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Now we looked last time at some properties of first passage times and I would like to elaborate

this a little bit. I mentioned the so called backward Kolmogorov equation let me show you what

it  is  explicitly  and  how  you  can  get  information  on  first  passage  times,  first  passage  time



distributions using the backward Kolmogorov equation for instance. Now there are several ways

of looking at this problem of finding first by such times and the canonical problem.

Which we looked at was first passage from the origin to some point X for a particle undergoing

Brownian motion on the x axis. We already found the distribution of the time that it hits the point

X for the first time. We discovered this distribution it was a Levy distribution I want to show you

a little bit more about how you attack first passage time problems in general. In particular we

would like to look at it on fractals which I mentioned earlier but before that let me show you a

couple of ways of finding first passage time distributions.
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The first of these has to do with what is called a renewal equation for the first passage time and it

goes  like  this  it  is  most  comfortably  illustrated  using  discrete  valued  Markov  process.  So,

remember that for a discrete valued Markov process we label the states i, j, k  and so on and we

will assume the process to be stationary and then the quantity of interest is the probability P that

you are in some state k  at time t given that you started from some state j at time 0.

For instance this was the conditional probability and kj etc label the states of the system okay

now in particular if for example you have in mind a lattice on which the diffusion is taking place

or random walk is taking place so that these states are ordered in some sense then you see there



is a simple equation which does the following if these are the states that we are talking about and

let us suppose that this is state j and this is state k out there j is less than k.

And we would  like  to  know for  a  system starting  in  state  j  what  is  the  first  passage  time

distribution for it to get to some state i in between. So, we have in mind this geometry and the

observation is that there is no way that the system can go from j to k without going through the

state i in this geometry. So, the probability that it is at the state k at time t given that it started j at

time 0 this must be = an integral over intermediate times dt prime is 0 to t the probability that it

is at k in the time interval t - t prime from the intermediate state i times the probability that it hits

the state i for the first time at time t prime given that it started from j at time 0.

As you know our notation has been such that we omit this. So, this is called a renewal equation it

says the probability that you start at 0 at t = 0 in state j and you reach the state k at time t must be

= the probability that you start at j and hit the state i for the first time here at some time t prime it

is in between 0 and t and then the rest of the time you spend in propagating from i to this final

state k okay. 

Remember this is a first time probability where as this does not say anything like that at all in

between it could have gone past k it could have gone either way any number of times and then

ended up at the state k. But this says that you did not hit i before t prime and this is called a

renewal equation this thing renews itself each time you as if the whole thing is starting from the

point i it is now propagating to t.

So, it is called it is an example of a renewal equation it is satisfied by a class of processes even

more extensive than just Markov processes. But this is immediately going to tell you how to

compute this quantity because notice that this is in the form of a convolution. So, if I define

Laplace transforms with respect to time then it immediately implies that P tilde of k  s let us call

the transform variable s j must be = P tilde k  s starting from with i and then Q tilde of i s starting

from j.



So, the Laplace transforms of these probability distributions actually multiply each other because

it is in a convolution form. So, this implies of course that Q tilde of i s j must be = the ratio P

tilde of k s j divided by P tilde of k s i. Notice that the left hand side has no k dependence no

dependence on this state at all, so it could have been any state greater than i to the right of i and it

is still valid.

So, you might ask how is it that the k dependence here cancels out here and there is a theorem

for Markov processes which says that if the process is stationary in time then this cancellation is

guaranteed. In the sense that this Laplace transform here is the product of a function of j and s

and another function of k and s, so the function of k and s cancels out top and bottom I would not

prove this that theorem it is not very hard to establish but it can be shown that there is no k

dependence.

So, any k this  of course you are supposed to find by solving the master  equation for P the

Fokker-Planck equation for instance or the master equation and then once you have that that ratio

is guaranteed to give you the first passage time distribution. That is inverse Laplace transform of

this quantity will give you Q of i t for any given j. so, that is a very common method very simple

and straightforward method of finding the first passage time distribution.

