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Before we go on to our next example of noise what I had like to do is to backtrack a little bit and

put some of the things we have been discussing regarding the Langevin equation power spectra



and so on in perspective and make contact with the more general formalism called that of linear

response theory this is so that it gives you a complete picture of what exactly the generalized

susceptibility is.

What the power spectrum is and how it is related and so on and again the most convenient or

simplest  model  in  which to  do this  is  the  example  when looking or  throughout  namely  the

velocity one component of the velocity of fluid particle in fluid in equilibrium at temperature T.

So, we wrote the Langevin model for it we extracted a lot of information from about it about the

output process we proved that you had the on screen Hollenbeck process come out naturally and

so on.
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But let us put this in a slightly more general footing and see what happens just to refresh your

memory. The Langevin equation that we wrote down was mV dot + m gamma V was = the force

on the right hand side. Now this force we took to be a random fluctuating force in the absence of

any external force but let us put an external force on the system and see what happens right. 

So, there was this square root of gamma times Eta of t this was the fluctuating random force +

suppose you apply some external force as a function of t this is what you would get and similarly

exactly similarly this is we looked at the resistance model an LR circuit for example which had



an equation like Li dot + RI was again = a fluctuating voltage we let us call  it  random me

random of t + maybe some applied voltage we applied V of t in this fashion.

And there was a correspondence between these two things which came out as we went along

there  was  a  fluctuation  dissipation  theorem  which  related  the  strength  of  this  noise  to  the

dissipation here that is called the second fluctuation dissipation theorem and we will talk about

this little more today. This turned out to be square root of 2m gamma k Boltzmann T times Eta of

t  + F external  of t.  And now if  you took averages if  you took statistical  averages then this

becomes m and then because the average value of beta is 0 out here.

It turns out that m times V average dot etcetera now let us do this directly in terms of Fourier

components. So, I have in mind formally writing a function of trying as integral - infinity to

infinity the omega e to the - i Omega t times F tilde of Omega and its inverse transform okay and

this would immediately lead us to m times gamma - i Omega V tilled of Omega average is = this

term vanishes upon averaging = whatever was a Fourier component there so F external of Omega

in this fashion.

So, this says that the response that you have for each Fourier component of the velocity this

quantity  is = 1 over m times gamma - i  Omega times F external or applied of Omega. The

corresponding story here once again was that  the current I  tilled of Omega is  = 1 over this

produced a - i Omega so it is R - i omega l times V applied only here and of course this is what

you call the complex admittance of the circuit.

So, this is some Y of Omega V applied so this quantity by definition is the complex admittance

of this circuit it is reciprocal is a complex impedance course. Exactly similarly this quantity here

is called the dynamic mobility because what it does is to measure what the average velocity is

the component velocity component at the frequency Omega is per unit applied amplitude at the

frequency Omega so this is by definition = some Mu of Omega times F external Omega and this

quantity is called the dynamic mobility it is a complex number in general.



It is a complex function so this follows very straightforwardly from here but what is interesting is

that we found a relation between the power spectrum of the input and the power spectrum of the

output we discovered that the modulus squared of this Mu of Omega actually gave us the power

spectrum in the absence of the external force okay. 
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So, we actually discovered that in the absence of the external force in the absence of F external

of t  then you only have the random force the internal  random force and it  is fluctuating we

discovered that the average value of the velocity was actually 0 because the fluctuating force had

a 0 average unlike this case where you actually have a non0 average. But it turned out that you

could find what the velocity correlation was and we discovered that this quantity S by the way

we call this Zeta of t right.

We call this combination Zeta of t so that the in the correlation function of Zeta of t had already a

gamma times the Delta function u so this quantity is Zeta the noise of Omega this thing here was

related to the input out there and we found that in the other way about we found that S the

velocity Omega was = mod Mu Omega squared times S Zeta of Omega for the power spectra

and what is this fellow = this guy was = the Fourier transform.

