly what has happened.

So, it is the same Rho of y which has to fold back under this time evolution to give you this guy

here ok now you can see that this is now an equation for Rho of Y determined by the dynamics

and the dynamics is here so this specifies the dynamics completely the nonlinear dynamics. And

this  says under that  dynamics  find that Rho which is  invariant  finds,  that  function which is

ingredient this is an integral equation for Rho.

This  is  the kernel  of this  integral  equation in n dimensions  of course it  is  a singular  kernel

because there is a delta function sitting here. And it is a homogeneous equation because there is a

Rho here and a Rho here same Rho. So, it is a homogeneous integral equation but with a singular

kernel and as you know for a homogeneous equation you can multiply it by any constant and it

will still remain a solution.

If you have a solution already so in that sense Rho is only determined up to a multiplicative

constant how will you find what the constant is by normalizing it, as always. So, you would also

have say if this whole thing if this whole phase space is some gamma you would say integral dx

Rho of x = 1, so that will fix the overall constant and this equation is called the Frobenius Perron

equation  not  guaranteed  that  it  always  has  a  solution  not  guaranteed  that  always  has  a

normalizable solution.



That it should be non-negative Rho of x cannot be negative being a density probability density

but this thing here is called the invariant density. When I multiply Rho of x at any point x by a

volume element dx in this phase space I get the invariant measure of this set so I get d Mu of x =

Rho of x a measure is more general than a density because there could be points Delta functions

there could be points where there is a finite probability at one particular point and so on but we

will use the use language of the density itself.

You and then what is the invariant measure of a given cell of the whole cell. So, what is Mu of Cj

what is this = it is = an integral over C j dx Rho of x of course and the total Mu of Cj summed

over all the j's is going to be 1. So, now we have in place the machinery we are supposed to be

given a deterministic evolution equation f of x we are then supposed to discover the solution to

this equation by solving the Frobenius Perron equation it is possible.

Getting an invariant density and then computing the invariant measure of each cell by integrating

over the invariant density okay. Now we have assumed their Ergodicity in the sense that we have

said given enough time a typical trajectory will spend time in all the possible cells does not get

stuck anywhere then the property of Ergodicity is equivalent to saying that the longtime time

averaged over a single trajectory is equal entirely equivalent to an ensemble average with this

invariant density. So, this is the whole point of this discussion.
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In other words if you have if you have some function let us call it something else Phi of the

dynamical variables x and I want to find out what is the mean value of this Phi of x over a long

time okay. Then what I do is to take Phi of x n at time n the any representative point is at x sub n

I take this Phi of x sub n sum from n = 0 to capital N 1 over N and take the limit as n tends to

infinity that is the long time average of this function of the dynamical variables some given any

given for any function of the dynamical variables right.

But if the system is Ergodic then this time average can be replaced by an ensemble average. So,

this would be entirely = integral on the right hand side and what should I write here integral dx

over the phase space Rho of x Phi x this is a Ergodicity, this is the property of Ergodicity that the

time average is = the ensemble average. This is the whole point of statistical methods since you

cannot do long time, time averages if the system is chaotic.

You cannot compute what xn is given x naught with any precision then you resort to the fact that

you do not need it you use if you can discover them invariant measure that is it. This integral is

guaranteed to be that. So, that is the way one way of handling chaotic systems where there is so

much  sensitivity  to  initial  conditions  that  any  initial  error  gets  exponentially  amplified,

multiplied in time and after a while it is nonsense okay.

But if you find the invariant measure you can circumvent that by using their Ergodicity property

to rewrite it in this form. Exactly as in equilibrium statistical mechanics if you cannot find, you

want to find out what is the pressure of the gas in this rule on a wall you cannot find or track

individual particles and find out what the force they are exerting on the wall is that mean instant

of time. Instead you say the system is in thermal equilibrium I discover the probability measure

with which particles moving with various velocities.