Now some things about this first passage time distribution should become very clear one of them

is what is this thing here this this guy here remember is integral 0 to infinity dt Q e to the -  s t Q

of i t from j. So, that is the meaning of this Laplace transform the definition here. What should

the value of this Q tilde be at s = 0?
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Should be = 1 because it says if you integrate over all time this is the probability that you hit i for

the first time at time t and if you integrate over t from 0 to infinity and you get 1 it means that the

first passage from the state j to the state i is a sure event. So, the way to check that first passage

does occur at all and it is a sure event is by doing this is by finding this Q tilde and finding out if

at s = 0 it is = unity or not.

First passage namely the probability is = 1, if it is less than 1 then you know that the first passage

is not a sure event it is a probability so it lies between 0 and 1 you have integrated over all t and

added up all these probabilities okay. Now notice one thing notice that this quantity here says

this t is the first time of first passage from j to I, so different t's are mutually exclusive events, so,

one particular value of t and another particular value of t first passage at 10 seconds excludes

first passage at any other time okay.

So, they are mutually exclusive events therefore it makes sense to add them up you get the total

probability that at some time or the other you will go from j to i and that is what is normalized

okay okay. I will give you an example of a case where it is less than 1 a very simple case where

it will turn out to be less than 1. Similarly you could ask what is the time of return to the origin

for example that is the recurrence time and we will come to that a little later. It is intimately

connected with the first passage.



But we will come to that a little later, what is the mean time of first passage from j to i what

would be the definition of that B. So, this is the Laplace transform and we can ask mean first

passage time from j to I, how is it defined in terms of this queue you multiply by t and you

integrate over all t right. So, this by definition P j to i = integral 0 to infinity dt t times Q of i t

that is the definition assuming that it is normalized to unity.

This is the definition can I extract that from the Laplace transform derivative with respect to s

will pull down a -  t so I put another - sign and then I said s = 0 right. So, it is clear that this is

also = -d over ds Q tilde of i s j evaluated at s = 0. So, that is a very convenient way of doing

things. You work entirely in terms of Laplace transforms you find out what this quantity is by

this ratio and then differentiate it for the first time once with respect to s set s = 0 what a -  sign

and you have got your mean time okay.

Higher moments can be found similarly you differentiate each time you are going to pull down

on bind - t downstairs so this going to give you higher moments as well. Here is an example of

when the event of first passage from one point to another is not a sure event.
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And that has to do with the following on a line we can do this on a linear lattice as well on a line

for example or even on this lattice let us do it on this lattice itself. So, you have here is the state i

and here is the state j and here is the state i to the right of it and let us say that he does there is a



random walker who does random walk by jumping to the right one step with probability P or

alpha I have been calling it alpha and to the left with probability beta a biased walker.

And the lattice extends an infinite extent on either side this side does not matter but this side

distance all the way to infinity then we are sure we can prove this can be proved that if alpha is

bigger than beta first passage from j to i is a sure event. So, in this case it says FP t FP from j to i

is a sure event if alpha is greater than or = beta. Even if it is = it still is so but if alpha is less than

beta then it is not a sure event the probability that you go from the state j to a state i to the right

of it against the bias is the problem is less than 1 okay.

It turns out to be 1 -  mod alpha -  beta only in the infinite lattice let us say recurrence probability

to the origin but the first passage thing is related to it very closely related to it okay. But if I put a

boundary here at any point and put a reflecting barrier so that the system does not escape to -

infinity but it stays within this region. Then even if there is a bias in this direction it is still a sure

event because the system is then analytic in this right.

To the right of this variation it will visit all points but the catch is if alpha is = beta in this case

unbiased case then the mean time to go from here to there from any j to any i is infinite. So, the

interesting thing is the event is sure but the average time it takes to happen is infinite it diverges.

And I will show you where this divergence comes from we are going to look at recurrences a

little bit and I will tell you where the divergence comes from.

What  will  that  imply  that  will  imply  that  this  fellow  here  actually  diverges  this  derivative

diverges and you can sort of tell what is going to have when it is going to happen this integral

therefore diverges this integral does not. If you remove this and integrate which is equivalent to

this it does not that is a sure event. So, the integral of Q itself converges but the first moment of

Q diverges.