So, because we use the symmetry property etcetera but in the absence of that 1 over 2Pi - infinity

to infinity d to dt e to the i  Omega t V of 0 V of t in the absence of the external  force in



equilibrium. So, this is a non-trivial relationship because after all what is the mobility measuring

its measuring the response the average response to unit applied force at some given frequency. 

On the other hand we also discover that the power spectrum of the output variable the velocity

response variable due to thermal fluctuations is related to the power spectrum of the noise which

is a driving force here through precisely the same Mu of Omega mod squared. So, this means

there  is  a  connection  deep  connection  between  response  to  an  applied  perturbation  and

spontaneous fluctuations in the absence of this perturbation.

This is a deep relationship it is the gist of it is at the bottom of linear response theory. Here this is

crucial for stability because we already saw in a very soon this example itself we saw that if I did

not have this term and I assume this to be delta correlated then it turned out that this quantity

here  the  mean  square  value  of  this  V in  equilibrium  increase  with  time  linearly  which  is

unphysical.

So, you needed the dissipation and at that point I said well this is sort of telling you that you

cannot have uncontrolled fluctuations the more the system is thrown out of equilibrium the more

it is brought back by the dissipation present in the system here right. So, stability is maintained

and the consequence of that is that the power spectra are connected but this is a deep relationship

because  it  is  telling  you  that  the  average  response  in  the  presence  of  an  external  force  is

somehow related to the autocorrelation in the absence of this force okay.

So, this is not linear in B this is quadratic in be on the other hand the average is linear. So, it is a

marvelous relationship it is a consistency condition which is essential for stability and we found

that explicitly in this problem right. Now the same thing is true here too. So, there is a relation

which will tell you the relationship between the fluctuations here and the situations here we saw

what it was?

It is precisely this thing here with this translation of language m to l and m gamma is R so, its

gamma is replaced by the characteristic time scale R over l inverse time scale. So, with this

translation from one to the other these two models are essentially the same. So, we could write



down similar things in that case too. So, there is a deep relationship between the fluctuations in

the absence of the force and the average response in the presence of the first two first order in

this external force which is why I keep saying linear response. 
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In fact we can go a step further we can see exactly what it is in this model it is not hard to see

that if you took new of Omega but we already found out what this SV of Omega is right Sv of

Omega was = this quantity here and by symmetry this was it was 1 over Pi and then there was a

kT, so it is kBT over m Pi and then you had 0 to infinity e to the - gamma t so there was a gamma

kt over 1 over gamma squared + Omega squared on this side.

And now if you ask what is the real part of Mu of Omega, so Mu of Omega is = 1 over m gamma

- I Omega by the way the power spectrum here it is clear it is real because the way we have

defined it sorry we should say this properly. We started by saying that this power spectrum was

the Fourier transform 1 over 2 pi capital T 0 to capital T e to the i Omega T times this signal mod

squared so it is a real number right.

So, it is fair to compare the real part of this Mu of Omega that gives you 1 over m gamma

squared + omega square with a gamma on top. So, what does that tell you this is also = so this is

= gamma over m can cancel, so kBT by Pi real power Mu of Omega you know for mu of Omega



is  the  dynamic  susceptibility  it  tells  you something about  the  response  of  the  system to  an

external force the average response to an external force.

And the real  part  of that  susceptibility  is  directly  = the power spectrum of  the spontaneous

fluctuations  in  the absence of this  external  force.  So,  there is  one more way of writing this

response  relaxation  relationship  this  side is  a  response  and this  side gives  you the  way the

velocity correlations die out, so it is a relaxation and this thing is called a fluctuation dissipation

theorem. It is actually called the first fluctuation dissipation theorem because there is a second

theorem also which is this variable the driving variable.

This noise in the system is not related to the dissipation in the system yes in fact it is this the

strength of this force here is directly related to this fellow here and that is very often called the

second fluctuation dissipation theorem. 
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Let us write that down because I want to generalize that, so let us write that down so it I write

this down in the following way Zeta of 0 Zeta of t in equilibrium let me put that just to show then

there  is  no  external  force  not  that  this  is  going  to  change  because  of  that  but  let  us  for

completeness put it here this guy here = 2 m gamma k Boltzmann T times Delta of t. So, if you

integrate this from 0 from - infinity to infinity dt this guy here.