And then  I  compute  the  average  ensemble  average  with  some equilibrium on some density

matrix  okay. In  exactly  the  same philosophy you replace  this  time  average  by an ensemble

average here. So, everything is contained in this fellow. Now comes the question which we want

to answer which is given this phase space and I partition it into cells here is a typical cell see the

questions I want to ask out the following.



I am assuming that there is an invariant measure and I know this measure, so I know it for each

of the cells so I know Mu of C this by the way is the same as saying the probability that a typical

particle is in the cell C its independent of time because it is invariant. And the question asked is

suppose I tell you that I start at this point at t = 0, n = 0 what is the statistics of the time for which

I stay in this cell without jumping out.

I stay for a random amount of time because if I start at 1 point I may jump out after 1 time step if

I start somewhere else I am a jump out after 10 time steps etcetera. So, I want to know what is

the statistics of the state probability the next question I want to ask is what is the statistics the

rate at which I escaped from the cell and the recurrence problem corresponds to saying what is

the statistics or probability distributions of the time at which I come back to this cell you.

So, I have Sojourn which is stay in some given region of a space then I have escaped which is

like a first passage out of the system and the boundaries of the system and then a recurrence back

to this system. So, we need to discover the statistics of these quantities.
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In particular we want to find out the following I want to find the probability that in the case of

escape for instance I want to find the probability that if you start from the cell at time 0 in our

notation now. I would like to find the probability that at time n I escaped out of this cell. So, I



want see an escape so escape is the complement of this the rest of it let me call see Taylor equal

to compliment of C that is the rest of phase space.

So, here is my designated self and the rest of phase space I call C tilde, so I want to escape at

time n so at time n I am out in this fashion but before that I was still inside the cell, so Cn - 1 dot

C1 given that I was in this cell at time 0, I want to find this joint probability for general values of

n. What would the recurrence probability look like? So, I want the probability let us call it R sub

n this is the probability that I start with C in 0 and at time n I come back, so Cn but till then I was

out so this is the probability a master recurrence probably for the cell C.

And that is the quantity we are aiming at to compute on the way we will compute the escape the

Sojourn etcetera probabilities but this is the one we want to compute. What is the mean time of

recurrence then? Remember we are in discrete time so n is time first I got to make sure this is

normalized  so I  got  sum over  all  possible  n  I  should  get  1  because  recurrence  in  mutually

exclusive events.

If I say I come back up for the first time after three steps that is a distinct event from saying I

come back up to 4 steps these are all distinct guys. So, this has to be a normalized probability by

sum over n and then i multiplied by n and wait it with this P, I get the meantime of recurrence to

the cell C. Similarly if I say I stay in the cell C at t = 0 at n = 0 and I escaped at n = 1 or a escape

at n = 2 or 3 etcetera these are all distinct mutually exclusive events. 

If you escape a 3 you could not have escaped at 2 or 1 at time 1 therefore this too is set of

mutually  exclusive  event.  So,  which  you  can  assign  probabilities?  Sojourn  is  not  like  that

because if I say I am staying in this cell till time 10 it implies you have already stayed till 9 right.

So, different Sojourn time probabilities are not mutually exclusive events. So, we will not be able

to normalize Sojourn time probabilities.

But we be able to normalize escape time and recurrence time probabilities. So, that is worth

bearing in mind so I will do this next time tomorrow will write down all these probabilities and

write it but let me start the initial step for this.
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And that is the following and the entire trick lies there so is the target clear we assume we have a

dynamical system with some n dimensional phase space some complicated dynamics going on

there in general not regular not periodic not cause a periodic possibly chaotic. We have a region

of a space or the whole of a space in which this system remains forever once it is got in, and

there is an invariant measure.

It is a pre-assigned probability distribution perhaps discovered from solving the Frobenius Perron

equation or numerically all you have to do is to run the trajectory for a long time and find out

what is the fraction of the time that it stays in different cells on the average and that gives you the

R priority  probabilities  are invariant  measure.  Then having got that  you want to answer this

question what is the mean time of recurrence to a given cell okay.