You put a t there then because of the range going up to infinity diverges and that derivative

diverges what would that mean in well in general if you say that if you say that Q tilde has the

following form this fellow here is; if I expand it in powers of s if it is analytic at s = 0 the first



term will be at s = 0, and that we know is 1 if it is a sure event right, so this is 1 and then the next

term if it is an analytic function will be of the form + s times dQ tilde over dS at s = 0 + higher

order terms.

Now what does it mean to say that this guy here is infinite this diverges what will it imply for

this function Q tilde if for example Q tilde goes like 1 + order square root of s rather than s you

differentiate square root of s you get 1 over square root of s in the denominator and that blows up

right. So, the symptom of this the fact that the time of first passage will become mean time will

become infinite will show up in the fact that the small s behavior of this Q tilde will not be

analytic in the neighborhood of s = 0.

Because if it is analytic it is got to be an s here by Taylor series and then this guy is finite that is

it but the moment you have a behavior which goes like 1 + some power of s less than 1 some

positive power of s less than 1 you know that it derivative is going to blow up immediately and

then there will be no sure first by no mean first passage time which is finite okay. So, we will see

what these things look like in specific instances okay.

Similarly for the higher moments so keep this in mind that the Laplace transform is going to be a

very useful way of deducing the first passage time distribution itself. 
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The  other  method  which  is  very  common in  continuous  Markov processes  is  the  following

incidentally we can write down though just to be sure just to be sure that we understand what we

are talking about we can write down the first by system distribution in some cases which we

have already looked at like random walk, biased random walk online or for that matter diffusion

on a line in the case of diffusion on a line so you have continuous in the x-axis and say without

loss of generality.

 I start at some point X naught and I want to hit some point X for the first time the diffusion

occurs on the x axis infinitely to the left here then the first passage time distribution now it is

continuous the continuous process. So, the first passes time density, q as a function of that you

are going to hit the point X for the first time at time t starting from X naught. So, you will hit X

between t and t + Dt this is the density probability density of this random variable t.

This quantity is = what for normal diffusion what does it look like this is the levy distribution

which we have been talking about right. So, you have the usual diffusion propagator so it is X -

X naught whole squared over 4 Dt and then you have square root of 4 PI Dt right. But you also

have an X -  X naught over t and that is how you get a t q to the power half and that gives you a

levy distribution in t okay.

This is a stable distribution with exponent half as I have been saying throughout in t so it is just

multiplied by this and that is it this looks almost like a velocity. This is the distance you got to go

and that is the time what is the mean time now what is the mean time in this case infinity and

how do we see that immediately up to infinity you have to multiply this by t this is going to be

your mean time to go from X naught to X by the way if X had been to the left of X naught and

you have an infinite expanse on the right then this is modulus of X -  X naught.

So, it does not matter which way you know there is no bias in this walk. So, what is this integral

given this what is it going to be infinity because what does this do at t = 0 what does this whole

thing do at t = 0 what is the limit of this as t goes to 0 this factor goes to 0 very strongly it is like

e to the - positive number over t and this goes like 1 over t to the 3 halves that blows up but that

exponent goes to 0 much faster e to the - 1 over t goes to 0 extremely fast.



So, the product goes to 0 no problem over that what happens at infinity is that this goes to unity

but this integral goes like 1 over t to the 3 halves. So, you are stuck with an integral which goes

like up to infinity dt over t to the half because there is a t multiplying it to find the first moment it

cancels this and leaves that alone and this is infinity. It diverges like square root of the upper

limit so this is = infinity.

So, this is the first passage problem in which you have an sure event it is for sure that it is going

to happen because it is possible to check this is a normalized in levy distribution and it is integral

= one but at the same time the mean time is infinite. So, in this instance if you actually computed

the Laplace transform of this guy here you will discover that there is no analyticity at s = 0. So, it

starts with one and the next term is of order square root of s and therefore if you differentiate you

pull a 1 over square root of s and you put s = 0 it blows up which you can see directly from here.
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Suppose you did this on a lattice now we talked about discrete space then too we can write down

the first passage time distribution no problem on a lattice etc. So, let us say you start at some

state j and here is the state i we can write the solution down for this problem without loss of

generality let us put the state i to be at 0 for example and I ask put j = 0 and I want to know what

is the mean time to go to this point i for the first time.