You end up with a 1 and if I write this as 1 over 2 k Boltzmann T that gives m gamma on that site

and we know this is an even function of T, so I can write this as twice 0 to infinity of this is this

camp and it is sometimes called the second fluctuation dissipation here because it tells you that

the dissipation in the system is related to the spontaneous fluctuations in the system the noise in

the system.  This  integral  of this  autocorrelation  is  that  guided and there  you have a similar

relationship which again connects relaxation and response okay.

So, this term fluctuation dissipation theorem is sort of used interchangeably and we know that

the two power spectra are connected through this relationship here now this quantity here is what

would be called in engineering the transfer function I do not know what symbol you use for the

transfer function H of Omega it is the mod square of this fellow 1 over R over R squared +

Omega squared l squared is the transfer function for in LR said.

Now let us try to put this in a more general framework where this comes from what all this

where all  this  comes from.  And there is  a  small  thing you have  to  notice  which is  slightly

different and that is the following is it possible for me to write a formula for this mu of Omega

directly in terms of this velocity autocorrelation function this is how we derive the answer is yes. 

Because if you took this we will come to this formula I want to connect the susceptibility this

dynamics  as  a  mobility  mu of  Omega  to  directly  to  some integral  over  the  fluctuate  order

correlation of the velocity. It is already implicit here in this but we will make it will make this

relation look like that I want to make it look like that. We will see how to do this.
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So, let us go back step back and try to cast this in a slightly more general language and see what

all these correlations mean and where they come from first a few words about linear response

okay. Suppose you have some force on a system some perturbation and the system you measure

some observable system response through some observers which you measure and you want to

ask what is this response light likely to be.

In  the  most  general  case  where  you assume  just  the  following  general  principles,  first  you

assume that the response is linear it is linear in the applied perturbation. So, it is got to be a small

force in some specific strains. The second thing you assume is that it should be causal that is the

effect  should  not  take  place  before the  cause okay. And the  third  thing is  that  it  should be

retarded namely the statistical properties of this system will always assume it to be in thermal

equilibrium do not change everything is stationary and there is no aging or anything like that

going on right.

Then if I apply in general terms if I apply some kind of force F of t to a system and I ask how

does  it  respond  and  I  measure  some  observable  for  want  of  a  better  word  let  us  call  that

observable some X of t measure this quantity. This has got to be a superposition overall histories

dt prime of this force time some response function in between some Phi which is a function of t -

t Prime this is the most general linear functional that you can write down.



It is a sum over all histories of the applied force up to this time t, so there is no anticipatory

response its linear in this F and it is retarded it is a function only of the elapsed time difference

between the two every other application of any external force is a special case of this. Now once

you have this you could ask general causal retarded linear response. Now of course if it  is a

vector or a tensor and this thing is matrix it does not matter we can put in all those indices later

but this is the simplest instance.

Now if  I  formally  make a Fourier  transform on both sides I  expand these things  in  Fourier

transforms then it is a matter of very simple algebra to show that this quantity extent of Omega is

related to the Fourier transform of this guy through a function so this is F tilde Omega multiplied

in  general  by  a  function  some  Chi  of  Omega  and  this  thing  is  called  the  generalized

susceptibility. So, it tells you it is exactly the analog of the complex admittance or the dynamic

mobility etcetera.

It tells you per unit applied force amplitude at a given frequency what is the response = at this

stage there is no statistical mechanics or anything like that put in at all it is a general statement of

causal  linear  response.  This  quantity  here  is  called  a  response  function  and  we  cannot  say

anything more about this without knowing more about the system itself we need to put in more

specific things.