And here there is a theorem called the Poincare Recurrence theorem and I will state this theorem

will prove it the theorem says the following mean time of recurrence to cell C is = 1 over the

measure of a cell in time steps of one group taking time and this is called the Poincare recurrence

theorem. It is remarkable how general this theorem is the only thing you need to prove it is a

Ergodicity.



If  the system given enough time comes arbitrarily  close if  every representative  point  comes

arbitrarily close to every point of this space accessible part of a space then you are guaranteed

that the mean time of recurrence to cell C is 1 over the measure of this cell. By the way if you

have a single point the measure of that point is 0 so it will never come back and that is equivalent

to saying the motion is not periodic in general.

But it will come arbitrarily close to it and as soon as the cell has got a finite extent this is it the

smaller the cell the longer it takes to come. Of course if the cell is the whole of phase space the

meantime is 1 because it is there already so in that limit to its okay. But this is a non-trivial

theorem here and it is remarkable in its generality and you will see that the proof is really very

elegant and does not require anything more than a Ergodicity.

But you exploit this Ergodicity property carefully the first step in the proof is the following. We

want to focus we want to  look at  recurrences  and so on to this  LC so let  us start  with the

compliments of it. And let us define W so any compliments quantity I put with a tilde on top let

us define this  quantity  to be = the probability  that you have a Sojourn outside,  so you start

outside the cell at 0 you remain outside the cell at 1 dot, dot, dot.

And  you  remain  outside  the  cell  at  time  n  –  1  n  greater  than  =  1  define,  these  are  joint

probabilities  not  conditional  joint  probabilities  what  is  W1 it  is  P of  C tilde  at  time  0  but

remember  that  we  are  talking  about  the  invariant  probabilities.  So,  this  time  argument  is

irrelevant it is = P of C tilde or Mu of C, so that is true we define a sequence of numbers W1,

W2, W3 etcetera where W1 is just the measure of the complement of the cell see that you are

interested in.

Let us also define W0 tilde by definition = 1 this just makes the notation easier so let us put W 0

tilde = 1 what is the Sojourn probability now that you stay in a given cell C tilde in this case till

time n what is the Sojourn probability? 

(Refer Slide Time: 50:56)



Let us call that H sub n tilde because it refers to the compliment it is the probability that your C

tilde at time n C tilde at time - 1 dot, dot C tilde at time 1 given that you are in C tilde at time 0

given that now we are talking about actual physical probability so they have to be conditional

probabilities if I tell you I start in the cell C tilde in the in the compliment C tilde at 0 and I now

ask what is the probability that I am still there at time n and I never went in to C at all.

Well can I write that in terms of this remember this is a up to n - 1 and that is up to n and it is a

conditional probability. So, if you multiply this probability by P of C tilde then you get the joint

probability right so since if not multiplied it you have to divide this guy here so if you multiply

you are going to get P of C tilde n from C tilde of 0 but you call up to n - 1 Wn. So, what is that

quantity of going to be Wn + 1?

So this is = Wn + 1 tilde but you must divide W of C tilde which is = W in other words if you

compute  this  set  of  numbers  you  have  computed  that.  What  should  be  the  normalization

condition on H sub n, is there a normalization condition,  no because sojourn is not mutually

exclusive different n’s are not mutually exclusive events. So, there is no normalization condition

on this.

But can we say something about the w ends if the system is Ergodic it is clear that Wn must be a

decreasing function of n this is the probability that it just stays in C tilde without entering C and



if it is regarding sooner or later it is got to enter C. So, this is a decreasing sequence starts with

the value W1 tilde or even with the value 1 if you like this is a number less than 1 and decreases

till at n = infinity it should go to 0 right.

If it is Ergodic it should go to 0 we know that so we are going to use that fact will use that fact

with some with rigorous theorem and analysis to try and discover what the escape probabilities

and then what the recurrence probabilities. So, the arguments are very, very general they do not

really involve any detailed details of the dynamics at all but they are powerful precisely because

they are so general and tomorrow we will do the rest of this okay.