Well first I need the solution of the probability distribution itself and that as you know if you had

a bias to the right alpha and a bias to the left with greater, then the probability that you are going

to B at the state i at time t given that you started at origin at time 0 this quantity we found what it

was? Let us not call it i, lets i do not want to confuse the square root of -1 let us call it some other

state k,  some other point k.

We wrote this down explicitly we found what the answer was right and what was that? Let us say

we are in continuous time but discrete space and then the walks are happening with some rate

lambda, pardon me; this that is the scale and distribution but we need to know what the exact

damping factor is in front right. So, if you recall this is = e to the -  lambda t i k  of 2 lambda t

square root of alpha beta and then there was an alpha over beta to the power k  over 2 that was

the distribution yeah quite right it is related to a scale M distribution it is the difference of two

Poisson processes.

A right jump process with rate lambda alpha and the left jump process with rate lambda beta and

this was the distribution. Exactly as in this case it turns out that the corresponding Q of k t 0 is =

k over t times this guy times the same thing. It is almost like distance over time now things are a

little interesting because in this case it turns out that you could have a damping factor because of

this when alpha is not = beta. So, what you need to do is to integrate this over t and find out if the

integral is = 1 or not.

And my claim is that if alpha is bigger than beta or = beta the integral is 1 but if it is less than

beta the integral is less than 1okay. So, if you have a forward bias you are sure to get there if you

have no bias you are sure to get there but if you have a negative bias in the other direction then

the probability of getting to that point on the right is less than 1. So, it is not a proper random

variable it is not normalized to unity.

You can still say all right let us find the probability that it is going to reach that point and take the

mean value mean time to reach there over those realizations that is right it makes sense to do that

but that is a separate exercise. What will happen when there is no bias at all? We saw here that



when there is no bias the first passage was sure but the mean time was infinite. Now when you

go to a discrete lattice that should not change really that property should not change.

We should be able to see that directly from here and you need you do because you can see that

when alpha is = beta = half this 2 cancels out you get i k of lambda t asymptotically that goes

like e to the lambda t over square root of lambda t, so that factor e to the lambda t cancels out

and you get a 1 over square root of t here. When you put this in here you get a 1 over t to the 3

halves multiplied by t you are back to 1 over t to the half or diverges in exactly the same way.

So, whether it is discrete or continuous does not matter I am still going to B divergent. Now in

the case of continuous processes there is another way of finding the first passage time and this

has to do with the backward Kolmogorov equation. 
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So, now let me mention what that is and show you how it is related to the first passage. If you

recall we introduced the forward Kolmogorov equation or the Fokker-Planck equation by saying

if you got a random variable which satisfies this sort of equation f of x + g of x times of t where

this  was a Gaussian white noise,  generally  two equation of this  kind.  Then we said that the

probability p of x t starting from x naught at times if t naught.



If it is stationary for instance a necessary condition is that f and j should be independent of time

but it is not sufficient as we know they are going to; let me do this for a stationary process

although you can write the same thing down in general. This quantity here satisfies the following

equation there is an x f of x p of x t, let me write it out because you will see what happens in a

minute given next mod and the task is to solve it with some initial condition and some boundary

conditions okay.

This is the forward Kolmogorov equation which we also call the Fokker-Planck equation it is a

general  diffusion process specified by this  stochastic  differential  equation corresponds to the

Markov process continuous Markov process corresponds to this Fokker-Planck equation for the

conditional probability density. Now it turns out that you can also show from this same equation

that there is another equation satisfied by this quantity p.

But with these regarded as the variables rather than the final position and time right and that

equation reads Delta over delta t naught with a -  sign p of x t given x naught t naught that is = it

is the adjoint of this operator and that becomes a + Delta over Delta x naught times an inside f of

x naught video p of x t x naught t naught sorry and it is a joint of the guy so yeah f of x naught

Delta p over Delta x naught + of g squared of x naught.