So, now the question is can I write an expression for this Chi of Omega using just this fact here

putting in the Fourier transform and the answer is yes it is immediate all you have to do is to put

in the Fourier transform and change manipulate a bit and this will imply with Chi of Omega = an

integral from 0 to infinity dt e to the i Omega t Phi of t. First of all note that this function Phi of t

as it stands is only defined for positive values of the argument. Because you cut it off out here

sometimes you write a green function you would say that.
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You now so just for analogy and so that you can make connection to that sometimes you have a

problem in which you have some differential operator dx dt with respect to t say acting on a

function X of t = a given function F of t sometimes you are given that kind of state right and then

you are asked to solve for this X of t for a given F of t right with some initial conditions and so

on and so forth. 

So, what is the formal solution to this, this is X of t = dt inverse on F of t this is some differential

operator involving derivatives with respect to time functions of time and so on so forth. We do

not care what kind of operator it is and you have to find its inverse. Now it is reasonable that the

inverse of a differential operator is some kind of integral operator.

So, in general the solution would look like this is = integral dt prime G of t and t prime F of t this

guy is just a representation of the inverse operator in the explicit form. So, it is some integral

operator with a kernel of this kind. Now if this operator is time translation invariant and so on so

forth under suitable assumptions this will turn out to be a function of t - t Prime in this fashion

the integral runs from - infinity to infinity.

And if it is causal it will say that this cuts off for negative values of the argument which would

be equivalent to saying that this is of the form some Phi of t - t prime times a step function t – t,

so, that the integral gets cut off. So, this is the connection between the causal brain function and



the response function. I put this dt here explicitly so I did not write G otherwise that I built in G

just to make connection with the normal right way of writing the green function.

So we are not going to use this but what we have here is a statement that you take this response

function which to start with is defined for positive values non-negative values of its argument

integrated with this weight factor e to the i Omega t 0 to infinity it is not a Laplace transform and

it is not a Fourier transform either because it is one sided. It is 0 to infinity now this infinity

comes from here though this manipulation.

But this 0 comes from here from this thing here from causality. So, that is why it is cut off this

guy here is directly connected with this limit here and this is important to note. Now you might

say maybe this integral does not converge you have to worry about convergence and so on of

such integrals but the fact is that if it converged without this factor it would certainly converge

with it because there is an oscillatory factor and there are places where it becomes negative and

so on.

At a formal level if this is posed to you as an initial value problem from t = 0 upwards etcetera

then what you do is to take Laplace transforms rather than Fourier transforms but what you have

here is this guy here out here. So, you could formally say that this generalized susceptibility is

the Laplace transform of the response function which after all is defined for its argument from t

= 0 upwards analytically continued to S = - i Omega.

So, you could say that this is also = the Laplace transform of Phi of t evaluated at S = - i omega,

so that technical difficulties with convergence and so on can be overcome. So, this is just to

make contact with cases where you start applying the force from t = 0 onwards etcetera then you

get exactly the same answer if you took the Laplace transform and replace the S with -i only

analytically continue to that point okay.

So, much for the general case this is what it is we still do not know anything about this Phi of t

on the other hand the kind of problem we have been looking at we need to motivate the fact that

this Phi of t has a very special form it turns out to be an autocorrelation function in the absence



of the external force and the question is where does that come from right here there is no such no

mention of any extra anything at all.

You saying you are applying a force F and you are saying there is a response here so what

happens in that case is the following and that is where the formalism of linear response theory

comes in but let me say it in simpler terms okay.
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What really happens is that you start by saying here is a system in thermal equilibrium at some

temperature  t  and there  is  an equilibrium density  matrix  which  is  e  to  the  -  beta  times  the

Hamiltonian of the system. So, you have a system with Hamiltonian H naught and it is in thermal

equilibrium so the density matrix in thermal equilibrium Rho equilibrium = e to the - beta H

naught and then you can find the average value of any given quantity by the prescription of

equilibrium statistical mechanics.

So, if you have some observable B and this guy is some observable the average value of B is

Trace Rho times B divided trace B we will normalize things so that trace Rho is also always = 1

we can always do that so the denominator goes away otherwise you have to keep this thing. So,

this fellow here is = trace e to the - beta H naught times B and we can compute its variance and

so on and so forth.



Now I perturb the system by applying an external force on it of some kind this force always

couples to some physical observable of the system and let us without loss of generality say that it

couples to some observable a so that this Hamiltonian H naught goes to edge = H naught - this

observable a time some coupling strength let me call it F of t okay. I have in mind the problem of

the particle in which I am going to apply an external force.

And then if it is a constant force for example then the potential energy corresponding to this

constant force you need the force is - dv over dx, so I set V = - X times f of T and if F is a

constant for instance you would get - d over dx - X F is in fact F, so that is the reason for the -

sign will purely a matter of convention it is just to tell you that in the case when F turns out to be

a constant force and I put a = X I would in fact get the derivative of that potential is = F before -

the derivative is = the force.

So, the question is what happens to the expectation value of V in the first order in this force F

and that is going to be of the form B goes from here we this is an equilibrium goes to B = B

equilibrium + Delta B that is the effect of this external  force this  is first order in this small

quantity F okay and I need to compute this average.
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Now the way to do that is straightforward because when you have any classical variable and we

are doing everything in the classical Hamiltonian context for any observable whatsoever you can



write db over dt if this does not explicitly involve time if this quantity does not explicitly no

observable does not explicitly involve time but involves only the canonical coordinates say since

we are doing the Hamiltonian framework. 

This is given by the analog of the Heisenberg equation of motion in classical mechanics right and

what is that = the Poisson bracket of B with H which is = the Poisson bracket of B with H naught

- F of t times the price of bracket of B with A and we have to solve this equation this is the

differential equation that you have to solve and then compute averages and so on and so forth.

So, I am not going to do that except to write the answer down.

And it turns out that if you do this then Delta B turns out to be = ok first a word on how this is

done you should explain how this is done well the response function in this case Phi and now I

need to remember that A is the perturbation and B is the observable so let us call this Phi Ab of t

- t prime turns out to be in this case the expectation value of the Poisson bracket of A of t Prime

with be in equilibrium that means in the absence of this perturbation.

So, what does that mean that means this quantity this average say steak trace of this quantity

inside with respect to the density matrix into the - beta H naught that is the meaning of this

average here and the reason is simple because what you have to do is to pretend this is kept to

first order. So, in some sense to solve such an equation you would have to exponentiate whatever

is on the right hand side.

And keep this to first order that means own it comes down anything on the other hand this fellow

remains to all orders up there okay. So, at the end of a little bit of manipulation this is the answer

that you get here but it still hasn't put it in the form of a correlation function. Now, that will

depend on the following very simple observation this is = a trace e to the - beta H naught Poisson

bracket of A of t prime B of t.

And now exploit the fact that there is cyclic invariance of the trace and then it is not hard to show

by the way you can tell what is B of t at any time t you can write it in terms of B of 0 by the

analog of whatever you did in quantum mechanics when you went from the Schrodinger to the



Heisenberg picture with e to the H naught and so on, on the left. So, a little bit of manipulation

gets you to the following.
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So, it takes you to this thing here becomes trace or some bracket of e to the - beta H naught with

A of 0 B of t - t prime this becomes = that by the cyclic invariance of the trace okay. So, notice

first that you have got this function of t - t prime emerging that comes about by putting the time

dependences here in terms of A of 0 B of 0 etcetera and using the cyclic problem in variance of

the trace the next step is to compute this quantity.

But look at what this is this is = if you had q’s and p’s as your degrees of freedom for example it

would be Delta e to the - beta H naught over Delta q Delta A of 0 by Delta p - Delta e to the -

beta H naught Delta p Delta A of 0 over Delta q summed over degrees of freedom and so on. So,

I  am assuming  there  are  n  degrees  of  freedom  and  I  put  a  qi  pi  it  is  offensive.  But  if  I

differentiate this it is = delta H naught or delta q with A - beta e to the - beta H naught outside.