Now you have so far given x and t this is the equation satisfied in terms of the variables x naught

and t naught as the independent variables this is called the backward Kolmogorov and now you

will see how this is going to help us find first passage time distributions to go from some x

naught to some point x. 
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See what  happens is  the following went back to this  thing here notice in particular  that  the

Ornstein Hollenbeck process is included here for the Ornstein Hollenbeck by process this g was

a constant and this f was just a linear function of just x constant times x with a -  sign maybe

okay. Now the way it works is like this you have x naught here and you have x here at this point

and I had like to find out what is the time of first passage to go from this x naught to x okay.

What I have is this probability density but this says you are at the point x at time t on an interval

dx at the point about the point x at time t but you could have gone back and forth in between. So,

this is not the first passage time density it is just the probability density function right. On the

other hand if you say that I am going to end the walk at the point x the moment it hits x the

process is over what you have to do is to put an absorbing barrier there.

And then ask what is the first time it takes to hit the absorbing barrier and then that is that is the

point that is the first passage time we want right. So, you need to solve the diffusion problem

with that absorber at x, so the original Fokker-Planck equation this one has to be solved with the

boundary condition that  does not absorber  at  x and not  a  free boundary condition  it  says it

vanishes at x = + infinity or anything like that.

Now the way to do that the many ways of doing that after all this thing here requires you to

specify boundary conditions, so one of the conditions would be that the p is 0 at x once it hits x.



So, let us call that solution the absorbing solution, so let us put absorber just to make sure that we

know what we are talking about. This equation itself or this equation has many solutions to make

it unique you need to put boundary conditions and the boundary condition that is of relevance to

me is to put an absorber at x okay.

Let me assume that I can then solve this equation in principle. Then to find out what is the rate at

which the particle is hitting this point that is going to be my first passage time density. I want to

find q of x t given x naught this is what I want to find explicitly. I argue in the following way I

have this equation here the backward equation and I can write this Delta over delta t naught if the

process is stationary everything is a function of t - t naught. 

I can write d over dt naught as - d over dt, so I can write this side as Delta over Delta t p absorber

x t x naught t naught = this whatever it is on the right hand side. And let me call this x prime

right on this side I have f of x naught it is not Delta over Delta x naught p absorber of x prime p x

naught you know by the way I can get rid of this t naught now it is completely stationary, so this

is gone t - t not everything is a function of t - t naught you can set = 0.

So, this is gone p absorber x prime t and let us integrate both sides with respect to x prime from -

infinity up to x the final point x prime I am going to integrate up to x remember the walk ends

once it hits x. So, p is 0 at x and beyond that it is 0 but I now integrate up to x and I can put that

here this in. So, once I put that integral in let us call so I have integral -  infinity up to x dx prime

p of x absorbers at x  x prime t starting from x that is going to appear everywhere.

So, I can take this integral inside up to this point because its integration over x prime alone.

Similarly these are all x naught. So, I put that in here these are all x naught so I put that in here

and I end up with that quantity there and x prime is finished it is integrated over. The answer is a

function of t  is a function of x naught of course and of x where the barrier  is.  What is the

physical meaning of that quantity?

This says you start at t = 0 at x naught and you are integrating over the entire range up to x to the

left of x the probability density. So, what is this = you are integrating over x prime this final



point this thing here is = the probability that your random variable which is x at time t is less than

or = this quantity x if you integrate up to x right. Given that you started given that you started

with x of 0 = x naught that is the initial condition.

So, it is the probability that you started here and at time t you are still in this range. So, it is the

survival probability it is the probability that you are survived in the safe region to the left of the

track till time t. So, I should call this the survival probability in -  infinity x, so could call it for

example survival probability till time t, so it is a function of x it is a function of t and suppose a

function of x naught that the walk the walk is not extinguished, it is not been absorbed yet.

If this is the survival probability at time t what is the rate at which it is disappearing 1 - this is the

total probability right. So, what is the probability density the derivative the derivative of this

right so the derivative of 1 -  s of t is going to be the rate at which it is going to hit that point x.

Therefore Q of x t given x naught = d over dt 1 - d of x t x naught - ds over dt so, put a -  sign

here, -  here and a -  here right.