So, you get A - beta e to the - beta H naught and then this is replaced by delta H naught but this is

= - beta times e to the - beta H naught oh by the way after you do this you have to take a trace

you got to multiply by this into a trace. So, right now all we are doing is to simplify this fellow

all the way down times Poisson bracket of H naught with A of 0 but that is = beta times e to the -

beta H naught Poisson bracket of A of 0 with H naught.



But we now take recourse to this any operator it is time derivative is the Poisson bracket of the

operator with the Hamiltonian in the absence of the external force it is the free Hamiltonian and

the operators assumed mean have no explicit time dependence that is what we put into F of t. So,

this guy is therefore = beta e to the - beta H naught times A dot of 0 because that is the definition

of dA over dt and then you set t = 0 after you differentiate.

So, this becomes = trace beta times trace e to the - beta H naught A dot of 0 B of t - t prime trace

of this whole time which is nothing but 1 over kBT time the average of A of 0 B of t A dot of 0 in

this in equilibrium. So, that is how the correlation appears live the autocorrelation appears but

notice the perturbation is in A the operator or dynamical variable that appears is in A but what is

appearing here is A dot.

So, we have a formula that tells us this response function classically this fellow here is 1 over k

Boltzmann  T  times  the  equilibrium  autocorrelation  that  is  the  response  function.  So,  it

immediately  gives  us  a  formula  for  what  the  generalized  susceptibility  is  because  the

susceptibility therefore Chi AB of Omega must be 1 over k Boltzmann T an integral from 0 to

infinity dt e to the i Omega t A dot of 0 B of t in equilibrium.

So, it follows at once in general that this is what the susceptibility is what we need to do is to see

whether our Langevin model for which we had an explicit stochastic differential equation for B

of t will tally with this if we write it in the proper language.
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Now what is it we are doing when we are measuring the mobility you are measuring the velocity

response average velocity response so what is Mu of Omega = it is a generalized susceptibility

but what is A in that case and what is B in that case well A has to; B is clearly the velocity we are

measuring the average velocity that is what the measurement of the mobility implies. And what

is A = you are applying a mechanical force right. So, A is X the position right so by definition

this guy = Chi Xv of Omega.

Position velocity cross whatever its susceptibility but that your advice here must be = 1 over k

Boltzmann T times an integral from 0 to infinity dt e to the i Omega t and then A dot of 0 but A is

X A dot is V right. So, this is what brings in the way here expectation V of 0 V of t inequality

independent of the Langevin model we did not do anything we did not bring in any stochastic

differential equation at all.

That is the general formula for the dynamic mobility in this one component system. But the

Langevin model gives you a formula for this order correlation because you now have a detailed

stochastic  differential  equation  which is  giving something about  some information  about  the

dissipation in the system etc and it is a model it is still a model right. 

And in that model in the Langevin model this is 1 over k Boltzmann T integral 0 to infinity dt e

to the i Omega t e to the - gamma k Boltzmann T over m e to the – Mu t in that model this is



what we got and now it is a simple step to see the kt cancels and it gives 1 over m gamma - i

Omega which is what we know already. So, this is derived from the Langevin model directly. We

did not play around with the stochastic differential equation in particular we did not put in an

external force a random force.

We did not  talk  about  its  correlations  we did  not  do anything  like  that  we just  took linear

response theory directly and use this formula and you get exactly the same answer. So, this is

consistent the Langevin model is consistent with linear response field. But response theory gives

you a general sort of formula in fact it will tell you what to do in the quantum case when these

are when this is the Heisenberg equation of motion.

This is I H db over dt is a commutator here and when the Poisson brackets were replaced with

commutators and things do not commute with each other and so on then you get a slightly more

general formula here you actually get a not a Poisson bracket of A with B but a commutator of

unequal time commutator A at time t, B at time t prime the other way about A at time t prime, B

at time t and then from that you play around and you do not quite get this.

You get a more complicated formula for the generalized susceptibility  but once again it will

involve equilibrium correlations okay. So, notice that something fairly non trivial has been done

we started with the response function which involved an unequal time for some bracket or in the

quantum Langevin  commutator and you are able to evaluate it and finally write it in a simplified

form in terms of an autocorrelation of some kind.

So, there is a general relationship between the power spectrum of the spontaneous fluctuations in

the output variable for instance and the corresponding dynamic susceptibility average response,

if now what about the other relation what about the second fluctuation dissipation theorem that

depended directly on writing a stochastic differential  equation putting in an external force of

some kind etc putting in explicitly a random noise making some assumptions about this noise

etc.



But I said that we should like to write the power spectrum of that force also in this form. So, by

the way we can we can write down in this formula here notice how t appears quite naturally

appears here, incidentally what was the diffusion coefficient = in this problem it was just this

integral here as it stood right.  So, the diffusion coefficient is related to the susceptibility the

mobility at 0 frequency and what was the relation an m gamma was the mobility at 0 frequency

right.

So, we could write I am not happy with that relation sorry 1 over m okay that is A side outcome

of the fact that at 0 frequency the mobility essentially measures a diffusion coefficient. Now, one

could go a step further and ask be after all had a very simple model the Langevin model is there a

more general way of writing this formula down this response down paying attention to the fact

that this thing susceptibility turns out to be too trivial it just got by the way a couple of comments

about the susceptibility.
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Let me make those two as well here say that properly so look at the generalized mobility Omega

is 1 over k Boltzmann T integral 0 to infinity dt e to the i Omega t now we will assume that A

and B are real observables or Hermitian operators in the quantum case. Then it  immediately

follows from this that for real frequencies Chi of -  omega Chi star  of Omega, so there is  a

symmetry property we saw a similar symmetry property for the power spectrum.



We saw that  this  function  for  a  single  component  object  it  had  to  be  positive  had to  be  a

symmetric function. You  know now everything depends on what the time reversal property of

this quantity is wasting here and in general we cannot make any statement at all because A and B

need not have definite time reversal properties right. On the other hand in the simple example we

looked at this guy this fellow was e to the - gamma modulus t.

So, it was a symmetric function ok we can ask what is the general statement what can we say in

general well what we have to note is that this guy here if you write this as 1 over k Boltzmann T

no sorry what did we do what did I right here sorry I should not write it like this like this is

explicitly A dot of 0 that times 1 over kBT is = the response function Phi. Now if you look at

what this Phi AB is it is = 1 over k Boltzmann T times A dot of 0 B of T.

And you ask this will imply that Phi AB of - t + Phi AB of T what will this B well it depends on

the time reversal properties of these operators are observables there is an A dot of 0. So, if A for

example is a velocity it will change sign under time reversal. If it is a position it does not change

sign and so on. So, it is got some time reversal property let us call that epsilon A which is + 1 if

is does not change sign under time reversal and – 1 if it changes sign.

And then there is an epsilon B which is also sitting here and there is an A dot, so there is a d over

dt sitting there and that is going to change a sign so - and then Phi AB so in the most general case

you tell me what is a what is me and I tell you what this Phi will do and in general it need not

have a time parity need not have a specific epsilon it could be mixed but in the cases where it has

a definite symmetry one way or the other even or odd you can write down what it is.

So, this whole number is either + 1 or - 1 we can therefore assign a definite even or odd nature as

a function of time to this response function not necessary in general. So, the question is what can

we conclude from this formula here. Well the first thing we see is that if this integral exists at 0

frequency it certainly exists for complex frequencies provided the frequencies are in the upper

half plane provided the imaginary part is positive because that provides a damping factor okay.