And you are guaranteed that this quantity is = q this guy here is = q of x t, so you have an

equation for this guy it is convenient to use Laplace transforms now then things become a little

easier  and you get  an  ordinary  differential  equation  here  in  x  naught  which  is  solved  with

suitable boundary conditions and you have your first by system distribution. So, this is how the

backward Kolmogorov equation will tell you what first passages are.

Not  just  for  the  ordinary  diffusion problem but  anything  which  has  an  sarcastic  differential

equation of this kind in particular things like they Ornstein Hollenbeck process. So, to tell you

when any point is hit for the first time what the time or what the distribution in time is of this

first passage. So, it is not saying anything like the prefer spices are sure or anything like that you

have to solve this to discover what it is for this first passage time distribution looks like.

So, I thought I had do this just to explicitly show you how for Markov processes you assume

Markov  processes  here  this  works  how  this  whole  thing  works.  We saw  that  on  a  lattice

yesterday we saw on a linear lattice how this system actually gave us the mean first passage time



we could solve it easily it was not; in the case of we found the mean first passage time but you

could actually find the distribution itself. 

We have  seen  today  that  explicit  ways  of  finding  distributions  the  problem  we  looked  at

yesterday was something starting at the origin and hitting either +j or - j barriers at two ends for

that  you  got  to  solve  the  diffusion  problem with  two  barriers  both  of  which  are  reflecting

barriers. So, you have to put two boundary conditions saying that the walk ends if it hits either +j

or - j and that is it.

So, one can write down explicit solutions but I had like to do a little more I had like to show you

we need to do fractals. So, I need to show you how the walk dimensionality changes and so on.

But before that let me introduce the idea of a random walk dimension because we are going to do

this on other structures as well  and I  want to show you what happens because when we do

anomalous diffusion become crucial.
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Yesterday we found that on a linear lattice of this kind if you are at 0 and you start at 0 and you

go to + or - 1 every time step you take nearest neighbor time steps then we discovered that to go

to a site either j or - j on this site for the first time t to go from 0 to +j or - j for the first time was

= j squared we show this explicitly starting from 0. So, to travel a distance j in an unbiased walk

it took you the square of this distance that was the mean time big dope.



So in  particular  it  means  that  to  go  twice  as  far  you need  4  times  as  long  that  is  what  it

immediately implies and that you can see right from the beginning you can see that if I start at 0

and here is 1 here is -1well the mean time it takes to go unit time step is 1 in this case because

you have in one time step you they go here or here in the matters over. But you want to go here

or here now it is a different story because you can go from here and back here in any number of

times you do back and forth and then you of course finally hit that for the first time right.

So, it now it is using the general formula j squared the answer is going to be 4 in this case right.

So, to go twice as far it takes 4 times as long that is this the model of this story right. 
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So, the question is how do, I define a walk dimension in this case so the way I do it is as follows.

You say that to go a distance r, r squared goes like t to the power 2 over d if I say this yeah then it

is clear that r1 squared over r2 squared if I take two different distances then the times taken must

be of the form t1 over t2 to the t over dw and this thing is called the random walk dimension.

Now if I say I am going twice as far then our two is twice r1.

So, this implies that 1 4th = t1 over t2 which says that 2 log 2 = 2 over dw or this cancels or tells

you dw, so we have a general  definition of what this  walk dimensionality is? It  says take 2

distances 1 of them twice the other find the mean times it takes to go to these two distances take



the log of the ratio divided by log 2 and that is = the walk dimension. In the case we just looked

at t2 was over t1 was 4 so we have got a 2 log 2 here and a log 2 here.

So, you had dw = 2 which we always knew because we have got r squared goes like t to the

power 1 so for standard random walks normal random walks the standard diffuser processes the

walk is = 2 always and this is independent of the dimensionality of the space in which things

happen Brownian motion by random back dimension is 2. But now we are going to look at

structures where this is not going to be 2 it is going to be greater than 2.

And the way it will happen is that the structure has brought little complications we will nooks

and crannies where the particle can get lost for a long time and change the dimensionality itself

we will look at that explicitly. But to set the stage for that we need to go back to what these

structures look like they are called fractals or hierarchical structures. And let me first introduce

you to these fractals and then we will look at specific examples.