So, this says this function here if it exists for real Omega will certainly exist for complex Omega

in the upper half plane and will be an analytic function of Omega. So, you can write dispersion

relations for it in real and imaginary parts are related by Hilbert transforms okay. In particular

there are no singularities in the upper half plane.
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So, this function is analytic imaginary Omega greater than = 0 as a function of the complex

frequency Omega its analytic then this symmetry property that I wrote down will be shifted to

Chi of - omega = Chi star - Omega star is = pi star that is easily very fine if Omega is in the

upper half plane Omega star is in the lower half plane and you put a - sign it goes back to the

upper half so this is a reflection property in the upper half plane and does not refer to what it

does in the lower half plane at all because we have no information on it as it stands.

Now you know that if you have an analytic function of a complex variable it cannot be analytic

everywhere if it is then it is a constant including at infinity then it is a constant. So, this thing

here must definitely have singularities in the lower half plane one or more singularities in general

lower half plane because of the Fourier transform convention have chosen I chose + signs etc etc.

I  stuck to  that  convention  then  it  is  analytic  in  this  so the  point  is  a  causal  linear  retarded

response will lead to a susceptibility which is analytic in one of the half planes either upper or

lower half. The example we looked at mu of Omega this fellow here was one over n gamma - I



Omega it has a pole at Omega = - I am so it is in the lower half plane. What happens if you had a

slightly more general system than this LR circuit.
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Let us put an LCR circuit and see what happens what is the admittance for an LCR series circuit.

What is the admittance well the equation of motion is l times the charge which is q double dot +

R times q dot + q over C = the voltage applied voltage or whatever V of t right. So, if I take the

Fourier transform on both sides then they are related to each other by the complex admittance.

So, what is Y of Omega in this problem = 1 over q double dot.

So that produces - i Omega whole square so it is - L Omega squared and this produces - i Omega

R + 1 over C right. So, let us take the - sign here and write it as L Omega squared + this guy - the

guy let us divide by L, so 1 over L times R over L - 1 over LC in this fashion sorry R over L and

R over L is what we call gamma the inverse characteristic time constant so this fellow here is = -

1 over L times Omega squared + i omega gamma - Omega naught squared.

That  is  the square of the frequency of the purely reactive circuit  without any resistance and

where are the poles of this guy at Omega = - i gamma over 2 + or - square root of - so that is =

Omega naught squared - gamma squared over 4, I took out the two and divided this okay. So,

that is where the poles are. Now if it is an under damped circuit then of course this is bigger than

that and then both poles are in the lower half plane right.
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So, indeed it satisfies this causality this analyticity condition and where are these poles by the

way in the Omega plane to start with one of them is at - i gamma over 2 + that square root and

the other fellow is it - the square root we are out here right. So, this is the fellow that corresponds

to the + 1 corresponds here negative 1 curse to this. What happens if I now change this frequency

or increase the friction a little bit?

Such that finally it becomes critically damped I go on increasing gamma or a decrease in omega

not till it becomes over damped what will happen to these poles they cannot go up they cannot go

up because it is got to be analytic in the upper half plane right. When will they coincide well they

will  coincide when they become both these poles will  start  moving in this  fashion and they

coincide at one point at critical damping right.

So, this goes away and you have just one of them at - some number here and then what happens

to the polls well one of them will go up like this and the other one will go down like this because

now this fellow becomes pure imaginary right. So, one of them as you increase the parameter

gamma towards infinity one of the moves towards 0 and the other one moves out to - infinity but

remains in the lower half plane throughout.



This is a matter of convention we have said that our fully transform convention is such that the

generalized susceptibility is the cause they have an the retarded causal retarded susceptibilities

have an analytic in the upper half plane the frequency and that is borne out in these simple cases.

But still  this is not general  enough especially  in the case of even in the case of this  simple

Langevin model this is not good enough.

Because  we have  assumed a friction  constant  but  we did  not  say that  this  friction  constant

depends on time at all a much more general thing would be to say that this dissipation will itself

be time dependent okay. We need to put a memory kernel, so we will do that next time you see

quickly how the fluctuation dissipation theorems will continue to hold good but this time the

second fluctuation dissipation theorem will become a non trivial statement we will see you.