So, let me first ask are you already familiar with the idea of fractals how many here are not

familiar at all before they do not know what effective is because if you do not know what a

fractal is then I will go ahead and use no not in detail okay. Let us give it let me give a quick

introduction to this business okay. Very roughly speaking what a fractal is there is many ways of

defining it is to start with some geometrical construction and then iterate this construction over

and over again.

In such a manner that the figure you get is self similar that with suitable magnification or d

magnification depending on how you look at it is exactly the same as the previous figure. Except

that there are cases when you have random fractals where the similar self similarity is statistical

rather than exact. It is a little bit like saying that if you have got a sufficiently irregular landscape

for instance and you go closer and look at it, it also is equally irregular in some sense if this

statistical similarity of this landscape which remains the same you would say it is a fractal or

some kind.



But the more precise definition is as follows and it takes into account the fact that these fractal

objects generally are not smooth objects because of the manner of construction they would be

irregular objects there would be curves if they are curves they are not differentiable. If they are

surfaces they are not smooth they are rough on all scales and so on. And the simplest of these is

the so called Koch curve the triadic Koch curve.

(Refer Slide Time: 51:25)

And the construction proceeds as follows. So, we start with a line of unit length and then you put

a kink on it so you take one third of this and then you put a kink on it so this is still 0 and 1 but

you put a little kink on it each of these is of size 1 3rd. So, here is one third here is one third is

one third years one third in length but now you got a curve of length 4 3rds okay. But the next

step you do the same thing you take this little segment and you put a kink on it that segment to

put a kink on it and so on.

This is still 0 to 1 but now the length of this curve has increased of course because this portion is

1 over 9 the original portion as you can see and there is 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 of

them so the total  length is now 16 over 9 and you keep doing this and it is quite clear that

between 0 & 1 you will now have an extremely kinky object which will not be differentiable

anywhere in the limit and whose actual length is infinite actual physical length will diverge.



And the question is how does it diverge with the scale factor. Now it is clear that this fellow is 1

3rd the original  guy so what  has happened is  that  the original  length unit  interval  has been

broken up into 4 pieces each which is each of which is 1 3rd the original piece so the scaling

down is by a factor one third but the number of pieces has increased and it is become 4 and not 3

but remain 3 then of course is nothing there going on right.

So, one can ask how is this length going to diverge as I keep increasing the generation in what

way does it diverge okay and that is measured exactly as I measured as I gave for the walk

dimension again by taking ratios in this case so at any stage if epsilon is your scale factor you

compute the log of the number of pieces of size epsilon divided by the log of 1 over epsilon,

epsilon is less than 1, so 1 over epsilon will have a positive log okay.

This will tell you precisely how the length diverges as epsilon as the generation increases in this

case the limit is very trivial I can take it at any stage and the reason is that it is a regular fractal

because each generations  relation to  the previous generation  is  exactly  the same as the next

generations in relation to this present generation nothing changes. So, these things do not depend

on generation at all this is a regular factor.

And in this case so this is called the fractal dimension there is a symbol for it d fractal and what

is that = in the present case this is log 4 divided by log 3 which is greater than 1. So, this curve

also called a snowflake curve if you did this with an equilateral triangle to start with. This curve

is got a name it is called the Triadic Koch curve has a fractal dimension of this. Now what is

meant by this thing this object here in the limit in the limit is a continuous curve.

It is in a bounded region of space then go very far right but its length is infinity. It is formal

length is actually infinite if we went on this curve over every nook and corner it is infinite right

so what is happening is that if you took a gross scale if you took a foot rule and measured its

length and here is my foot room it is got the least count of some one unit. For example then it

will be one unit fits here.



I put that on this and that resolution I still see 1, but if I have a foot rule which is got a better

resolution at least 1 3rd resolution then of course it is this and now I say the length is 4 3rd and if

I got a better foot rule even more refined the next time around it is going to be 4 3rd squared 16

over 9 and so on and the length is actually diverging with the resolution. So, these fractal curves

have properties that depending on how fine your measurement apparatus is you had a different

answer in any units whatsoever.

It is not just a question of choice of units in any units whatsoever. So, if the original length was 1

meter you really see 4 3rd meter here and then 16 over 9 meters there and so on. But you need a

finer resolution to do this now for a smooth curve this property is not there at all for a smooth

curve of this kind no matter what resolution you use you are still going to see exactly the same

length. The topological dimension of that curve is 1 and it is actual fractal dimension is also 1.

But in this case the topological dimension is 1 but the fractal dimension is greater than 1 and

what is this dimensionality has another name in this simple instance it is called the Box counting

dimension because we want to count a volume for instance what would you do take small cubes

and see how many cubes fit into this volume. If the cubes are sufficiently fine all nooks and

crannies will be covered and you will get a certain answer right.

Now  the  statement  here  is  how  many  of  these  boxes  do  you  need  to  count  what  the

dimensionality is and the box counting dimension is greater than the topological dimension it

turns out to be block 4 over log 3 in this case. So, this is the idea behind what a fractal is you

know for  our  purposes  it  is  a  geometrical  object  for  which  there  is  a  hierarchical  way  of

constructing it and the topological dimension of this object is in general smaller than the box

counting dimension.

But the box counting dimension is in all cases less than the Euclidean dimensions into which this

curve  is  embedded  this  object  is  embedded.  Here  I  have  drawn  it  on  a  plane  the  planes

topological dimension is 2 so the fractal dimension of this object cannot be greater than 2 it is on

a  plane  that  is  the  end of  the  story  right.  So,  it  is  bounded on the  top  from above  by the



topological dimension of the Euclidean space into which you embed it and it is bounded from

below by the topological dimension of this object.

And it is somewhere in between could be a fractal could be a fraction or any rational number of

this kind there could be cases when you have a fractal but that fractal has a fractal dimension

which is approaches 2 so there are constructions for these so called piano curves or space filling

curves for which the box counting dimension will approach to in the limit that is the maximum it

can be because these are planar curves right.

So, in that case it is not a fractional dimension the fractal dimension happens to an integer in

those cases Brownian motion does that. So, if I set a particle in Brownian motion on this plane it

does this  crazy thing like this  and I  can ask what is  the fractal  dimension of this  Brownian

motion of this Wiener process it turns out to be 2 in this case. So, it is actually space filling and

that is because you are guaranteed that with probability 1 every point will be visited and visited

infinitely often. So, the whole space is filled up given enough time okay.

This is an example of a statistical fractal nobody is saying that this is a regular fractal so you

cannot give a construction neat construction of this kind to do this but this object here is again a

fractal nevertheless and the fact that the walk dimensionality turned out to be 2 is linked to the

fact that the box counting dimension of Brownian motion is 2 this linked closely to that. 

Now what we intend to do is to look at another problem of a random walk on another fractal

structure which is a little more interesting than this guy is not very interesting because it is still a

linear object in this 1 dimensional object topologically. We would like to have something with

nooks and crannies and so on with some ramification more than one way of getting from one

point to another and then we will see if interesting things happen.

 You see in this problem to go from here to there you have to go along this curve at any stage so

it is not a very interesting problem in that sense. But if you had loops and things like that then

things become more complex and interesting.  So, we look at one of those fractals  called the



Sierpinski gasket as a kind of case study of a non-trivial fractal in which you can get answers

which depart from the usual Euclidean space.

By the way you can just as I define this fractal curve you can also define more complicated

objects  far  more  complicated  and  the  Sierpinski  gasket  is  one  of  them  and  then  we  will

generalize that to higher dimensions you can define any number of dimensions see what those

fractals look like. And then we do random walk on that to see what will happen this whole thing

okay.

But essential to the whole approach is the fact that this object is self similar. If you look at this

piece and magnify it, it is this to look at this piece and magnify it it is this or de-magnify you go

in the other direction you get exactly the same thing over and over again repeated okay. So, this

self similarity is the defining characteristic of a fractal object all the other properties may or may

not exist in equal measure.

But  the  self  similarity  is  completely  crucial  either  regular  self  similarity  or  statistical  self

similarity in some sense I will say more about this as we go along okay. So, let me stop here

today and take it from this point tomorrow.


